Beispiel #1
0
def extra_files_by_postfix(ori_root,
                           dest_root,
                           match_postfix='',
                           new_postfix=None,
                           match_ext='*'):
    '''
    extra files from ori_root to dest_root by match_postfix and match_ext
    params:
        ori_root: the dir of files that need to be processed
        dest_root: the dir for saving matched files
        match_postfix: the postfix to be matched
        new_postfix: the postfix for matched files
            default: None, that is keeping the ori postfix
        match_ext: the ext to be matched
    '''
    if new_postfix is None:
        new_postfix = match_postfix

    handle_dir(dest_root)
    flag_img_list = glob_match(
        os.path.join(ori_root, "*{}.{}".format(match_postfix, match_ext)))
    for im in flag_img_list:
        fname, ext = get_fname_ext(im)
        dest_basename = '{}{}.{}'.format(fname[-len(match_postfix):],
                                         new_postfix, ext)
        src = im
        dst = os.path.join(dest_root, dest_basename)
        copy_file(src, dst)
Beispiel #2
0
def batch_shift_images(ori_root,
                       dest_root,
                       offset_x=0.,
                       offset_y=0.,
                       filename_template="{}.png"):  # TODO
    '''
    function:
        shifting images by (offset_x, offset_y) on (axis-x, axis-y) in batches
    params:
        ori_root: string, the dir of images that need to be processed
        dest_root: string, the dir to save processed images
        offset_x: float, offset pixels on axis-x
            positive=left; negative=right
        offset_y: float, offset pixels on axis-y
            positive=up; negative=down
        filename_template: string, the filename template for saving images
    '''

    handle_dir(dest_root)
    offset_x, offset_y = float(offset_x), float(offset_y)
    images_fname = sorted(listdir(ori_root))
    for imf in images_fname:
        img = cv2.imread(os.path.join(ori_root, imf)).astype('float32')
        img = image_shift(img, offset_x=offset_x, offset_y=offset_y)
        cv2.imwrite(
            os.path.join(dest_root,
                         filename_template.format(get_fname_ext(imf)[0])), img)
        print("Image", imf, "shift done !")
Beispiel #3
0
def batch_crop_img_with_padding(ori_root,
                                dest_root,
                                min_size=(100, 100),
                                padding=10):
    '''
    function:
        cropping image to many patches with padding
        it can be used for inferring large image
    params:
        ori_root: the dir of images that need to be processed
        dest_root: the dir to save processed images
        min_size: a tuple (h, w) the min size of crop, the border patch will be larger
        padding: the padding size of each patch
    notice:
        filenames should not contain the character "-"
        the crop flag "x-x-x-x" will be at the end of filename when cropping
    '''
    handle_dir(dest_root)
    images_fname = sorted(listdir(ori_root))
    for imf in images_fname:
        img = cv2.imread(os.path.join(ori_root, imf))
        img_cropped = crop_img_with_padding(img,
                                            min_size=min_size,
                                            padding=padding)
        for k in img_cropped.keys():
            cv2.imwrite(
                os.path.join(
                    dest_root,
                    "{}_{}.png".format(os.path.basename(imf).split('.')[0],
                                       k)), img_cropped[k])
        print(imf, "crop done !")
Beispiel #4
0
def extra_frames_from_videos(ori_root, save_root, fname_template='%4d.png', start_end=None):
    '''
    function:
        ext frames from videos
    params:
        ori_root: string, the dir of videos that need to be processed
        dest_root: string, the dir to save processed videos
        fname_template: the template for frames' filename
        start_end: list, len=2, the start and end index for processed videos,
            assert: len(start_end)=2
            default: None, that is processing all videos
    '''

    handle_dir(save_root)

    videos = sorted(listdir(ori_root))
    if start_end is not None:
        assert len(start_end) == 2, "only support len(start_end)=2"
        videos = videos[start_end[0]:start_end[1]]

    for v in videos:
        vn = v[:-(len(v.split('.')[-1]) + 1)]
        video_path = os.path.join(ori_root, v)
        png_dir = os.path.join(save_root, vn)
        png_path = os.path.join(png_dir, fname_template)
        handle_dir(png_dir)
        command = 'ffmpeg -i {} {}'.format(video_path, png_path)
        os.system(command)
        print("Extra frames from {}".format(video_path))
def extra_frames_by_postfix(ori_root,
                            dest_root,
                            match_postfix='',
                            new_postfix=None,
                            match_ext='*'):
    '''
    extra frames from ori_root to dest_root by match_postfix and match_ext
    params:
        ori_root: the dir of videos that need to be processed
        dest_root: the dir for saving matched files
        match_postfix: the postfix to be matched
        new_postfix: the postfix for matched files
            default: None, that is keeping the ori postfix
        match_ext: the ext to be matched
    '''
    if new_postfix is None:
        new_postfix = match_postfix

    handle_dir(dest_root)
    video_list = listdir(ori_root)
    for v in video_list:
        file_regroup_utils.extra_files_by_postfix(
            ori_root=os.path.join(ori_root, v),
            dest_root=os.path.join(dest_root, v),
            match_postfix=match_postfix,
            new_postfix=new_postfix,
            match_ext=match_ext)
Beispiel #6
0
def zip_frames_to_videos(ori_root, save_root, fname_template='%4d.png', video_ext='mp4', start_end=None):
    '''
    function:
        zip frames to videos
    params:
        ori_root: string, the dir of videos that need to be processed
        dest_root: string, the dir to save processed videos
        fname_template: the template of frames' filename
        start_end: list, len=2, the start and end index for processed videos,
            assert: len(start_end)=2
            default: None, that is processing all videos
    '''
    handle_dir(save_root)

    videos_name = sorted(listdir(ori_root))
    if start_end is not None:
        assert len(start_end) == 2, "only support len(start_end)=2"
        videos_name = videos_name[start_end[0]:start_end[1]]

    for vn in videos_name:
        imgs_path = os.path.join(ori_root, vn, fname_template)
        video_path = os.path.join(save_root, '{}.{}'.format(vn, video_ext))
        command = 'ffmpeg -i {} -vcodec libx264 -crf 16 -pix_fmt yuv420p {}'.format(imgs_path, video_path)
        # command = 'ffmpeg -r 24000/1001 -i {} -vcodec libx265 -pix_fmt yuv422p -crf 10 {}'.format(
        #     imgs_path, video_path)  # youku competition
        os.system(command)
        print("Zip frames to {}".format(video_path))
def remove_head_tail_frames(root, recycle_bin=None, num=0):
    '''
    remove num hean&tail frames from videos
    params:
        root: the dir of files that need to be processed
        recycle_bin: the removed frames will be put here
            defalut: None, that is putting the removed frames in root/_recycle_bin
        num: the number of frames to be removed
    '''
    if recycle_bin is None:
        recycle_bin = os.path.join(root, '_recycle_bin')
    handle_dir(recycle_bin)

    video_list = listdir(root)
    for v in video_list:
        img_list = sorted(glob_match(os.path.join(root, v, "*")))
        handle_dir(os.path.join(recycle_bin, v))
        for i in range(num):
            src = img_list[i]
            dest = os.path.join(recycle_bin, v, os.path.basename(src))
            move_file(src, dest)

            src = img_list[-(i + 1)]
            dest = os.path.join(recycle_bin, v, os.path.basename(src))
            move_file(src, dest)
Beispiel #8
0
def batch_matlab_resize_images(ori_root,
                               dest_root,
                               scale=1.0,
                               method='bicubic',
                               filename_template="{}.png"):
    '''
    function:
        resizing images in batches, same as matlab2017 imresize
    params:
        ori_root: string, the dir of images that need to be processed
        dest_root: string, the dir to save processed images
        scale: float, the resize scale
        method: string, the interpolation method,
            optional: 'bilinear', 'bicubic'
            default: 'bicubic'
        filename_template: string, the filename template for saving images
    '''
    if method != 'bilinear' and method != 'bicubic':
        raise Exception('Unknown method!')

    handle_dir(dest_root)
    scale = float(scale)
    images_fname = sorted(listdir(ori_root))
    for imf in images_fname:
        img = cv2.imread(os.path.join(ori_root, imf)).astype('float32')
        img = matlab_imresize(img, scalar_scale=scale, method=method)
        cv2.imwrite(
            os.path.join(dest_root,
                         filename_template.format(get_fname_ext(imf)[0])), img)
        print("Image", imf, "resize done !")
Beispiel #9
0
def batch_traverse_crop_img(ori_root,
                            dest_root,
                            dsize=(100, 100),
                            interval=10):
    '''
    function:
        traversing crop image to many patches with same interval
    params:
        ori_root: the dir of images that need to be processed
        dest_root: the dir to save processed images
        dsize: a tuple (h, w) the size of crop, the border patch will be overlapped for satisfing the dsize
        interval: the interval when traversing
    '''
    handle_dir(dest_root)
    images_fname = sorted(listdir(ori_root))
    for imf in images_fname:
        img = cv2.imread(os.path.join(ori_root, imf))
        img_cropped = traverse_crop_img(img, dsize=dsize, interval=interval)
        for i, cim in enumerate(img_cropped):
            cv2.imwrite(
                os.path.join(
                    dest_root,
                    "{}_{}.png".format(os.path.basename(imf).split('.')[0],
                                       i)), cim)
        print(imf, "crop done !")
Beispiel #10
0
def batch_combine_img(ori_root, dest_root, padding=10):
    '''
    function:
        combining many patches to image
        it can be used to combine patches to image, when you finish inferring large image with cropped patches
    params:
        ori_root: the dir of images that need to be processed
        dest_root: the dir to save processed images
        padding: the padding size of each patch
    notice:
        filenames should not contain the character "-" except for the crop flag
        the crop flag "x-x-x-x" should be at the end of filename when combining
    '''
    handle_dir(dest_root)
    images_fname = [
        fn[:-(len(fn.split('_')[-1]) + 1)] for fn in listdir(ori_root)
    ]
    images_fname = list(set(images_fname))
    for imf in images_fname:
        croped_imgs_path = sorted(
            glob_match(os.path.join(ori_root, "{}*".format(imf))))
        croped_imgs = {}
        for cip in croped_imgs_path:
            img = cv2.imread(cip)
            k = cip.split('.')[0].split('_')[-1]
            croped_imgs[k] = img
        img_combined = combine_img(croped_imgs, padding=padding)
        cv2.imwrite(os.path.join(dest_root, "{}.png".format(imf)),
                    img_combined)
        print("{}.png".format(imf), "combine done !")
Beispiel #11
0
def save_flow_pt2mat(ori_root, dest_root):
    '''
    把 ori_root 中视频的 flow 从 pt 文件转换为 mat 文件后保存到 dest_root
    保存在 pt 文件中的 flow 的 shape=[1, 2, h, w]
    '''
    handle_dir(dest_root)
    video_list = listdir(ori_root)
    for v in video_list:
        handle_dir(os.path.join(dest_root, v))
        file_list = glob_match(os.path.join(ori_root, v, "*.pt"))
        for pt_path in file_list:
            fname, ext = get_fname_ext(pt_path)
            mat_path = os.path.join(dest_root, v, "{}.mat".format(fname))
            try:
                flow = torch.load(pt_path)[0].permute(1, 2, 0).cpu().numpy()
                flow_dict = {'flow': flow}
                scio.savemat(mat_path, flow_dict)
                print('save {} to {}'.format(pt_path, mat_path))
            except:
                print('skip file {}'.format(pt_path))
Beispiel #12
0
def batch_cv2_resize_images(ori_root,
                            dest_root,
                            scale=1.0,
                            method='bicubic',
                            filename_template="{}.png"):
    '''
    function:
        resizing images in batches
    params:
        ori_root: string, the dir of images that need to be processed
        dest_root: string, the dir to save processed images
        scale: float, the resize scale
        method: string, the interpolation method,
            optional: 'nearest', 'bilinear', 'bicubic'
            default: 'bicubic'
        filename_template: string, the filename template for saving images
    '''
    if method == 'nearest':
        interpolation = cv2.INTER_NEAREST
    elif method == 'bilinear':
        interpolation = cv2.INTER_LINEAR
    elif method == 'bicubic':
        interpolation = cv2.INTER_CUBIC
    else:
        raise Exception('Unknown method!')

    handle_dir(dest_root)
    scale = float(scale)
    images_fname = sorted(listdir(ori_root))
    for imf in images_fname:
        img = cv2.imread(os.path.join(ori_root, imf)).astype('float32')
        img = cv2.resize(img,
                         dsize=(0, 0),
                         fx=scale,
                         fy=scale,
                         interpolation=interpolation)
        cv2.imwrite(
            os.path.join(dest_root,
                         filename_template.format(get_fname_ext(imf)[0])), img)
        print("Image", imf, "resize done !")
Beispiel #13
0
def copy_frames_for_fps(ori_root, save_root, mul=12, fname_template="{:0>4}", ext="png"):
    '''
    function:
        copy frames for fps
    params:
        ori_root: string, the dir of videos that need to be processed
        dest_root: string, the dir to save processed videos
        mul: the multiple of copy
        fname_template: the template of frames' filename
        ext: the ext of frames' filename
    '''
    fname_template = fname_template + '.{}'
    videos_name = sorted(listdir(ori_root))
    handle_dir(save_root)
    for vn in videos_name:
        frmames = sorted(listdir(os.path.join(ori_root, vn)))
        handle_dir(os.path.join(save_root, vn))
        for i, f in enumerate(frmames):
            for j in range(mul):
                now_idx = i * mul + j
                src = os.path.join(ori_root, vn, f)
                dest = os.path.join(save_root, vn, fname_template.format(now_idx, ext))
                copy_file(src, dest)
Beispiel #14
0
def batch_select_valid_patch(ori_root, dest_root, thre=7):
    '''
    function:
        selecting valid patch that are not too smooth
    params:
        ori_root: the dir of patches that need to be selected
        dest_root: the dir to save selected patch
        thre: the threshold value of smooth
    '''
    handle_dir(dest_root)
    images_fname = sorted(listdir(ori_root))
    total_num = len(images_fname)
    valid_num = 0
    for imf in images_fname:
        img = cv2.imread(os.path.join(ori_root, imf))
        smooth = evaluate_smooth(img)
        if smooth > thre:
            cv2.imwrite(os.path.join(dest_root, imf), img)
            valid_num += 1
        else:
            print(imf, "too smooth, smooth={}".format(smooth))
    print("Total {} patches, valid {}, remove {}".format(
        total_num, valid_num, total_num - valid_num))
Beispiel #15
0
def batch_shift_videos(ori_root, dest_root, offset_x=0., offset_y=0., filename_template="{}.png"):
    '''
    function:
        shifting videos by (offset_x, offset_y) on (axis-x, axis-y) in batches
    params:
        ori_root: string, the dir of videos that need to be processed
        dest_root: string, the dir to save processed videos
        offset_x: float, offset pixels on axis-x
            positive=left; negative=right
        offset_y: float, offset pixels on axis-y
            positive=up; negative=down
        filename_template: string, the filename template for saving images
    '''
    handle_dir(dest_root)
    videos = listdir(ori_root)
    for v in videos:
        batch_shift_images(
            ori_root=os.path.join(ori_root, v),
            dest_root=os.path.join(dest_root, v),
            offset_x=offset_x,
            offset_y=offset_y,
            filename_template=filename_template
        )
        print("Video", v, "shift done !")
Beispiel #16
0
def batch_matlab_resize_videos(ori_root, dest_root, scale=1.0, method='bicubic', filename_template="{}.png"):
    '''
    function:
        resizing videos in batches, same as matlab2017 imresize
    params:
        ori_root: string, the dir of videos that need to be processed
        dest_root: string, the dir to save processed videos
        scale: float, the resize scale
        method: string, the interpolation method,
            optional: 'bilinear', 'bicubic'
            default: 'bicubic'
        filename_template: string, the filename template for saving images
    '''
    handle_dir(dest_root)
    videos = listdir(ori_root)
    for v in videos:
        batch_matlab_resize_images(
            ori_root=os.path.join(ori_root, v),
            dest_root=os.path.join(dest_root, v),
            scale=scale,
            method=method,
            filename_template=filename_template
        )
        print("Video", v, "resize done !")
def VideoFlag2FlagVideo(ori_root, dest_root, ori_flag, dest_flag=None):
    '''
    videos/type/frames  -->  type/videos/frames
    params:
        ori_root: the dir of files that need to be processed
        dest_root: the dir for saving matched files
        ori_flag: the ori video flag(e.g. blur)
        dest_flag: the flag(e.g. blur) for saving videos
            default: None, that is keeping the ori flag
    '''
    if dest_flag is None:
        dest_flag = ori_flag
    handle_dir(dest_root)
    handle_dir(os.path.join(dest_root, dest_flag))
    video_list = listdir(ori_root)
    for v in video_list:
        image_list = listdir(os.path.join(ori_root, v, ori_flag))
        handle_dir(os.path.join(dest_root, dest_flag, v))
        for im in image_list:
            src = os.path.join(ori_root, v, ori_flag, im)
            dst = os.path.join(dest_root, dest_flag, v, im)
            copy_file(src, dst)