Beispiel #1
0
    def test_database_runner_checkpoint(self):
        dbs = DatabaseSerializer(test_scenarios=4, test_world_steps=5, num_serialize_scenarios=10)
        dbs.process("data/database1")
        local_release_filename = dbs.release(version="test")

        db = BenchmarkDatabase(database_root=local_release_filename)
        evaluators = {"success" : "EvaluatorGoalReached", "collision" : "EvaluatorCollisionEgoAgent",
                      "max_steps": "EvaluatorStepCount"}
        terminal_when = {"collision" :lambda x: x, "max_steps": lambda x : x>2}
        params = ParameterServer() # only for evaluated agents not passed to scenario!
        behaviors_tested = {"IDM": BehaviorIDMClassic(params), "Const" : BehaviorConstantAcceleration(params)}
                                        

        benchmark_runner = BenchmarkRunner(benchmark_database=db,
                                           evaluators=evaluators,
                                           terminal_when=terminal_when,
                                           behaviors=behaviors_tested,
                                           log_eval_avg_every=20,
                                           checkpoint_dir="checkpoints1/")

        # one run after 30 steps benchmark dumped
        result = benchmark_runner.run(checkpoint_every = 30)
        df = result.get_data_frame()
        print(df)
        self.assertEqual(len(df.index), 40) # 2 Behaviors * 10 Serialize Scenarios * 2 scenario sets
        # check twice first, merging from checkpoints
        merged_result = BenchmarkRunner.merge_checkpoint_benchmark_results(checkpoint_dir="checkpoints1/")
        df = merged_result.get_data_frame()
        self.assertEqual(len(df.index), 30)
        # second load merged results
        self.assertTrue(os.path.exists(os.path.join("checkpoints1/merged_results.ckpnt")))
        merged_result = BenchmarkRunner.merge_checkpoint_benchmark_results(checkpoint_dir="checkpoints1/")
        df = merged_result.get_data_frame()
        self.assertEqual(len(df.index), 30)

        configs_to_run = BenchmarkRunner.get_configs_to_run(benchmark_runner.configs_to_run, merged_result)
        self.assertEqual(len(configs_to_run), 10)

        benchmark_runner2 = BenchmarkRunner(benchmark_database=db,
                                           evaluators=evaluators,
                                           terminal_when=terminal_when,
                                           behaviors=behaviors_tested,
                                           log_eval_avg_every=1,
                                           checkpoint_dir="checkpoints1/",
                                           merge_existing=True)

        result = benchmark_runner2.run(checkpoint_every = 7)
        df = result.get_data_frame()
        print(df)
        self.assertEqual(len(df.index), 40) # 2 Behaviors * 10 Serialize Scenarios * 2 scenario sets

        # check if results maintained in existing result dump, 30 from previous run + 7 after new checkpoint
        merged_result = BenchmarkRunner.merge_checkpoint_benchmark_results(checkpoint_dir="checkpoints1/")
        df = merged_result.get_data_frame()
        self.assertEqual(len(df.index), 37)
Beispiel #2
0
    def test_database_multiprocessing_runner_checkpoint(self):
        dbs = DatabaseSerializer(test_scenarios=1, test_world_steps=2, num_serialize_scenarios=10)
        dbs.process("data/database1")
        local_release_filename = dbs.release(version="test")

        db = BenchmarkDatabase(database_root=local_release_filename)
        evaluators = {"success" : "EvaluatorGoalReached", "collision" : "EvaluatorCollisionEgoAgent",
                      "max_steps": "EvaluatorStepCount"}
        terminal_when = {"collision" :lambda x: x, "max_steps": lambda x : x>2}
        params = ParameterServer() # only for evaluated agents not passed to scenario!
        behaviors_tested = {"IDM": BehaviorIDMClassic(params), "Const" : BehaviorConstantAcceleration(params)}
                                        

        benchmark_runner = BenchmarkRunnerMP(benchmark_database=db,
                                           evaluators=evaluators,
                                           terminal_when=terminal_when,
                                           behaviors=behaviors_tested,
                                           log_eval_avg_every=10,
                                           num_cpus=4,
                                           checkpoint_dir="checkpoints2/",
                                           merge_existing=False)
        benchmark_runner.clear_checkpoint_dir()
        # one run after 30 steps benchmark dumped
        result = benchmark_runner.run(checkpoint_every = 3)
        df = result.get_data_frame()
        print(df)
        self.assertEqual(len(df.index), 40) # 2 Behaviors * 10 Serialize Scenarios * 2 scenario sets

        merged_result = BenchmarkRunner.merge_checkpoint_benchmark_results(checkpoint_dir="checkpoints2/")
        df = merged_result.get_data_frame()
        self.assertEqual(len(df.index), 4*9)
       # self.assertEqual(len(merged_result.get_histories()), 4*9)
        self.assertEqual(len(merged_result.get_benchmark_configs()), 4*9)

        configs_to_run = BenchmarkRunner.get_configs_to_run(benchmark_runner.configs_to_run, merged_result)
        self.assertEqual(len(configs_to_run), 4)
        ray.shutdown()
        benchmark_runner2 = BenchmarkRunnerMP(benchmark_database=db,
                                           evaluators=evaluators,
                                           terminal_when=terminal_when,
                                           behaviors=behaviors_tested,
                                           log_eval_avg_every=1,
                                           checkpoint_dir="checkpoints2/",
                                           merge_existing=True)

        result = benchmark_runner2.run(checkpoint_every = 1)
        df = result.get_data_frame()
        print(df)
        self.assertEqual(len(df.index), 40) # 2 Behaviors * 10 Serialize Scenarios * 2 scenario sets

        # check if existing result is incorporated for mergin result
        merged_result = BenchmarkRunner.merge_checkpoint_benchmark_results(checkpoint_dir="checkpoints2/")
        df = merged_result.get_data_frame()
        self.assertEqual(len(df.index), 40)
    def test_database_runner_checkpoint(self):
        dbs = DatabaseSerializer(test_scenarios=4,
                                 test_world_steps=5,
                                 num_serialize_scenarios=10)
        dbs.process("data/database1")
        local_release_filename = dbs.release(version="test")

        db = BenchmarkDatabase(database_root=local_release_filename)
        evaluators = {
            "success": "EvaluatorGoalReached",
            "collision": "EvaluatorCollisionEgoAgent",
            "max_steps": "EvaluatorStepCount"
        }
        terminal_when = {
            "collision": lambda x: x,
            "max_steps": lambda x: x > 2
        }
        params = ParameterServer(
        )  # only for evaluated agents not passed to scenario!
        behaviors_tested = {
            "IDM": BehaviorIDMClassic(params),
            "Const": BehaviorConstantAcceleration(params)
        }

        benchmark_runner = BenchmarkRunner(benchmark_database=db,
                                           evaluators=evaluators,
                                           terminal_when=terminal_when,
                                           behaviors=behaviors_tested,
                                           log_eval_avg_every=20,
                                           checkpoint_dir="checkpoints1/")
        benchmark_runner.clear_checkpoint_dir()
        # one run after 30 steps benchmark dumped
        result = benchmark_runner.run(checkpoint_every=30)
        df = result.get_data_frame()
        print(df)
        self.assertEqual(
            len(df.index),
            40)  # 2 Behaviors * 10 Serialize Scenarios * 2 scenario sets
        # check twice first, merging from checkpoints
        merged_result = BenchmarkRunner.merge_checkpoint_benchmark_results(
            checkpoint_dir="checkpoints1/")
        df = merged_result.get_data_frame()
        self.assertEqual(len(df.index), 40)