def complete_analysis(dataset, dataset_name, name, masklist, processes=1, features=None): for t in [0.05]: pipeline(OnevsallClassifier(dataset, masklist, thresh=t, thresh_low=0, classifier=GaussianNB(), memsave=True), "classification/" + name + "_GNB_t" + str(t) + "_" + dataset_name, features=features, processes=processes, scoring=roc_auc_score)
def complete_analysis(dataset, dataset_name, name, masklist, processes = 1, features=None): # for i in [10]: # pipeline( # OnevsallClassifier(dataset, masklist, # thresh=i, thresh_low = 0, memsave=False, classifier=RidgeClassifier()), # name + "_OvA_RidgeClassifier_DM_hard0_roc_" + dataset_name + "_tn_" + str(i), # features=features, processes=processes, post = False, scoring = roc_auc_score, dummy='most_frequent') # pipeline( # PairwiseClassifier(dataset, masklist, # cv='4-Fold', thresh=i, memsave=True, remove_overlap = True, classifier=RidgeClassifier()), # name + "_Pairwise_RidgeClassifier_roc_DM_" + dataset_name + "_tn_" + str(i), # features=features, processes=processes, post = False, scoring = roc_auc_score, dummy='most_frequent') pipeline( OnevsallContinuous(dataset, masklist, classifier=Ridge(), memsave=True), name + "_Ridge_" + dataset_name, features=features, processes=processes, scoring = explained_variance_score)