Beispiel #1
0
    def sgd(self, label, result_list):
        clf = SGDClassifier()

        return execute_decision_function(clf, self.train_test_split, label, result_list, self.image_creator)
Beispiel #2
0
    def adaboost(self, label, result_list):
        clf = AdaBoostClassifier()

        return execute_decision_function(clf, self.train_test_split, label, result_list, self.image_creator)
Beispiel #3
0
    def svm_linearsvc(self, label, result_list):
        clf = svm.LinearSVC()

        return execute_decision_function(clf, self.train_test_split, label, result_list, self.image_creator)
Beispiel #4
0
    def logistic_regression(self, label, result_list):
        clf = LogisticRegression(max_iter=1000)

        return execute_decision_function(clf, self.train_test_split, label, result_list, self.image_creator)
Beispiel #5
0
    def svm_svc(self, label, result_list):
        clf = svm.SVC(kernel='rbf')

        return execute_decision_function(clf, self.train_test_split, label, result_list, self.image_creator)
Beispiel #6
0
    def local_outlier_factor(self, label, result_list):
        clf = LocalOutlierFactor(novelty=True)

        return execute_decision_function(clf, self.train_test_split, label, result_list, self.image_creator,
                                         unsupervised=True)
Beispiel #7
0
    def iso_forest(self, label, result_list):
        x_train = self.train_test_split['x_train']
        clf = ensemble.IsolationForest(max_samples=x_train.shape[0], random_state=None)

        return execute_decision_function(clf, self.train_test_split, label, result_list, self.image_creator,
                                         unsupervised=True)
Beispiel #8
0
    def elliptic_envelope(self, label, result_list):
        clf = covariance.EllipticEnvelope(support_fraction=1)

        return execute_decision_function(clf, self.train_test_split, label, result_list, self.image_creator,
                                         unsupervised=True)
Beispiel #9
0
    def svm_oneclass(self, label, result_list):
        clf = svm.OneClassSVM()

        return execute_decision_function(clf, self.train_test_split, label, result_list, self.image_creator,
                                         unsupervised=True)