Beispiel #1
0
def complete_analysis(dataset,
                      dataset_name,
                      name,
                      masklist,
                      processes=1,
                      features=None):
    for t in [0.05]:
        pipeline(OnevsallClassifier(dataset,
                                    masklist,
                                    thresh=t,
                                    thresh_low=0,
                                    classifier=GaussianNB(),
                                    memsave=True),
                 "classification/" + name + "_GNB_t" + str(t) + "_" +
                 dataset_name,
                 features=features,
                 processes=processes,
                 scoring=roc_auc_score)
Beispiel #2
0
def complete_analysis(dataset, dataset_name, name, masklist, processes = 1, features=None):

    # for i in [10]:

		# pipeline(
		# 	OnevsallClassifier(dataset, masklist,
		# 		thresh=i, thresh_low = 0, memsave=False, classifier=RidgeClassifier()),
		# 	name + "_OvA_RidgeClassifier_DM_hard0_roc_" + dataset_name + "_tn_" + str(i), 
		# 	features=features, processes=processes, post = False, scoring = roc_auc_score, dummy='most_frequent')

		# pipeline(
	 #    	PairwiseClassifier(dataset, masklist,
	 #    		cv='4-Fold', thresh=i, memsave=True, remove_overlap = True, classifier=RidgeClassifier()),
	 #    	name + "_Pairwise_RidgeClassifier_roc_DM_" + dataset_name + "_tn_" + str(i), 
	 #    	features=features, processes=processes, post = False, scoring = roc_auc_score, dummy='most_frequent')

	pipeline(
		OnevsallContinuous(dataset, masklist, classifier=Ridge(), memsave=True),
		name + "_Ridge_" + dataset_name, 
		features=features, processes=processes, scoring = explained_variance_score)