tree = s.buildTree(preorder, inorder)

    preOrderTraverse(tree)
    print()
    inOrderTraverse(tree)
    print()
    postOrderTraverse(tree)
    print()

    # 后序 创建
    tree = s.buildTree_post(postorder, inorder)

    preOrderTraverse(tree)
    print()
    inOrderTraverse(tree)
    print()
    postOrderTraverse(tree)
    print()


if __name__ == '__main__':
    # 有 先序/后序 + 中序 重新创建树
    # rebuild_tree()
    tree = build_tree_from_arr(arr=[3, 9, 20, None, None, 15, 7])
    preOrderTraverse(tree)
    print()
    inOrderTraverse(tree)
    print()
    postOrderTraverse(tree)
    print()
Beispiel #2
0
            tar -= root.val  # 更新寻找的路径目标值

            if tar == 0 and not root.left and not root.right:  # 题目限制了是叶节点
                # if tar == 0:  # 假设可以不到叶节点,且节点值>0, pop() 剪枝
                res.append(path[:])  # copy 一份 path,因为后面 path 还要用于 pop 寻找其他解

            recur(root.left, tar)
            recur(root.right, tar)

            path.pop()  # 包含当前 root 的 path 研究完了

        recur(root, sum)

        return res


if __name__ == '__main__':
    from base.tree import build_tree_from_arr, layerTraverse

    s = Solution()

    # tree = build_tree_from_arr([1, 2, 3, 4, 5])
    # print(s.pathSum_slow(tree, 4))
    # print(s.pathSum(tree, 4))

    tree = build_tree_from_arr(
        [5, 4, 8, 11, None, 13, 4, 7, 2, None, None, None, None, 5, 1])
    # print(s.pathSum_slow(tree, 22))
    print(s.pathSum(tree, 22))
    # layerTraverse(tree)
        self.val = x
        self.left = None
        self.right = None


class Solution:
    # 平衡二叉树,任意节点 左右子树深度差 <= 1
    # 推出:树的深度 = 左子树的深度 与 右子树的深度 中的 最大值 +1
    def isBalanced(self, root: TreeNode) -> bool:
        def recur(root: TreeNode):
            if not root:
                return 0
            left = recur(root.left)
            if left == -1:  # 使用 -1 剪枝,提前返回结果
                return -1
            right = recur(root.right)
            if right == -1:
                return -1
            # 满足平衡二叉树,则返回树的深度
            return max(left, right) + 1 if abs(left - right) <= 1 else -1

        return recur(root) != -1


from base.tree import build_tree_from_arr

# tree = build_tree_from_arr([3, 9, 20, None, None, 15, 7])
tree = build_tree_from_arr([1, 2, 2, 3, 3, None, None, 4, 4])
s = Solution()
print(s.isBalanced(tree))
Beispiel #4
0
        self.left = None
        self.right = None


class Solution:
    # 二叉搜索树的第 k 大节点
    def kthLargest(self, root: TreeNode, k: int) -> int:
        vals = []

        def inorder(node: TreeNode):
            if not node:  # 加了这个 提速很多
                return
            if node.left:  # 先添加 right, 再 left, 可以得到降序序列
                inorder(node.left)
            vals.append(node.val)
            if node.right:
                inorder(node.right)

        inorder(root)
        return vals[len(vals) - k]


from base.tree import build_tree_from_arr, inOrderTraverse

s = Solution()

# tree = build_tree_from_arr([3, 1, 4, None, 2])
# print(s.kthLargest(tree, 1))
tree = build_tree_from_arr([5, 3, 6, 2, 4, None, None, 1])  # 保证完全二叉树即可
print(s.kthLargest(tree, 3))