Beispiel #1
0
class BaselinesPERBuffer(SimpleReplayBuffer):
    def __init__(
        self,
        max_replay_buffer_size,
        alpha,
    ):
        self.underlying = PrioritizedReplayBuffer(max_replay_buffer_size,
                                                  alpha)

    def add_sample(self, observation, action, reward, terminal,
                   next_observation, **kwargs):
        self.underlying.add(observation, action, reward, next_observation,
                            terminal)

    def random_batch(self, batch_size, beta):
        return self.underlying.sample(batch_size, beta)

    def num_steps_can_sample(self):
        return len(self.underlying)

    def update_priorities(self, *args, **kwargs):
        self.underlying.update_priorities(*args, **kwargs)
Beispiel #2
0
def learn(env,
          q_func,
          lr=5e-4,
          max_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.01,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=1,
          checkpoint_freq=10000,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=50,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          num_cpu=16,
          callback=None,
          num_optimisation_steps=40):
    """Train a deepq model.

    Parameters
    -------
    env : gym.Env
        environment to train on
    q_func: (tf.Variable, int, str, bool) -> tf.Variable
        the model that takes the following inputs:
            observation_in: object
                the output of observation placeholder
            num_actions: int
                number of actions
            scope: str
            reuse: bool
                should be passed to outer variable scope
        and returns a tensor of shape (batch_size, num_actions) with values of every action.
    lr: float
        learning rate for adam optimizer
    max_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to max_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    num_cpu: int
        number of cpus to use for training
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model

    sess = U.make_session(num_cpu=num_cpu)
    sess.__enter__()

    def make_obs_ph(name):
        return U.BatchInput((env.observation_space.shape[0] * 2, ), name=name)

    act, train, update_target, debug = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10)
    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }
    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                                alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = max_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        max_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()
    episode_max_rewards = [env.reward_max]
    episode_rewards = [0.0]
    saved_mean_reward_diff = None  # difference in saved reward
    obs = env.reset(seed=np.random.randint(0, 1000))
    with tempfile.TemporaryDirectory() as td:
        model_saved = False
        model_file = os.path.join(td, "model")
        episode_buffer = [None] * env.n
        episode_timestep = 0
        for t in range(max_timesteps):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            action = act(np.concatenate([obs, env.goal])[None],
                         update_eps=exploration.value(t))[0]
            new_obs, rew, done, _ = env.step(action)
            # Store transition in the replay buffer.
            episode_buffer[episode_timestep] = (obs, action, rew, new_obs,
                                                float(done))
            episode_timestep += 1
            replay_buffer.add(np.concatenate([obs, env.goal]), action, rew,
                              np.concatenate([new_obs, env.goal]), float(done))
            obs = new_obs
            episode_rewards[-1] += rew
            num_episodes = len(episode_rewards)
            #######end of episode
            if done:
                for episode in range(episode_timestep):
                    obs1, action1, _, new_obs1, done1 = episode_buffer[episode]
                    goal_prime = new_obs1
                    rew1 = env.calculate_reward(new_obs1, goal_prime)
                    replay_buffer.add(np.concatenate([obs1, goal_prime]),
                                      action1, rew1,
                                      np.concatenate([new_obs1, goal_prime]),
                                      float(done1))
                episode_timestep = 0
                obs = env.reset(seed=np.random.randint(0, 1000))
                episode_rewards.append(0.0)
                episode_max_rewards.append(env.reward_max)
                #############Training Q
                if t > learning_starts and num_episodes % train_freq == 0:
                    for i in range(num_optimisation_steps):
                        # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                        if prioritized_replay:
                            experience = replay_buffer.sample(
                                batch_size, beta=beta_schedule.value(t))
                            (obses_t, actions, rewards, obses_tp1, dones,
                             weights, batch_idxes) = experience
                        else:
                            obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                                batch_size)
                            weights, batch_idxes = np.ones_like(rewards), None
                        td_errors = train(obses_t, actions, rewards, obses_tp1,
                                          dones, weights)
                        if prioritized_replay:
                            new_priorities = np.abs(
                                td_errors) + prioritized_replay_eps
                            replay_buffer.update_priorities(
                                batch_idxes, new_priorities)
                #############Training Q target
                if t > learning_starts and num_episodes % target_network_update_freq == 0:
                    # Update target network periodically.
                    update_target()

            mean_100ep_reward = np.mean(episode_rewards[-101:-1])
            mean_100ep_max_reward = np.mean(episode_max_rewards[-101:-1])
            if done and print_freq is not None and len(
                    episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward",
                                      mean_100ep_reward)
                logger.record_tabular("mean 100 episode max reward",
                                      mean_100ep_max_reward)
                logger.record_tabular("% time spent exploring",
                                      int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts
                    and num_episodes > 100
                    and num_episodes % checkpoint_freq == 0):
                if saved_mean_reward_diff is None or mean_100ep_max_reward - mean_100ep_reward < saved_mean_reward_diff:
                    if print_freq is not None:
                        logger.log(
                            "Saving model due to mean reward difference decrease: {} -> {}"
                            .format(saved_mean_reward_diff,
                                    mean_100ep_max_reward - mean_100ep_reward))
                    U.save_state(model_file)
                    model_saved = True
                    saved_mean_reward_diff = mean_100ep_max_reward - mean_100ep_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(
                    saved_mean_reward_diff))
            U.load_state(model_file)

    return ActWrapper(act, act_params)
Beispiel #3
0
class Agent:
    def __init__(self, sess):
        print("Initializing the agent...")

        self.sess = sess
        self.env = Environment()
        self.state_size = self.env.get_state_size()[0]
        self.action_size = self.env.get_action_size()
        self.low_bound, self.high_bound = self.env.get_bounds()

        self.buffer = PrioritizedReplayBuffer(parameters.BUFFER_SIZE,
                                              parameters.ALPHA)

        print("Creation of the actor-critic network...")
        self.network = Network(self.state_size, self.action_size,
                               self.low_bound, self.high_bound)
        print("Network created !\n")

        self.epsilon = parameters.EPSILON_START
        self.beta = parameters.BETA_START

        self.best_run = -1e10

        self.sess.run(tf.global_variables_initializer())

    def run(self):

        self.nb_ep = 1
        self.total_steps = 0

        for self.nb_ep in range(1, parameters.TRAINING_STEPS + 1):

            episode_reward = 0
            episode_step = 0
            done = False
            memory = deque()

            # Initial state
            s = self.env.reset()
            max_steps = parameters.MAX_EPISODE_STEPS + self.nb_ep // parameters.EP_ELONGATION

            while episode_step < max_steps and not done:

                if random.random() < self.epsilon:
                    a = self.env.random()
                else:
                    # choose action based on deterministic policy
                    a, = self.sess.run(self.network.actions,
                                       feed_dict={self.network.state_ph: [s]})

                # Decay epsilon
                if self.epsilon > parameters.EPSILON_STOP:
                    self.epsilon -= parameters.EPSILON_DECAY

                s_, r, done, info = self.env.act(a)
                memory.append((s, a, r, s_, 0.0 if done else 1.0))

                if len(memory) > parameters.N_STEP_RETURN:
                    s_mem, a_mem, r_mem, ss_mem, done_mem = memory.popleft()
                    discount_R = 0
                    for i, (si, ai, ri, s_i, di) in enumerate(memory):
                        discount_R += ri * parameters.DISCOUNT**(i + 1)
                    self.buffer.add(s_mem, a_mem, discount_R, s_, done)

                # update network weights to fit a minibatch of experience
                if self.total_steps % parameters.TRAINING_FREQ == 0 and \
                        len(self.buffer) >= parameters.BATCH_SIZE:

                    minibatch = self.buffer.sample(parameters.BATCH_SIZE,
                                                   self.beta)

                    if self.beta <= parameters.BETA_STOP:
                        self.beta += parameters.BETA_INCR

                    td_errors, _, _ = self.sess.run(
                        [
                            self.network.td_errors,
                            self.network.critic_train_op,
                            self.network.actor_train_op
                        ],
                        feed_dict={
                            self.network.state_ph: minibatch[0],
                            self.network.action_ph: minibatch[1],
                            self.network.reward_ph: minibatch[2],
                            self.network.next_state_ph: minibatch[3],
                            self.network.is_not_terminal_ph: minibatch[4]
                        })

                    self.buffer.update_priorities(minibatch[6],
                                                  td_errors + 1e-6)
                    # update target networks
                    _ = self.sess.run(self.network.update_slow_targets_op)

                episode_reward += r
                s = s_
                episode_step += 1
                self.total_steps += 1

            self.nb_ep += 1

            if self.nb_ep % parameters.DISP_EP_REWARD_FREQ == 0:
                print(
                    'Episode %2i, Reward: %7.3f, Steps: %i, Epsilon : %7.3f, Max steps : %i'
                    % (self.nb_ep, episode_reward, episode_step, self.epsilon,
                       max_steps))

            DISPLAYER.add_reward(episode_reward)

            if episode_reward > self.best_run and self.nb_ep > 100:
                self.best_run = episode_reward
                print("Best agent ! ", episode_reward)
                SAVER.save('best')

            if self.nb_ep % parameters.SAVE_FREQ == 0:
                SAVER.save(self.nb_ep)

    def play(self, number_run):
        print("Playing for", number_run, "runs")

        try:
            for i in range(number_run):

                s = self.env.reset()
                episode_reward = 0
                done = False

                while not done:

                    a, = self.sess.run(self.network.actions,
                                       feed_dict={self.network.state_ph: [s]})

                    s_, r, done, info = self.env.act(a)
                    episode_reward += r

                print("Episode reward :", episode_reward)

        except KeyboardInterrupt as e:
            pass

        except Exception as e:
            print("Exception :", e)

        finally:
            print("End of the demo")
            self.env.close()

    def close(self):
        self.env.close()
Beispiel #4
0
                if args.param_noise_threshold >= 0.:
                    update_param_noise_threshold = args.param_noise_threshold
                else:
                    # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                    # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                    # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                    # for detailed explanation.
                    update_param_noise_threshold = -np.log(1. - exploration.value(num_iters) + exploration.value(num_iters) / float(env.action_space.n))
                kwargs['reset'] = reset
                kwargs['update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = (num_iters % args.param_noise_update_freq == 0)

            action = act(np.array(obs)[None], update_eps=update_eps, **kwargs)[0]
            reset = False
            new_obs, rew, done, info = env.step(action)
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            obs = new_obs
            if done:
                num_iters_since_reset = 0
                obs = env.reset()
                reset = True

            if (num_iters > max(5 * args.batch_size, args.replay_buffer_size // 20) and
                    num_iters % args.learning_freq == 0):
                # Sample a bunch of transitions from replay buffer
                if args.prioritized:
                    experience = replay_buffer.sample(args.batch_size, beta=beta_schedule.value(num_iters))
                    (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(args.batch_size)
                    weights = np.ones_like(rewards)
Beispiel #5
0
def learn(env,
          q_func,
          lr=5e-4,
          max_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=100,
          checkpoint_freq=10000,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          callback=None):
    """Train a deepq model.

    Parameters
    -------
    env: gym.Env
        environment to train on
    q_func: (tf.Variable, int, str, bool) -> tf.Variable
        the model that takes the following inputs:
            observation_in: object
                the output of observation placeholder
            num_actions: int
                number of actions
            scope: str
            reuse: bool
                should be passed to outer variable scope
        and returns a tensor of shape (batch_size, num_actions) with values of every action.
    lr: float
        learning rate for adam optimizer
    max_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
        set to None to disable printing
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to max_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model

    sess = tf.Session()
    sess.__enter__()

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph
    observation_space_shape = env.observation_space.shape
    def make_obs_ph(name):
        return BatchInput(observation_space_shape, name=name)

    act, train, update_target, debug = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        param_noise=param_noise
    )

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = max_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * max_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()
    reset = True
    with tempfile.TemporaryDirectory() as td:
        model_saved = False
        model_file = os.path.join(td, "model")
        for t in range(max_timesteps):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                # for detailed explanation.
                update_param_noise_threshold = -np.log(1. - exploration.value(t) + exploration.value(t) / float(env.action_space.n))
                kwargs['reset'] = reset
                kwargs['update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True
            action = act(np.array(obs)[None], update_eps=update_eps, **kwargs)[0]
            env_action = action
            reset = False
            new_obs, rew, done, _ = env.step(env_action)
            # Store transition in the replay buffer.
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            obs = new_obs

            episode_rewards[-1] += rew
            if done:
                obs = env.reset()
                episode_rewards.append(0.0)
                reset = True

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights)
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes, new_priorities)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward", mean_100ep_reward)
                logger.record_tabular("% time spent exploring", int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts and
                    num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log("Saving model due to mean reward increase: {} -> {}".format(
                                   saved_mean_reward, mean_100ep_reward))
                    save_state(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(saved_mean_reward))
            load_state(model_file)

    return act
Beispiel #6
0
def learn(env,
          q_func,
          num_actions=64*64,
          lr=5e-4,
          max_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=1,
          checkpoint_freq=10000,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          num_cpu=16,
          param_noise=False,
          param_noise_threshold=0.05,
          callback=None):
  """Train a deepq model.

  Parameters
  -------
  env: pysc2.env.SC2Env
      environment to train on
  q_func: (tf.Variable, int, str, bool) -> tf.Variable
      the model that takes the following inputs:
          observation_in: object
              the output of observation placeholder
          num_actions: int
              number of actions
          scope: str
          reuse: bool
              should be passed to outer variable scope
      and returns a tensor of shape (batch_size, num_actions) with values of every action.
  lr: float
      learning rate for adam optimizer
  max_timesteps: int
      number of env steps to optimizer for
  buffer_size: int
      size of the replay buffer
  exploration_fraction: float
      fraction of entire training period over which the exploration rate is annealed
  exploration_final_eps: float
      final value of random action probability
  train_freq: int
      update the model every `train_freq` steps.
      set to None to disable printing
  batch_size: int
      size of a batched sampled from replay buffer for training
  print_freq: int
      how often to print out training progress
      set to None to disable printing
  checkpoint_freq: int
      how often to save the model. This is so that the best version is restored
      at the end of the training. If you do not wish to restore the best version at
      the end of the training set this variable to None.
  learning_starts: int
      how many steps of the model to collect transitions for before learning starts
  gamma: float
      discount factor
  target_network_update_freq: int
      update the target network every `target_network_update_freq` steps.
  prioritized_replay: True
      if True prioritized replay buffer will be used.
  prioritized_replay_alpha: float
      alpha parameter for prioritized replay buffer
  prioritized_replay_beta0: float
      initial value of beta for prioritized replay buffer
  prioritized_replay_beta_iters: int
      number of iterations over which beta will be annealed from initial value
      to 1.0. If set to None equals to max_timesteps.
  prioritized_replay_eps: float
      epsilon to add to the TD errors when updating priorities.
  num_cpu: int
      number of cpus to use for training
  callback: (locals, globals) -> None
      function called at every steps with state of the algorithm.
      If callback returns true training stops.

  Returns
  -------
  act: ActWrapper
      Wrapper over act function. Adds ability to save it and load it.
      See header of baselines/deepq/categorical.py for details on the act function.
  """
  # Create all the functions necessary to train the model

  sess = U.make_session(num_cpu=num_cpu)
  sess.__enter__()

  # Set up summary Ops
  summary_ops, summary_vars = build_summaries()
  writer = tf.summary.FileWriter(SUMMARY_DIR, sess.graph)


  def make_obs_ph(name):
    return U.BatchInput((64, 64), name=name)

  act, train, update_target, debug = deepq.build_train(
    make_obs_ph=make_obs_ph,
    q_func=q_func,
    num_actions=num_actions,
    optimizer=tf.train.AdamOptimizer(learning_rate=lr),
    gamma=gamma,
    grad_norm_clipping=10
  )
  act_params = {
    'make_obs_ph': make_obs_ph,
    'q_func': q_func,
    'num_actions': num_actions,
  }

  # Create the replay buffer
  if prioritized_replay:
    replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha)
    if prioritized_replay_beta_iters is None:
      prioritized_replay_beta_iters = max_timesteps
    beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                   initial_p=prioritized_replay_beta0,
                                   final_p=1.0)
  else:
    replay_buffer = ReplayBuffer(buffer_size)
    beta_schedule = None
  # Create the schedule for exploration starting from 1.
  exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * max_timesteps),
                               initial_p=1.0,
                               final_p=exploration_final_eps)

  # Initialize the parameters and copy them to the target network.
  U.initialize()
  update_target()

  episode_rewards = [0.0]
  episode_minerals = [0.0]
  saved_mean_reward = None

  path_memory = np.zeros((64,64))

  obs = env.reset()
  # Select all marines first
  step_result = env.step(actions=[sc2_actions.FunctionCall(_SELECT_ARMY, [_SELECT_ALL])])

  player_relative = obs[0].observation["screen"][_PLAYER_RELATIVE]

  obs = player_relative + path_memory

  player_y, player_x = (player_relative == _PLAYER_FRIENDLY).nonzero()
  player = [int(player_x.mean()), int(player_y.mean())]

  if(player[0]>32):
    obs = shift(LEFT, player[0]-32, obs)
  elif(player[0]<32):
    obs = shift(RIGHT, 32 - player[0], obs)

  if(player[1]>32):
    obs = shift(UP, player[1]-32, obs)
  elif(player[1]<32):
    obs = shift(DOWN, 32 - player[1], obs)

  reset = True
  with tempfile.TemporaryDirectory() as td:
    model_saved = False
    model_file = os.path.join(td, "model")

    for t in range(max_timesteps):
      if callback is not None:
        if callback(locals(), globals()):
          break
      # Take action and update exploration to the newest value
      kwargs = {}
      if not param_noise:
        update_eps = exploration.value(t)
        update_param_noise_threshold = 0.
      else:
        update_eps = 0.
        if param_noise_threshold >= 0.:
          update_param_noise_threshold = param_noise_threshold
        else:
          # Compute the threshold such that the KL divergence between perturbed and non-perturbed
          # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
          # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
          # for detailed explanation.
          update_param_noise_threshold = -np.log(1. - exploration.value(t) + exploration.value(t) / float(num_actions))
        kwargs['reset'] = reset
        kwargs['update_param_noise_threshold'] = update_param_noise_threshold
        kwargs['update_param_noise_scale'] = True
      action = act(np.array(obs)[None], update_eps=update_eps, **kwargs)[0]
      reset = False

      coord = [player[0], player[1]]
      rew = 0

      path_memory_ = np.array(path_memory, copy=True)
      if(action == 0): #UP

        if(player[1] >= 16):
          coord = [player[0], player[1] - 16]
          path_memory_[player[1] - 16 : player[1], player[0]] = -1
        elif(player[1] > 0):
          coord = [player[0], 0]
          path_memory_[0 : player[1], player[0]] = -1
        else:
          rew -= 1

      elif(action == 1): #DOWN

        if(player[1] <= 47):
          coord = [player[0], player[1] + 16]
          path_memory_[player[1] : player[1] + 16, player[0]] = -1
        elif(player[1] > 47):
          coord = [player[0], 63]
          path_memory_[player[1] : 63, player[0]] = -1
        else:
          rew -= 1

      elif(action == 2): #LEFT

        if(player[0] >= 16):
          coord = [player[0] - 16, player[1]]
          path_memory_[player[1], player[0] - 16 : player[0]] = -1
        elif(player[0] < 16):
          coord = [0, player[1]]
          path_memory_[player[1], 0 : player[0]] = -1
        else:
          rew -= 1

      elif(action == 3): #RIGHT

        if(player[0] <= 47):
          coord = [player[0] + 16, player[1]]
          path_memory_[player[1], player[0] : player[0] + 16] = -1
        elif(player[0] > 47):
          coord = [63, player[1]]
          path_memory_[player[1], player[0] : 63] = -1
        else:
          rew -= 1

      else:
        #Cannot move, give minus reward
        rew -= 1

      if(path_memory[coord[1],coord[0]] != 0):
        rew -= 0.5

      path_memory = np.array(path_memory_)
      #print("action : %s Coord : %s" % (action, coord))

      new_action = [sc2_actions.FunctionCall(_MOVE_SCREEN, [_NOT_QUEUED, coord])]

      step_result = env.step(actions=new_action)

      player_relative = step_result[0].observation["screen"][_PLAYER_RELATIVE]
      new_obs = player_relative + path_memory

      player_y, player_x = (player_relative == _PLAYER_FRIENDLY).nonzero()
      player = [int(player_x.mean()), int(player_y.mean())]

      if(player[0]>32):
        new_obs = shift(LEFT, player[0]-32, new_obs)
      elif(player[0]<32):
        new_obs = shift(RIGHT, 32 - player[0], new_obs)

      if(player[1]>32):
        new_obs = shift(UP, player[1]-32, new_obs)
      elif(player[1]<32):
        new_obs = shift(DOWN, 32 - player[1], new_obs)

      rew += step_result[0].reward * 10

      done = step_result[0].step_type == environment.StepType.LAST

      # Store transition in the replay buffer.
      replay_buffer.add(obs, action, rew, new_obs, float(done))
      obs = new_obs

      episode_rewards[-1] += rew
      episode_minerals[-1] += step_result[0].reward

      if done:
        obs = env.reset()
        player_relative = obs[0].observation["screen"][_PLAYER_RELATIVE]

        obs = player_relative + path_memory

        player_y, player_x = (player_relative == _PLAYER_FRIENDLY).nonzero()
        player = [int(player_x.mean()), int(player_y.mean())]

        if(player[0]>32):
          obs = shift(LEFT, player[0]-32, obs)
        elif(player[0]<32):
          obs = shift(RIGHT, 32 - player[0], obs)

        if(player[1]>32):
          obs = shift(UP, player[1]-32, obs)
        elif(player[1]<32):
          obs = shift(DOWN, 32 - player[1], obs)

        # Select all marines first
        env.step(actions=[sc2_actions.FunctionCall(_SELECT_ARMY, [_SELECT_ALL])])
        episode_rewards.append(0.0)
        episode_minerals.append(0.0)

        path_memory = np.zeros((64,64))

        reset = True

      if t > learning_starts and t % train_freq == 0:
        # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
        if prioritized_replay:
          experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t))
          (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience
        else:
          obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(batch_size)
          weights, batch_idxes = np.ones_like(rewards), None
        td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights)
        if prioritized_replay:
          new_priorities = np.abs(td_errors) + prioritized_replay_eps
          replay_buffer.update_priorities(batch_idxes, new_priorities)

      if t > learning_starts and t % target_network_update_freq == 0:
        # Update target network periodically.
        update_target()

      mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
      mean_100ep_mineral = round(np.mean(episode_minerals[-101:-1]), 1)
      num_episodes = len(episode_rewards)
      if done and print_freq is not None and len(episode_rewards) % print_freq == 0:
        summary_str = sess.run(summary_ops, feed_dict={
          summary_vars[0]: mean_100ep_reward,
          summary_vars[1]: mean_100ep_mineral
        })

        writer.add_summary(summary_str, num_episodes)
        writer.flush()
        logger.record_tabular("steps", t)
        logger.record_tabular("episodes", num_episodes)
        logger.record_tabular("mean 100 episode reward", mean_100ep_reward)
        logger.record_tabular("mean 100 episode mineral", mean_100ep_mineral)
        logger.record_tabular("% time spent exploring", int(100 * exploration.value(t)))
        logger.dump_tabular()

      if (checkpoint_freq is not None and t > learning_starts and
              num_episodes > 100 and t % checkpoint_freq == 0):
        if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
          if print_freq is not None:
            logger.log("Saving model due to mean reward increase: {} -> {}".format(
              saved_mean_reward, mean_100ep_reward))
          U.save_state(model_file)
          model_saved = True
          saved_mean_reward = mean_100ep_reward
    if model_saved:
      if print_freq is not None:
        logger.log("Restored model with mean reward: {}".format(saved_mean_reward))
      U.load_state(model_file)

  return ActWrapper(act)
Beispiel #7
0
def learn(env,
          q_func,
          num_actions=4,
          lr=5e-4,
          max_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=1,
          checkpoint_freq=10000,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          num_cpu=16,
          param_noise=False,
          param_noise_threshold=0.05,
          callback=None):
    """Train a deepq model.

  Parameters
  -------
  env: pysc2.env.SC2Env
      environment to train on
  q_func: (tf.Variable, int, str, bool) -> tf.Variable
      the model that takes the following inputs:
          observation_in: object
              the output of observation placeholder
          num_actions: int
              number of actions
          scope: str
          reuse: bool
              should be passed to outer variable scope
      and returns a tensor of shape (batch_size, num_actions) with values of every action.
  lr: float
      learning rate for adam optimizer
  max_timesteps: int
      number of env steps to optimizer for
  buffer_size: int
      size of the replay buffer
  exploration_fraction: float
      fraction of entire training period over which the exploration rate is annealed
  exploration_final_eps: float
      final value of random action probability
  train_freq: int
      update the model every `train_freq` steps.
      set to None to disable printing
  batch_size: int
      size of a batched sampled from replay buffer for training
  print_freq: int
      how often to print out training progress
      set to None to disable printing
  checkpoint_freq: int
      how often to save the model. This is so that the best version is restored
      at the end of the training. If you do not wish to restore the best version at
      the end of the training set this variable to None.
  learning_starts: int
      how many steps of the model to collect transitions for before learning starts
  gamma: float
      discount factor
  target_network_update_freq: int
      update the target network every `target_network_update_freq` steps.
  prioritized_replay: True
      if True prioritized replay buffer will be used.
  prioritized_replay_alpha: float
      alpha parameter for prioritized replay buffer
  prioritized_replay_beta0: float
      initial value of beta for prioritized replay buffer
  prioritized_replay_beta_iters: int
      number of iterations over which beta will be annealed from initial value
      to 1.0. If set to None equals to max_timesteps.
  prioritized_replay_eps: float
      epsilon to add to the TD errors when updating priorities.
  num_cpu: int
      number of cpus to use for training
  callback: (locals, globals) -> None
      function called at every steps with state of the algorithm.
      If callback returns true training stops.

  Returns
  -------
  act: ActWrapper
      Wrapper over act function. Adds ability to save it and load it.
      See header of baselines/deepq/categorical.py for details on the act function.
  """
    # Create all the functions necessary to train the model

    sess = U.make_session(num_cpu=num_cpu)
    sess.__enter__()

    #def make_obs_ph(name):
    #return U.BatchInput((16, 16), name=name)
    obs_spec = env.observation_spec()[0]
    screen_dim = obs_spec['feature_screen'][1:3]

    def make_obs_ph(name):
        #return ObservationInput(ob_space, name=name)
        return ObservationInput(Box(low=0.0,
                                    high=screen_dim[0],
                                    shape=(screen_dim[0], screen_dim[1], 1)),
                                name=name)

    act_x, train_x, update_target_x, debug_x = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=num_actions,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        scope="deepq_x")

    act_y, train_y, update_target_y, debug_y = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=num_actions,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        scope="deepq_y")

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': num_actions,
    }

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer_x = PrioritizedReplayBuffer(
            buffer_size, alpha=prioritized_replay_alpha)
        replay_buffer_y = PrioritizedReplayBuffer(
            buffer_size, alpha=prioritized_replay_alpha)

        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = max_timesteps
        beta_schedule_x = LinearSchedule(prioritized_replay_beta_iters,
                                         initial_p=prioritized_replay_beta0,
                                         final_p=1.0)

        beta_schedule_y = LinearSchedule(prioritized_replay_beta_iters,
                                         initial_p=prioritized_replay_beta0,
                                         final_p=1.0)
    else:
        replay_buffer_x = ReplayBuffer(buffer_size)
        replay_buffer_y = ReplayBuffer(buffer_size)

        beta_schedule_x = None
        beta_schedule_y = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        max_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target_x()
    update_target_y()

    episode_rewards = [0.0]
    saved_mean_reward = None

    obs = env.reset()
    # Select all marines first
    obs = env.step(
        actions=[sc2_actions.FunctionCall(_SELECT_ARMY, [_SELECT_ALL])])

    print(obs[0].observation.keys())

    player_relative = obs[0].observation["feature_screen"][_PLAYER_RELATIVE]

    screen = (player_relative == _PLAYER_NEUTRAL).astype(int)  #+ path_memory

    player_y, player_x = (player_relative == _PLAYER_FRIENDLY).nonzero()
    player = [int(player_x.mean()), int(player_y.mean())]

    reset = True
    with tempfile.TemporaryDirectory() as td:
        model_saved = False
        model_file = os.path.join("model/", "mineral_shards")
        print(model_file)

        for t in range(max_timesteps):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                if param_noise_threshold >= 0.:
                    update_param_noise_threshold = param_noise_threshold
                else:
                    # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                    # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                    # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                    # for detailed explanation.
                    update_param_noise_threshold = -np.log(
                        1. - exploration.value(t) +
                        exploration.value(t) / float(num_actions))
                kwargs['reset'] = reset
                kwargs[
                    'update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True

            action_x = act_x(np.array(screen)[None],
                             update_eps=update_eps,
                             **kwargs)[0]

            action_y = act_y(np.array(screen)[None],
                             update_eps=update_eps,
                             **kwargs)[0]

            reset = False

            coord = [player[0], player[1]]
            rew = 0

            coord = [action_x, action_y]

            if _MOVE_SCREEN not in obs[0].observation["available_actions"]:
                obs = env.step(actions=[
                    sc2_actions.FunctionCall(_SELECT_ARMY, [_SELECT_ALL])
                ])

            new_action = [
                sc2_actions.FunctionCall(_MOVE_SCREEN, [_NOT_QUEUED, coord])
            ]

            # else:
            #   new_action = [sc2_actions.FunctionCall(_NO_OP, [])]

            obs = env.step(actions=new_action)

            player_relative = obs[0].observation["feature_screen"][
                _PLAYER_RELATIVE]
            new_screen = (player_relative == _PLAYER_NEUTRAL).astype(int)

            player_y, player_x = (
                player_relative == _PLAYER_FRIENDLY).nonzero()
            player = [int(player_x.mean()), int(player_y.mean())]

            rew = obs[0].reward

            done = obs[0].step_type == environment.StepType.LAST

            # Store transition in the replay buffer.
            replay_buffer_x.add(screen, action_x, rew, new_screen, float(done))
            replay_buffer_y.add(screen, action_y, rew, new_screen, float(done))

            screen = new_screen

            episode_rewards[-1] += rew
            reward = episode_rewards[-1]

            if done:
                obs = env.reset()
                player_relative = obs[0].observation["feature_screen"][
                    _PLAYER_RELATIVE]
                screent = (player_relative == _PLAYER_NEUTRAL).astype(int)

                player_y, player_x = (
                    player_relative == _PLAYER_FRIENDLY).nonzero()
                player = [int(player_x.mean()), int(player_y.mean())]

                # Select all marines first
                env.step(actions=[
                    sc2_actions.FunctionCall(_SELECT_ARMY, [_SELECT_ALL])
                ])
                episode_rewards.append(0.0)
                #episode_minerals.append(0.0)

                reset = True

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:

                    experience_x = replay_buffer_x.sample(
                        batch_size, beta=beta_schedule_x.value(t))
                    (obses_t_x, actions_x, rewards_x, obses_tp1_x, dones_x,
                     weights_x, batch_idxes_x) = experience_x

                    experience_y = replay_buffer_y.sample(
                        batch_size, beta=beta_schedule_y.value(t))
                    (obses_t_y, actions_y, rewards_y, obses_tp1_y, dones_y,
                     weights_y, batch_idxes_y) = experience_y
                else:

                    obses_t_x, actions_x, rewards_x, obses_tp1_x, dones_x = replay_buffer_x.sample(
                        batch_size)
                    weights_x, batch_idxes_x = np.ones_like(rewards_x), None

                    obses_t_y, actions_y, rewards_y, obses_tp1_y, dones_y = replay_buffer_y.sample(
                        batch_size)
                    weights_y, batch_idxes_y = np.ones_like(rewards_y), None

                td_errors_x = train_x(obses_t_x, actions_x, rewards_x,
                                      obses_tp1_x, dones_x, weights_x)

                td_errors_y = train_x(obses_t_y, actions_y, rewards_y,
                                      obses_tp1_y, dones_y, weights_y)

                if prioritized_replay:
                    new_priorities_x = np.abs(
                        td_errors_x) + prioritized_replay_eps
                    new_priorities_y = np.abs(
                        td_errors_y) + prioritized_replay_eps
                    replay_buffer_x.update_priorities(batch_idxes_x,
                                                      new_priorities_x)
                    replay_buffer_y.update_priorities(batch_idxes_y,
                                                      new_priorities_y)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target_x()
                update_target_y()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(
                    episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("reward", reward)
                logger.record_tabular("mean 100 episode reward",
                                      mean_100ep_reward)
                logger.record_tabular("% time spent exploring",
                                      int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts
                    and num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log(
                            "Saving model due to mean reward increase: {} -> {}"
                            .format(saved_mean_reward, mean_100ep_reward))
                    U.save_state(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(
                    saved_mean_reward))
            U.load_state(model_file)

    return ActWrapper(act_x), ActWrapper(act_y)
Beispiel #8
0
def main():
    with tf_util.make_session(4) as session:
        act_fn, train_fn, target_update_fn, debug_fn = deepq.build_train(
            make_obs_ph=lambda name: Uint8Input([input_height, input_width], name=name),
            q_func=q_function_nn,
            num_actions=action_space_size,
            optimizer=tf.train.AdamOptimizer(learning_rate=0.001),
            gamma=0.99,
            grad_norm_clipping=10,
            double_q=False)

        epsilon = PiecewiseSchedule([(0, 1.0),
                                     (10000, 1.0), # since we start training at 10000 steps
                                     (20000, 0.4),
                                     (50000, 0.2),
                                     (100000, 0.1),
                                     (500000, 0.05)], outside_value=0.01)
        replay_memory = PrioritizedReplayBuffer(replay_memory_size, replay_alpha)
        beta = LinearSchedule(int(NUM_STEPS/4), initial_p=replay_beta, final_p=1.0)
        tf_util.initialize()
        target_update_fn()

        state = env.reset()
        state = preprocess_frame(state)
        watch_train = False
        dq = [] # a queue to store episode rewards
        start_step = 1
        episode = 1
        if is_load_model:
            dict_state = load_model()
            replay_memory = dict_state["replay_memory"]
            dq = dict_state["dq"]
            start_step = dict_state["step"] + 1

        for step in itertools.count(start=start_step):
            action = act_fn(state[np.newaxis], update_eps=epsilon.value(step))[0]
            state_tplus1, reward, is_finished, _ = env.step(action)
            dq.append(reward)
            if watch_flag:
                env.render()
                time.sleep(1.0/fps)
            state_tplus1 = preprocess_frame(state_tplus1)
            replay_memory.add(state, action, reward, state_tplus1, float(is_finished))
            state = state_tplus1
            if is_finished:
                ep_reward = sum(dq)
                log.logkv("Steps", step)
                log.logkv("Episode reward", ep_reward)
                log.logkv("Episode number", episode)
                log.dumpkvs()
                print("Step", step, ". Finished episode", episode, "with reward ", ep_reward)
                dq = []
                state = preprocess_frame(env.reset())
                episode += 1
                for _ in range(30):
                    # NOOP for ~90 frames to skip the start screen. Range 30 used because each
                    # step executed for 3 frames on average. Action 0 stands for doing nothing
                    env.step(0)
                    if watch_flag:
                        env.render()

            if step > 10000 and step % learn_freq == 0:
                # only start training after 10000 steps are completed
                batch = replay_memory.sample(batch_size, beta=beta.value(step))
                states = batch[0]
                actions = batch[1]
                rewards = batch[2]
                states_tplus1 = batch[3]
                finished_vars = batch[4]
                weights = batch[5]
                state_indeces = batch[6]
                errors = train_fn(states, actions, rewards, states_tplus1, finished_vars, weights)
                priority_order_new = np.abs(errors) + replay_epsilon
                replay_memory.update_priorities(state_indeces, priority_order_new)

            if step % save_freq == 0:
                print("State save", step)
                dict_state = {
                    "step": step,
                    "replay_memory": replay_memory,
                    "dq": dq
                }
                save_model(dict_state)

            if step > NUM_STEPS:
                print("Finished training. Saving model to ./saved_model/model.ckpt")
                dict_state = {
                    "step": step,
                    "replay_memory": replay_memory,
                    "dq": dq
                }
                save_model(dict_state)
                break
Beispiel #9
0
def train(env,
        eval_env,
        q_func,
        lr=5e-4,
        max_timesteps=100000,
        buffer_size=50000,
        exploration_fraction=0.1,
        exploration_final_eps=0.02,
        train_freq=1,
        batch_size=32,
        print_freq=100,
        checkpoint_freq=10000,
        learning_starts=1000,
        gamma=1.0,
        target_network_update_freq=500,
        prioritized_replay=False,
        prioritized_replay_alpha=0.6,
        prioritized_replay_beta0=0.4,
        prioritized_replay_beta_iters=None,
        prioritized_replay_eps=1e-6,
        param_noise=False,
        callback=None,
        my_skill_set=None,
        log_dir = None,
        num_eval_episodes=10,
        render=False,
        render_eval = False,
        commit_for = 1
        ):
    """Train a deepq model.

    Parameters
    -------
    env: gym.Env
        environment to train on
    q_func: (tf.Variable, int, str, bool) -> tf.Variable
        the model that takes the following inputs:
            observation_in: object
                the output of observation placeholder
            num_actions: int
                number of actions
            scope: str
            reuse: bool
                should be passed to outer variable scope
        and returns a tensor of shape (batch_size, num_actions) with values of every action.
    lr: float
        learning rate for adam optimizer
    max_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
        set to None to disable printing
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to max_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model


    if my_skill_set: assert commit_for>=1, "commit_for >= 1"

    save_idx = 0
    with U.single_threaded_session() as sess:
    

        ## restore
        if my_skill_set:
            action_shape = my_skill_set.len
        else:
            action_shape = env.action_space.n
            
        # capture the shape outside the closure so that the env object is not serialized
        # by cloudpickle when serializing make_obs_ph
        observation_space_shape = env.observation_space.shape
        def make_obs_ph(name):
            return U.BatchInput(observation_space_shape, name=name)

        act, train, update_target, debug = deepq.build_train(
            make_obs_ph=make_obs_ph,
            q_func=q_func,
            num_actions=action_shape,
            optimizer=tf.train.AdamOptimizer(learning_rate=lr),
            gamma=gamma,
            grad_norm_clipping=10,
            param_noise=param_noise
        )

        act_params = {
            'make_obs_ph': make_obs_ph,
            'q_func': q_func,
            'num_actions': action_shape,
        }

        act = ActWrapper(act, act_params)

        # Create the replay buffer
        if prioritized_replay:
            replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha)
            if prioritized_replay_beta_iters is None:
                prioritized_replay_beta_iters = max_timesteps
            beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                           initial_p=prioritized_replay_beta0,
                                           final_p=1.0)
        else:
            replay_buffer = ReplayBuffer(buffer_size)
            beta_schedule = None
        # Create the schedule for exploration starting from 1.
        exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * max_timesteps),
                                     initial_p=1.0,
                                     final_p=exploration_final_eps)

        # Initialize the parameters and copy them to the target network.
        U.initialize()
        # sess.run(tf.variables_initializer(new_variables))
        # sess.run(tf.global_variables_initializer())
        update_target()

        if my_skill_set:
            ## restore skills
            my_skill_set.restore_skillset(sess=sess)
            

        episode_rewards = [0.0]
        saved_mean_reward = None
        obs = env.reset()
        reset = True
        
        model_saved = False
        
        model_file = os.path.join(log_dir, "model", "deepq")

        # save the initial act model 
        print("Saving the starting model")
        os.makedirs(os.path.dirname(model_file), exist_ok=True)
        act.save(model_file + '.pkl')

        for t in range(max_timesteps):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                # for detailed explanation.
                update_param_noise_threshold = -np.log(1. - exploration.value(t) + exploration.value(t) / float(env.action_space.n))
                kwargs['reset'] = reset
                kwargs['update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True
            paction = act(np.array(obs)[None], update_eps=update_eps, **kwargs)[0]
            
            if(my_skill_set):
                skill_obs = obs.copy()
                primitive_id = paction
                rew = 0.
                for _ in range(commit_for):
                
                    ## break actions into primitives and their params    
                    action = my_skill_set.pi(primitive_id=primitive_id, obs = skill_obs.copy(), primitive_params=None)
                    new_obs, skill_rew, done, _ = env.step(action)
                    if render:
                        # print(action)
                        env.render()
                        sleep(0.1)
                    rew += skill_rew
                    skill_obs = new_obs
                    terminate_skill = my_skill_set.termination(new_obs)
                    if done or terminate_skill:
                        break
                    
            else:
                action= paction

                env_action = action
                reset = False
                new_obs, rew, done, _ = env.step(env_action)
                if render:
                    env.render()
                    sleep(0.1)
              


            # Store transition in the replay buffer for the outer env
            replay_buffer.add(obs, paction, rew, new_obs, float(done))
            obs = new_obs

            episode_rewards[-1] += rew
            if done:
                obs = env.reset()
                episode_rewards.append(0.0)
                reset = True
                print("Time:%d, episodes:%d"%(t,len(episode_rewards)))

                # add hindsight experience
            

            if t > learning_starts and t % train_freq == 0:
                # print('Training!')
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights)
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes, new_priorities)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target()

            # print(len(episode_rewards), episode_rewards[-11:-1])
            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            num_episodes = len(episode_rewards)
        
            if (checkpoint_freq is not None and t > learning_starts and
                    num_episodes > 50 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log("Saving model due to mean reward increase: {} -> {}".format(
                                   saved_mean_reward, mean_100ep_reward))
                    U.save_state(model_file)
                    act.save(model_file + '%d.pkl'%save_idx)
                    save_idx += 1
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
                # else:
                #     print(saved_mean_reward, mean_100ep_reward)

            if (eval_env is not None) and t > learning_starts and t % target_network_update_freq == 0:
                
                # dumping other stats
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward", mean_100ep_reward)
                logger.record_tabular("%d time spent exploring", int(100 * exploration.value(t)))

                print("Testing!")
                eval_episode_rewards = []
                eval_episode_successes = []

                for i in range(num_eval_episodes):
                    eval_episode_reward = 0.
                    eval_obs = eval_env.reset()
                    eval_obs_start = eval_obs.copy()
                    eval_done = False
                    while(not eval_done):
                        eval_paction = act(np.array(eval_obs)[None])[0]
                        
                        if(my_skill_set):
                            eval_skill_obs = eval_obs.copy()
                            eval_primitive_id = eval_paction
                            eval_r = 0.
                            for _ in range(commit_for):
                            
                                ## break actions into primitives and their params    
                                eval_action, _ = my_skill_set.pi(primitive_id=eval_primitive_id, obs = eval_skill_obs.copy(), primitive_params=None)
                                eval_new_obs, eval_skill_rew, eval_done, eval_info = eval_env.step(eval_action)
                                # print('env reward:%f'%eval_skill_rew)
                                if render_eval:
                                    print("Render!")
                                    
                                    eval_env.render()
                                    print("rendered!")

                                eval_r += eval_skill_rew
                                eval_skill_obs = eval_new_obs
                                
                                eval_terminate_skill = my_skill_set.termination(eval_new_obs)

                                if eval_done or eval_terminate_skill:
                                    break
                                
                        else:
                            eval_action= eval_paction

                            env_action = eval_action
                            reset = False
                            eval_new_obs, eval_r, eval_done, eval_info = eval_env.step(env_action)
                            if render_eval:
                                # print("Render!")
                                
                                eval_env.render()
                                # print("rendered!")


                        
                        eval_episode_reward += eval_r
                        # print("eval_r:%f, eval_episode_reward:%f"%(eval_r, eval_episode_reward))
                        eval_obs = eval_new_obs
                        
                    eval_episode_success = (eval_info["done"]=="goal reached")
                    if(eval_episode_success):
                        logger.info("success, training epoch:%d,starting config:"%t)


                    eval_episode_rewards.append(eval_episode_reward)
                    eval_episode_successes.append(eval_episode_success)

                combined_stats = {}

                # print(eval_episode_successes, np.mean(eval_episode_successes))
                combined_stats['eval/return'] = normal_mean(eval_episode_rewards)
                combined_stats['eval/success'] = normal_mean(eval_episode_successes)
                combined_stats['eval/episodes'] = (len(eval_episode_rewards))

                for key in sorted(combined_stats.keys()):
                    logger.record_tabular(key, combined_stats[key])
                
                print("dumping the stats!")
                logger.dump_tabular()

        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(saved_mean_reward))
            U.load_state(model_file)
Beispiel #10
0
def learn(env,
          network,
          seed=None,
          lr=5e-4,
          total_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=3000,
          batch_size=32,
          print_freq=100,
          checkpoint_freq=10000,
          checkpoint_path=None,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=3000,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          callback=None,
          load_path=None,
          **network_kwargs
            ):


    sess = get_session()
    set_global_seeds(seed)

    q_func = build_q_func(network, **network_kwargs)

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph

    observation_space = env.observation_space
    def make_obs_ph(name):
        return ObservationInput(observation_space, name=name)


    act, train, update_target, debug = deepq.build_train(
        make_obs_ph=lambda name: ObservationInput(env.observation_space, name=name),
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        # gamma=gamma,
        # grad_norm_clipping=10,
        # param_noise=param_noise
    )

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = total_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(100000),
                                 initial_p=1.0,
                                 final_p=0.02)

    # Initialize the paramete    print(type(act))rs and copy them to the target network.
    U.initialize()
    update_target()





    old_state = None





    formula_LTLf_1 = "!F(die)"
    monitoring_RightToLeft = MonitoringSpecification(
        ltlf_formula=formula_LTLf_1,
        r=1,
        c=-10,
        s=1,
        f=-10
    )



    monitoring_specifications = [monitoring_RightToLeft]

    stepCounter = 0
    done = False

    def RightToLeftConversion(observation) -> TraceStep:

        print(stepCounter)


        if(done and not(stepCounter>=199)):
            die=True
        else:
            die=False


        dictionary={'die': die}
        print(dictionary)
        return dictionary

    multi_monitor = MultiRewardMonitor(
        monitoring_specifications=monitoring_specifications,
        obs_to_trace_step=RightToLeftConversion
    )













    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()
    reset = True


    with tempfile.TemporaryDirectory() as td:
        td = checkpoint_path or td

        model_file = os.path.join(td, "model")
        model_saved = False

        if tf.train.latest_checkpoint(td) is not None:
            load_variables(model_file)
            logger.log('Loaded model from {}'.format(model_file))
            model_saved = True
        elif load_path is not None:
            load_variables(load_path)
            logger.log('Loaded model from {}'.format(load_path))

        episodeCounter=0
        num_episodes=0

        for t in itertools.count():
            
            # Take action and update exploration to the newest value
            action = act(obs[None], update_eps=exploration.value(t))[0]
            #print(action)
            new_obs, rew, done, _ = env.step(action)
            stepCounter+=1

            rew, is_perm = multi_monitor(new_obs)
            old_state=new_obs




            # Store transition in the replay buffer.
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            obs = new_obs

            episode_rewards[-1] += rew


            is_solved = t > 100 and np.mean(episode_rewards[-101:-1]) >= 200
            if episodeCounter % 100 == 0 or episodeCounter<1:
                # Show off the result
                #print("coming here Again and Again")
                env.render()


            if done:
                episodeCounter+=1
                num_episodes+=1
                obs = env.reset()
                episode_rewards.append(0)
                multi_monitor.reset()
                stepCounter=0
            else:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if t > 1000:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(32)
                    train(obses_t, actions, rewards, obses_tp1, dones, np.ones_like(rewards))

                # Update target network periodically.
                if t % 1000 == 0:
                    update_target()
            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            if done and len(episode_rewards) % 10 == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", len(episode_rewards))
                logger.record_tabular("mean 100 episode reward", round(np.mean(episode_rewards[-101:-1]), 1))
                logger.record_tabular("% time spent exploring", int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts and
                    num_episodes > 500 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log("Saving model due to mean reward increase: {} -> {}".format(
                                   saved_mean_reward, mean_100ep_reward))
                    act.save_act()
                    #save_variables(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        # if model_saved:
        #     if print_freq is not None:
        #         logger.log("Restored model with mean reward: {}".format(saved_mean_reward))
        #     load_variables(model_file)

    return act
Beispiel #11
0
def learn(
        env,
        q_func,  # input obs,num od actions etc and obtain q value for each action
        num_actions=16,  # available actions: up down left right
        lr=5e-4,
        max_timesteps=100000,
        buffer_size=50000,  # size of the replay buffer
        exploration_fraction=0.1,  # during the first 10% training period, exploration rate is decreased from 1 to 0.02
        exploration_final_eps=0.02,  # final value of random action probability
        train_freq=1,  # update the model every `train_freq` steps.
        batch_size=32,  # size of a batched sampled from replay buffer for training
        print_freq=1,
        checkpoint_freq=10000,
        learning_starts=1000,  # time for the model to collect transitions before learning starts
        gamma=1.0,
        target_network_update_freq=500,
        prioritized_replay=False,
        prioritized_replay_alpha=0.6,
        prioritized_replay_beta0=0.4,
        prioritized_replay_beta_iters=None,  # beta keeps to be beta0
        prioritized_replay_eps=1e-6,
        num_cpu=16,  # number of cpus to use for training
        param_noise=False,  # whether or not to use parameter space noise
        param_noise_threshold=0.05,
        callback=None):
    """Train a deepq model.

  Parameters
  -------
  env: pysc2.env.SC2Env
      environment to train on
  q_func: (tf.Variable, int, str, bool) -> tf.Variable
      the model that takes the following inputs:
          observation_in: object
              the output of observation placeholder
          num_actions: int
              number of actions
          scope: str
          reuse: bool
              should be passed to outer variable scope
      and returns a tensor of shape (batch_size, num_actions) with values of every action.
  lr: float
      learning rate for adam optimizer
  max_timesteps: int
      number of env steps to optimizer for
  buffer_size: int
      size of the replay buffer
  exploration_fraction: float
      fraction of entire training period over which the exploration rate is annealed
  exploration_final_eps: float
      final value of random action probability
  train_freq: int
      update the model every `train_freq` steps.
      set to None to disable printing
  batch_size: int
      size of a batched sampled from replay buffer for training
  print_freq: int
      how often to print out training progress
      set to None to disable printing
  checkpoint_freq: int
      how often to save the model. This is so that the best version is restored
      at the end of the training. If you do not wish to restore the best version at
      the end of the training set this variable to None.
  learning_starts: int
      how many steps of the model to collect transitions for before learning starts
  gamma: float
      discount factor
  target_network_update_freq: int
      update the target network every `target_network_update_freq` steps.
  prioritized_replay: True
      if True prioritized replay buffer will be used.
  prioritized_replay_alpha: float
      alpha parameter for prioritized replay buffer
  prioritized_replay_beta0: float
      initial value of beta for prioritized replay buffer
  prioritized_replay_beta_iters: int
      number of iterations over which beta will be annealed from initial value
      to 1.0. If set to None equals to max_timesteps.
  prioritized_replay_eps: float
      epsilon to add to the TD errors when updating priorities.
  num_cpu: int
      number of cpus to use for training
  callback: (locals, globals) -> None
      function called at every steps with state of the algorithm.
      If callback returns true training stops.

  Returns
  -------
  act: ActWrapper
      Wrapper over act function. Adds ability to save it and load it.
      See header of baselines/deepq/categorical.py for details on the act function.
  """
    # Create all the functions necessary to train the model

    sess = U.make_session(num_cpu=num_cpu)
    sess.__enter__()

    def make_obs_ph(
        name
    ):  # Creates a placeholder for a batch of tensors of a given shape and dtype
        return U_b.BatchInput((16, 16), name=name)

    act_x, train_x, update_target_x, debug_x = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=num_actions,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,  #   clip gradient norms to this value
        scope="deepq_x")

    act_y, train_y, update_target_y, debug_y = deepq.build_train(  #because there are two players in the game
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=num_actions,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        scope="deepq_y")

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': num_actions,
    }

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer_x = PrioritizedReplayBuffer(
            buffer_size, alpha=prioritized_replay_alpha)
        replay_buffer_y = PrioritizedReplayBuffer(
            buffer_size, alpha=prioritized_replay_alpha)

        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = max_timesteps
        beta_schedule_x = LinearSchedule(
            prioritized_replay_beta_iters,
            initial_p=prioritized_replay_beta0,  # 0.4->1
            final_p=1.0)

        beta_schedule_y = LinearSchedule(prioritized_replay_beta_iters,
                                         initial_p=prioritized_replay_beta0,
                                         final_p=1.0)
    else:
        replay_buffer_x = ReplayBuffer(buffer_size)
        replay_buffer_y = ReplayBuffer(buffer_size)

        beta_schedule_x = None
        beta_schedule_y = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        max_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.  ---环境初始化
    U.initialize()
    update_target_x()
    update_target_y()
    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()  # start a new episode

    # Select all marines first      ---选择所有个体,获得新的观察
    obs = env.step(actions=[
        sc2_actions.FunctionCall(_SELECT_ARMY, [_SELECT_ALL])
    ])  # Apply actions, step the world forward, and return observations.

    # 查看返回的字典中屏幕中的目标关系分布图:1表示着地图中个体的位置,3表示着矿物的位置,就是终端的矩阵图
    player_relative = obs[0].observation["feature_screen"][
        _PLAYER_RELATIVE]  #obs is a 'TimeStep' whose type is tuple of ['step_type', 'reward', 'discount', 'observation'];step_type.first or mid or last
    # 矿的位置 0,1矩阵分布
    screen = (player_relative == _PLAYER_NEUTRAL).astype(
        int
    )  #+ path_memory   screen=1 or 0  to indicate the location of mineral
    # 队友的位置,给出行列信息
    player_y, player_x = (player_relative == _PLAYER_FRIENDLY).nonzero(
    )  #the location of team member: row, col <-> y,x

    # print(player_relative)
    # print('*************')
    # print(screen)
    # print(_PLAYER_FRIENDLY)
    #
    # print(player_x)
    # print(player_y)
    # print('ssss)

    # if (len(player_x) == 0):
    #   player_x = np.array([0])
    #   # print('player_x from null to 0')
    #   # print(player_x)
    # if (len(player_y) == 0):
    #   player_y = np.array([0])
    #   # print('player_y from null to 0')
    #   # print(player_y)

    player = [int(player_x.mean()), int(player_y.mean())]

    reset = True
    with tempfile.TemporaryDirectory() as td:
        model_saved = False
        model_file = os.path.join("model/", "mineral_shards")  #给了一个模型保存路径
        print(model_file)

        for t in range(max_timesteps):
            # print('timestep=',t)
            if callback is not None:
                if callback(locals(), globals()):
                    break

            # Take action and update exploration to the newest value--更新探索并采取动作
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)  # 输出一个1->0.02之间的值
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                if param_noise_threshold >= 0.:
                    update_param_noise_threshold = param_noise_threshold
                else:
                    # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                    # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                    # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                    # for detailed explanation.
                    update_param_noise_threshold = -np.log(
                        1. - exploration.value(t) +
                        exploration.value(t) / float(num_actions))
                kwargs['reset'] = reset
                kwargs[
                    'update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True

            # actions obtained after exploration
            action_x = act_x(np.array(screen)[None],
                             update_eps=update_eps,
                             **kwargs)[0]
            # print('action_x is ',action_x)

            action_y = act_y(np.array(screen)[None],
                             update_eps=update_eps,
                             **kwargs)[0]
            # print('action_y is ',action_y)
            reset = False

            # coord = [player[0], player[1]]
            rew = 0  #reward

            coord = [action_x, action_y]

            if _MOVE_SCREEN not in obs[0].observation["available_actions"]:
                obs = env.step(actions=[
                    sc2_actions.FunctionCall(_SELECT_ARMY, [_SELECT_ALL])
                ])
            # obs = env.step(actions=[sc2_actions.FunctionCall(_SELECT_ARMY, [_SELECT_ALL])])

            new_action = [
                sc2_actions.FunctionCall(_MOVE_SCREEN, [_NOT_QUEUED, coord])
            ]

            # else:
            #   new_action = [sc2_actions.FunctionCall(_NO_OP, [])]

            obs = env.step(actions=new_action)

            player_relative = obs[0].observation["feature_screen"][
                _PLAYER_RELATIVE]
            # print(player_relative)
            new_screen = (player_relative == _PLAYER_NEUTRAL).astype(int)

            # print(_PLAYER_FRIENDLY)

            # print(player_x)
            # print(player_y)
            # print('ssssss2')

            # if (len(player_x) == 0):
            #   player_x = np.array([0])
            #   # print('player_x from null to 0')
            #   # print(player_x)
            # if (len(player_y) == 0):
            #   player_y = np.array([0])
            #   # print('player_y from null to 0')
            #   # print(player_y)

            # player = [int(player_x.mean()), int(player_y.mean())]

            rew = obs[0].reward

            done = obs[0].step_type == environment.StepType.LAST

            # Store transition in the replay buffer.
            replay_buffer_x.add(screen, action_x, rew, new_screen, float(done))
            replay_buffer_y.add(screen, action_y, rew, new_screen, float(done))

            screen = new_screen

            episode_rewards[-1] += rew
            reward = episode_rewards[-1]

            if done:
                obs = env.reset()
                # player_relative = obs[0].observation["feature_screen"][_PLAYER_RELATIVE]
                # screent = (player_relative == _PLAYER_NEUTRAL).astype(int)
                #
                # player_y, player_x = (player_relative == _PLAYER_FRIENDLY).nonzero()
                # player = [int(player_x.mean()), int(player_y.mean())]

                # Select all marines first
                env.step(actions=[
                    sc2_actions.FunctionCall(_SELECT_ARMY, [_SELECT_ALL])
                ])
                episode_rewards.append(0.0)
                # print("episode_rewards is ", episode_rewards)
                print('num_episodes is', len(episode_rewards))

                #episode_minerals.append(0.0)

                reset = True

            if t > learning_starts and t % train_freq == 0:  #train_freq=1: update the model every `train_freq` steps
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:

                    experience_x = replay_buffer_x.sample(
                        batch_size, beta=beta_schedule_x.value(t))
                    (obses_t_x, actions_x, rewards_x, obses_tp1_x, dones_x,
                     weights_x, batch_idxes_x) = experience_x

                    experience_y = replay_buffer_y.sample(
                        batch_size, beta=beta_schedule_y.value(t))
                    (obses_t_y, actions_y, rewards_y, obses_tp1_y, dones_y,
                     weights_y, batch_idxes_y) = experience_y
                else:

                    obses_t_x, actions_x, rewards_x, obses_tp1_x, dones_x = replay_buffer_x.sample(
                        batch_size)
                    weights_x, batch_idxes_x = np.ones_like(
                        rewards_x
                    ), None  # weights_x is an array padded with 1 which has the same shape as rewards_x

                    obses_t_y, actions_y, rewards_y, obses_tp1_y, dones_y = replay_buffer_y.sample(
                        batch_size)
                    weights_y, batch_idxes_y = np.ones_like(rewards_y), None

                td_errors_x = train_x(obses_t_x, actions_x, rewards_x,
                                      obses_tp1_x, dones_x, weights_x)

                td_errors_y = train_y(obses_t_y, actions_y, rewards_y,
                                      obses_tp1_y, dones_y, weights_y)

                if prioritized_replay:
                    new_priorities_x = np.abs(
                        td_errors_x) + prioritized_replay_eps
                    new_priorities_y = np.abs(
                        td_errors_y) + prioritized_replay_eps
                    replay_buffer_x.update_priorities(batch_idxes_x,
                                                      new_priorities_x)
                    replay_buffer_y.update_priorities(batch_idxes_y,
                                                      new_priorities_y)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target_x()
                update_target_y()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]),
                                      1)  # round: sishewuru value
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(
                    episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("reward", reward)
                logger.record_tabular("mean 100 episode reward",
                                      mean_100ep_reward)
                logger.record_tabular("% time spent exploring",
                                      int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts
                    and num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log(
                            "Saving model due to mean reward increase: {} -> {}"
                            .format(saved_mean_reward, mean_100ep_reward))
                    U.save_state(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(
                    saved_mean_reward))
            U.load_state(model_file)

    return ActWrapper(act_x), ActWrapper(act_y)
Beispiel #12
0
class Agent:
    def __init__(self, sess):
        print("Initializing the agent...")

        self.sess = sess
        self.env = Environment()
        self.state_size = self.env.get_state_size()
        self.action_size = self.env.get_action_size()

        print("Creation of the main QNetwork...")
        self.mainQNetwork = QNetwork(self.state_size, self.action_size, 'main')
        print("Main QNetwork created !\n")

        print("Creation of the target QNetwork...")
        self.targetQNetwork = QNetwork(self.state_size, self.action_size,
                                       'target')
        print("Target QNetwork created !\n")

        self.buffer = PrioritizedReplayBuffer(parameters.BUFFER_SIZE,
                                              parameters.ALPHA)

        self.epsilon = parameters.EPSILON_START
        self.beta = parameters.BETA_START

        trainables = tf.trainable_variables()
        self.update_target_ops = updateTargetGraph(trainables)

        self.nb_ep = 1

    def pre_train(self):
        print("Beginning of the pre-training...")

        for i in range(parameters.PRE_TRAIN_STEPS):

            s = self.env.reset()
            done = False
            episode_step = 0
            episode_reward = 0

            while episode_step < parameters.MAX_EPISODE_STEPS and not done:

                a = random.randint(0, self.action_size - 1)
                s_, r, done, info = self.env.act(a)
                self.buffer.add(s, a, r, s_, done)

                s = s_
                episode_reward += r
                episode_step += 1

            if i % 100 == 0:
                print("Pre-train step n", i)

        print("End of the pre training !")

    def run(self):
        print("Beginning of the run...")

        self.pre_train()

        self.total_steps = 0
        self.nb_ep = 1

        while self.nb_ep < parameters.TRAINING_STEPS:

            s = self.env.reset()
            episode_reward = 0
            done = False

            memory = deque()
            discount_R = 0

            episode_step = 0

            # Render parameters
            self.env.set_render(self.nb_ep % parameters.RENDER_FREQ == 0)

            while episode_step < parameters.MAX_EPISODE_STEPS and not done:

                if random.random() < self.epsilon:
                    a = random.randint(0, self.action_size - 1)
                else:
                    a = self.sess.run(
                        self.mainQNetwork.predict,
                        feed_dict={self.mainQNetwork.inputs: [s]})
                    a = a[0]

                s_, r, done, info = self.env.act(a)
                episode_reward += r

                memory.append((s, a, r, s_, done))

                if len(memory) > parameters.N_STEP_RETURN:
                    s_mem, a_mem, r_mem, ss_mem, done_mem = memory.popleft()
                    discount_R = r_mem
                    for i, (si, ai, ri, s_i, di) in enumerate(memory):
                        discount_R += ri * parameters.DISCOUNT**(i + 1)
                    self.buffer.add(s_mem, a_mem, discount_R, s_, done)

                if episode_step % parameters.TRAINING_FREQ == 0:

                    train_batch = self.buffer.sample(parameters.BATCH_SIZE,
                                                     self.beta)
                    # Incr beta
                    if self.beta <= parameters.BETA_STOP:
                        self.beta += parameters.BETA_INCR

                    feed_dict = {self.mainQNetwork.inputs: train_batch[3]}
                    mainQaction = self.sess.run(self.mainQNetwork.predict,
                                                feed_dict=feed_dict)

                    feed_dict = {self.targetQNetwork.inputs: train_batch[3]}
                    targetQvalues = self.sess.run(self.targetQNetwork.Qvalues,
                                                  feed_dict=feed_dict)

                    # Done multiplier :
                    # equals 0 if the episode was done
                    # equals 1 else
                    done_multiplier = (1 - train_batch[4])
                    doubleQ = targetQvalues[range(parameters.BATCH_SIZE),
                                            mainQaction]
                    targetQvalues = train_batch[2] + \
                        parameters.DISCOUNT * doubleQ * done_multiplier

                    feed_dict = {
                        self.mainQNetwork.inputs: train_batch[0],
                        self.mainQNetwork.Qtarget: targetQvalues,
                        self.mainQNetwork.actions: train_batch[1]
                    }
                    td_error, _ = self.sess.run(
                        [self.mainQNetwork.td_error, self.mainQNetwork.train],
                        feed_dict=feed_dict)

                    self.buffer.update_priorities(train_batch[6],
                                                  td_error + 1e-6)

                    update_target(self.update_target_ops, self.sess)

                s = s_
                episode_step += 1
                self.total_steps += 1

            # Decay epsilon
            if self.epsilon > parameters.EPSILON_STOP:
                self.epsilon -= parameters.EPSILON_DECAY

            DISPLAYER.add_reward(episode_reward)

            self.total_steps += 1

            if self.nb_ep % parameters.DISP_EP_REWARD_FREQ == 0:
                print('Episode %2i, Reward: %7.3f, Steps: %i, Epsilon: %f' %
                      (self.nb_ep, episode_reward, episode_step, self.epsilon))
            self.nb_ep += 1

    def play(self, number_run):
        print("Playing for", number_run, "runs")

        try:
            for i in range(number_run):

                s = self.env.reset()
                episode_reward = 0
                done = False

                while not done:
                    a = self.sess.run(
                        self.mainQNetwork.predict,
                        feed_dict={self.mainQNetwork.inputs: [s]})
                    a = a[0]
                    s, r, done, info = self.env.act(a)

                    episode_reward += r

                print("Episode reward :", episode_reward)

        except KeyboardInterrupt as e:
            pass

        except Exception as e:
            print("Exception :", e)

        finally:
            self.env.set_render(False)
            print("End of the demo")
            self.env.close()

    def stop(self):
        self.env.close()
Beispiel #13
0
def learn_neural_linear(
        env,
        network,
        seed=None,
        lr=5e-4,
        total_timesteps=100000,
        buffer_size=50000,
        exploration_fraction=0.1,
        exploration_final_eps=0.02,
        train_freq=1,
        batch_size=32,
        print_freq=10,  #100
        checkpoint_freq=10000,
        checkpoint_path=None,
        learning_starts=999,
        gamma=1.0,
        target_network_update_freq=500,
        prioritized_replay=False,
        prioritized_replay_alpha=0.6,
        prioritized_replay_beta0=0.4,
        prioritized_replay_beta_iters=None,
        prioritized_replay_eps=1e-6,
        param_noise=False,
        callback=None,
        load_path=None,
        ddqn=False,
        prior="no prior",
        actor="dqn",
        **network_kwargs):
    #Train a deepq model.

    # Create all the functions necessary to train the model
    checkpoint_path = logger.get_dir()
    sess = get_session()
    set_global_seeds(seed)

    blr_params = BLRParams()
    q_func = deepq.models.cnn_to_mlp(
        convs=[(32, 8, 4), (64, 4, 2), (64, 3, 1)],
        hiddens=[blr_params.feat_dim],
        dueling=bool(0),
    )
    # q_func = build_q_func(network, **network_kwargs)

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph

    observation_space = env.observation_space

    def make_obs_ph(name):
        return ObservationInput(observation_space, name=name)

    act, train, update_target, feat_dim, feat, feat_target, target, last_layer_weights, blr_ops, blr_helpers = deepq.build_train_neural_linear(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        param_noise=param_noise,
        double_q=ddqn,
        actor=actor)
    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                                alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = total_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        total_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()
    reset = True

    with tempfile.TemporaryDirectory() as td:
        td = checkpoint_path or td

        model_file = os.path.join(td, "model")
        model_saved = False

        if tf.train.latest_checkpoint(td) is not None:
            load_variables(model_file)
            logger.log('Loaded model from {}'.format(model_file))
            model_saved = True
        elif load_path is not None:
            load_variables(load_path)
            logger.log('Loaded model from {}'.format(load_path))

        # BLR
        # preliminearies
        num_actions = env.action_space.n
        w_mu = np.zeros((num_actions, feat_dim))
        w_sample = np.random.normal(loc=0,
                                    scale=0.1,
                                    size=(num_actions, feat_dim))
        w_target = np.random.normal(loc=0,
                                    scale=0.1,
                                    size=(num_actions, feat_dim))
        w_cov = np.zeros((num_actions, feat_dim, feat_dim))
        for a in range(num_actions):
            w_cov[a] = np.eye(feat_dim)

        phiphiT = np.zeros((num_actions, feat_dim, feat_dim))
        phiY = np.zeros((num_actions, feat_dim))

        a0 = 6
        b0 = 6
        a_sig = [a0 for _ in range(num_actions)]
        b_sig = [b0 for _ in range(num_actions)]

        yy = [0 for _ in range(num_actions)]

        blr_update = 0

        for t in tqdm(range(total_timesteps)):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # if t % 1000 == 0:
            #     print("{}/{}".format(t,total_timesteps))
            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                # for detailed explanation.
                update_param_noise_threshold = -np.log(1. - exploration.value(
                    t) + exploration.value(t) / float(env.action_space.n))
                kwargs['reset'] = reset
                kwargs[
                    'update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True

            action = act(np.array(obs)[None], w_sample[None])
            env_action = action
            reset = False
            new_obs, rew, done, _ = env.step(env_action)

            # clipping like in BDQN
            rew = np.sign(rew)

            # Store transition in the replay buffer.
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            obs = new_obs

            episode_rewards[-1] += rew
            if done:
                obs = env.reset()
                episode_rewards.append(0.0)
                reset = True

            # sample new w from posterior
            if t > 0 and t % blr_params.sample_w == 0:
                for i in range(num_actions):
                    if blr_params.no_prior:
                        w_sample[i] = np.random.multivariate_normal(
                            w_mu[i], w_cov[i])
                    else:
                        sigma2_s = b_sig[i] * invgamma.rvs(a_sig[i])
                        w_sample[i] = np.random.multivariate_normal(
                            w_mu[i], sigma2_s * w_cov[i])

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(
                        batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights,
                     batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                        batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones,
                                  weights)
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes,
                                                    new_priorities)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                # when target network updates we update our posterior belifes
                # and transfering information from the old target
                # to our new target
                blr_update += 1
                if blr_update == 10:  #10
                    print("updating posterior parameters")
                    if blr_params.no_prior:
                        phiphiT, phiY, w_mu, w_cov, a_sig, b_sig = BayesRegNoPrior(
                            phiphiT, phiY, w_target, replay_buffer, feat,
                            feat_target, target, num_actions,
                            blr_params, w_mu, w_cov,
                            sess.run(last_layer_weights), prior, blr_ops,
                            blr_helpers)
                    else:
                        phiphiT, phiY, w_mu, w_cov, a_sig, b_sig = BayesRegWithPrior(
                            phiphiT, phiY, w_target, replay_buffer, feat,
                            feat_target, target, num_actions, blr_params, w_mu,
                            w_cov, sess.run(last_layer_weights))
                    blr_update = 0

                print("updateing target, steps {}".format(t))
                update_target()
                w_target = w_mu

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            mean_10ep_reward = round(np.mean(episode_rewards[-11:-1]), 1)
            num_episodes = len(episode_rewards)
            # if done and print_freq is not None and len(episode_rewards) % print_freq == 0:
            if t % 10000 == 0:  #1000
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward",
                                      mean_100ep_reward)
                logger.record_tabular("mean 10 episode reward",
                                      mean_10ep_reward)
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts
                    and num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log(
                            "Saving model due to mean reward increase: {} -> {}"
                            .format(saved_mean_reward, mean_100ep_reward))
                    save_variables(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(
                    saved_mean_reward))
            load_variables(model_file)

    return act
Beispiel #14
0
def train_model_and_save_results(env_name, n_hid, lr, eps_min, delta, gamma,
                                 kappa, prioritize, alpha, beta,
                                 timesteps_per_update_target,
                                 timesteps_per_action_taken, total_timesteps,
                                 perturb, folder_path):

    # env_name: environment name
    # n_hid: list of numbers of units in hidden layers
    # eps_min: final exploration epsilon
    # delta: linear decrement of exploration epsilon per timestep
    # kappa: list of 3 constants for next state, reward and done predictions
    # prioritize: boolean, whether to use prioritized reply buffer or not
    # alpha: prioritization constant
    # beta: weight correction constant
    # perturb: boolean, whether to use parameter noise explotration
    # folder_path: to save results

    env = gym.make(env_name)

    eps = tf.get_variable('eps', (),
                          initializer=tf.constant_initializer(1.0),
                          dtype=tf.float32)
    update_eps = tf.assign(eps, tf.maximum(eps - delta, eps_min))

    n_in = 1
    for n in env.observation_space.shape:
        n_in *= n

    n_out = env.action_space.n

    sizes = [n_in] + n_hid + [n_out]

    # create networks

    with tf.variable_scope('Q'):
        Q_params, Q_function = Q_model(sizes)

    with tf.variable_scope('Q_target'):
        Q_params_target, Q_function_target = Q_model(sizes)

    if perturb:

        with tf.variable_scope('Q_perturbed'):
            Q_params_perturbed, Q_function_perturbed = Q_model(sizes)

        with tf.variable_scope('Q_adapt'):
            Q_params_adapt, Q_function_adapt = Q_model(sizes)

        perturbation_scale = tf.get_variable(
            "perturbation_scale", (),
            initializer=tf.constant_initializer(0.01))
        larger_perturbation_scale = perturbation_scale * 1.01
        smaller_perturbation_scale = perturbation_scale / 1.01

    # create placeholders

    obses = tf.placeholder(tf.float32, shape=[None, n_in])
    actions = tf.placeholder(tf.int32, shape=[None])
    rewards = tf.placeholder(tf.float32, shape=[None])
    next_obses = tf.placeholder(tf.float32, shape=[None, n_in])
    dones = tf.placeholder(tf.float32, shape=[None])
    weights = tf.placeholder(tf.float32, shape=[None])

    # create outputs of Q functions

    Q_function_obses = Q_function(obses)

    Q_values_per_action = Q_function_obses[0]
    Q_actions = tf.argmax(Q_values_per_action, axis=1)

    if perturb:

        ops = []
        for i in range(len(Q_params) - 6):
            ops.append(
                tf.assign(
                    Q_params_perturbed[i],
                    Q_params[i] + tf.random_normal(shape=tf.shape(Q_params[i]),
                                                   mean=0.,
                                                   stddev=perturbation_scale)))
        assign_perturbed = tf.group(*ops)

        ops = []
        for i in range(len(Q_params) - 6):
            ops.append(
                tf.assign(
                    Q_params_adapt[i],
                    Q_params[i] + tf.random_normal(shape=tf.shape(Q_params[i]),
                                                   mean=0.,
                                                   stddev=perturbation_scale)))
        assign_adapt = tf.group(*ops)

        Q_values_per_action_perturbed = Q_function_perturbed(obses)[0]
        Q_actions_perturbed = tf.argmax(Q_values_per_action_perturbed, axis=1)
        Q_values_per_action_adapt = Q_function_adapt(obses)[0]

        kl = tf.reduce_sum(tf.nn.softmax(Q_values_per_action) *
                           (tf.log(tf.nn.softmax(Q_values_per_action)) -
                            tf.log(tf.nn.softmax(Q_values_per_action_adapt))),
                           axis=-1)
        kl_mean = tf.reduce_mean(kl)
        kl_eps = -tf.log(1 - eps + eps / n_out)
        with tf.control_dependencies([assign_adapt]):
            update_perturbation_scale = tf.cond(
                kl_mean < kl_eps,
                lambda: perturbation_scale.assign(perturbation_scale * 1.01),
                lambda: perturbation_scale.assign(perturbation_scale / 1.01))

    Q_values = tf.reduce_sum(Q_values_per_action * tf.one_hot(actions, n_out),
                             axis=1)
    Q_values_target = rewards + gamma * tf.reduce_sum(
        tf.one_hot(tf.argmax(Q_function(next_obses)[0], axis=1), n_out) *
        Q_function_target(next_obses)[0],
        axis=1) * (1.0 - dones)

    # create errors

    TD = Q_values - tf.stop_gradient(Q_values_target)
    TD_error = tf.reduce_mean(weights * Huber_loss(TD))

    state_difference = tf.reduce_sum(
        Q_function_obses[1] * tf.expand_dims(tf.one_hot(actions, n_out), 2),
        axis=1) - next_obses
    state_difference_error = tf.reduce_mean(
        tf.expand_dims(weights, 1) * Huber_loss(state_difference))

    reward_difference = tf.reduce_sum(
        Q_function_obses[2] * tf.one_hot(actions, n_out), axis=1) - rewards
    reward_difference_error = tf.reduce_mean(weights *
                                             Huber_loss(reward_difference))

    done_difference = tf.nn.sigmoid_cross_entropy_with_logits(
        labels=dones,
        logits=tf.reduce_sum(Q_function_obses[3] * tf.one_hot(actions, n_out),
                             axis=1))
    done_difference_error = tf.reduce_mean(weights * done_difference)

    # compute total error

    total_error = TD_error

    if kappa[0] > 0:
        total_error += kappa[0] * state_difference_error

    if kappa[1] > 0:
        total_error += kappa[1] * reward_difference_error

    if kappa[2] > 0:
        total_error += kappa[2] * done_difference_error

    # create gradients to save

    grads = tf.gradients(total_error, Q_params)
    grad_sum_of_squares = sum(
        [tf.reduce_sum(x * x) for x in grads if x is not None])

    # create optimizer and update rule

    Adam = tf.train.AdamOptimizer(learning_rate=lr)
    update = Adam.minimize(total_error, var_list=Q_params)

    # initialize session

    sess = tf.Session()

    # define update_target

    def update_target():
        for i in range(len(Q_params)):
            sess.run(Q_params_target[i].assign(Q_params[i]))

    if prioritize:
        replay_buffer = PrioritizedReplayBuffer(50000, alpha)
    else:
        replay_buffer = ReplayBuffer(50000)

    # initialize parameters to save

    episode_length = [0]

    TD_errors = []
    state_difference_errors = []
    reward_difference_errors = []
    done_difference_errors = []
    grad_sums_of_squares = []

    # initialize all variables

    sess.run(tf.global_variables_initializer())

    # start training

    obs = env.reset()

    for t in range(total_timesteps):

        # choose action
        if t % timesteps_per_action_taken == 0:

            if (not perturb) and np.random.uniform() < sess.run(eps):

                # take random action

                action = np.random.randint(n_out)

            else:

                if perturb:

                    # take randomly perturb action, then update scale
                    action = sess.run(Q_actions_perturbed,
                                      feed_dict={obses: obs[None]})[0]
                    sess.run(update_perturbation_scale,
                             feed_dict={obses: obs[None]})

                else:

                    # take optimal action

                    action = sess.run(Q_actions, feed_dict={obses:
                                                            obs[None]})[0]

            next_obs, rew, done, _ = env.step(action)

            episode_length[-1] += 1

            # add experience to buffer

            replay_buffer.add(obs, action, rew, next_obs, float(done))

            obs = next_obs

            if (done):

                # episode finished

                print("episode length = " + str(episode_length[-1]))
                obs = env.reset()
                episode_length.append(0)
                if perturb:
                    sess.run(assign_perturbed)
                    print(sess.run(perturbation_scale))

        if t % timesteps_per_update_target == 0:

            # update target

            print("t = " + str(t) + ", updating target...")
            update_target()

        if t > 1000:

            # update primary network

            if prioritize:
                beta_current = (beta *
                                (total_timesteps - t) + t) / total_timesteps
                obses_current, actions_current, rewards_current, next_obses_current, dones_current, weights_current, idxes_current = replay_buffer.sample(
                    32, beta_current)
            else:
                obses_current, actions_current, rewards_current, next_obses_current, dones_current = replay_buffer.sample(
                    32)
                weights_current = np.ones_like(rewards_current)

            feed_dict = {
                obses: obses_current,
                actions: actions_current,
                rewards: rewards_current,
                next_obses: next_obses_current,
                dones: dones_current,
                weights: weights_current
            }

            if prioritize:
                new_weights = np.abs(sess.run(TD, feed_dict=feed_dict)) + 1e-6
                replay_buffer.update_priorities(idxes_current, new_weights)

            TD_errors.append(
                sess.run(TD_error, feed_dict=feed_dict).astype(np.float64))
            state_difference_errors.append(
                sess.run(state_difference_error,
                         feed_dict=feed_dict).astype(np.float64))
            reward_difference_errors.append(
                sess.run(reward_difference_error,
                         feed_dict=feed_dict).astype(np.float64))
            done_difference_errors.append(
                sess.run(done_difference_error,
                         feed_dict=feed_dict).astype(np.float64))
            grad_sums_of_squares.append(
                sess.run(grad_sum_of_squares,
                         feed_dict=feed_dict).astype(np.float64))

            sess.run(update, feed_dict=feed_dict)

        # update eps and beta

        sess.run(update_eps)

    # training finished, save progress

    print('saving progress and params...')

    if not os.path.exists(folder_path + 'params/'):
        os.makedirs(folder_path + 'params/')

    with open(folder_path + 'progress.json', 'w') as f:
        data = {
            'episode_length': episode_length,
            'TD_errors': TD_errors,
            'state_difference_errors': state_difference_errors,
            'reward_difference_errors': reward_difference_errors,
            'done_difference_errors': done_difference_errors,
            'grad_sums_of_squares': grad_sums_of_squares
        }

        json.dump(data, f)

    saver = tf.train.Saver({v.name: v for v in Q_params})
    saver.save(sess, folder_path + 'params/params.ckpt')

    with open(folder_path + 'params/params.pkl', 'wb') as f:
        cloudpickle.dump([sess.run(param) for param in Q_params], f)

    print('saved...')

    # tidy up

    sess.close()
    tf.reset_default_graph()
Beispiel #15
0
            print(var.name, val)

        episode_rewards = [0.0]
        loss_array = []
        obs = env.reset()
        for t in itertools.count():
            # Take action and update exploration to the newest value
            action = act(obs[None], update_eps=exploration.value(t))[0]
            # print(action)
            action = list(action)
            maxQ = max(action)
            selected = action.index(maxQ)
            new_obs, rew, done, _ = env.step(selected)
            # Store transition in the replay buffer.
            avail = np.zeros(env.action_space.n, dtype=float).tolist()
            replay_buffer.add(obs, selected, rew, new_obs, float(done), avail)
            obs = new_obs

            episode_rewards[-1] += rew
            if done:
                obs = env.reset()
                episode_rewards.append(0)

            is_solved = t > 100 and np.mean(episode_rewards[-101:-1]) >= 200
            td_error, rew_t_ph, q_t_selected_target, q_t_selected = -1, -1, -1, -1
            if is_solved:
                # Show off the result
                env.render()
            else:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if t > 1000:
Beispiel #16
0
def learn(env,
          q_func,
          num_actions=3,
          lr=5e-4,
          max_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=100,
          print_freq=15,
          checkpoint_freq=10000,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          num_cpu=16,
          param_noise=False,
          param_noise_threshold=0.05,
          callback=None,
          demo_replay=[]):
    """Train a deepq model.
Parameters
-------
q_func: (tf.Variable, int, str, bool) -> tf.Variable
    the model that takes the following inputs:
        observation_in: object
            the output of observation placeholder
        num_actions: int
            number of actions
        scope: str
        reuse: bool
            should be passed to outer variable scope
    and returns a tensor of shape (batch_size, num_actions) with values of every action.
checkpoint_freq: int
    how often to save the model. This is so that the best version is restored
    at the end of the training. If you do not wish to restore the best version at
    the end of the training set this variable to None.
gamma: float
    discount factor
target_network_update_freq: int
    update the target network every `target_network_update_freq` steps.
prioritized_replay_alpha: float
    alpha parameter for prioritized replay buffer
prioritized_replay_beta0: float
    initial value of beta for prioritized replay buffer
prioritized_replay_beta_iters: int
    number of iterations over which beta will be annealed from initial value
    to 1.0. If set to None equals to max_timesteps.
prioritized_replay_eps: float
    epsilon to add to the TD errors when updating priorities.
num_cpu: int
    number of cpus to use for training
callback: (locals, globals) -> None
    function called at every steps with state of the algorithm.
    If callback returns true training stops.

Returns
-------
act: ActWrapper
    Wrapper over act function. Adds ability to save it and load it.
    See header of baselines/deepq/categorical.py for details on the act function.
"""
    # Create all the functions necessary to train the model

    sess = TU.make_session(num_cpu=num_cpu)
    sess.__enter__()

    def make_obs_ph(name):
        return U.BatchInput((64, 64), name=name)

    act, train, update_target, debug = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=num_actions,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10)
    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': num_actions,
    }

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                                alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = max_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        max_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    TU.initialize()
    update_target()

    group_id = 0
    old_num = 0
    reset = True
    Action_Choose = False
    player = []
    episode_rewards = [0.0]
    saved_mean_reward = None
    marine_record = {}

    obs = env.reset()
    screen = obs[0].observation["screen"][_UNIT_TYPE]
    obs, xy_per_marine = common.init(env, obs)

    with tempfile.TemporaryDirectory() as td:
        model_saved = False
        model_file = os.path.join(td, "model")

        for t in range(max_timesteps):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                if param_noise_threshold >= 0.:
                    update_param_noise_threshold = param_noise_threshold
                else:
                    # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                    # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                    # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                    # for detailed explanation.
                    update_param_noise_threshold = -np.log(
                        1. - exploration.value(t) +
                        exploration.value(t) / float(num_actions))
                kwargs['reset'] = reset
                kwargs[
                    'update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True

            # custom process for DefeatZerglingsAndBanelings
            reset = False
            Action_Choose = not (Action_Choose)

            if Action_Choose == True:
                #the first action
                obs, screen, group_id, player = common.select_marine(env, obs)
                marine_record = common.run_record(marine_record, obs)

            else:
                # the second action
                action = act(np.array(screen)[None],
                             update_eps=update_eps,
                             **kwargs)[0]
                action = common.check_action(obs, action)
                new_action = None

                obs, new_action, marine_record = common.marine_action(
                    env, obs, group_id, player, action, marine_record)
                army_count = env._obs[0].observation.player_common.army_count

                try:
                    if army_count > 0 and (
                            _MOVE_SCREEN
                            in obs[0].observation["available_actions"]):
                        obs = env.step(actions=new_action)
                    else:
                        new_action = [sc2_actions.FunctionCall(_NO_OP, [])]
                        obs = env.step(actions=new_action)
                except Exception as e:
                    print(new_action)
                    print(e)
                    new_action = [sc2_actions.FunctionCall(_NO_OP, [])]
                    obs = env.step(actions=new_action)
                # get the new screen in action 2
                player_y, player_x = np.nonzero(
                    obs[0].observation["screen"][_SELECTED] == 1)
                new_screen = obs[0].observation["screen"][_UNIT_TYPE]
                for i in range(len(player_y)):
                    new_screen[player_y[i]][player_x[i]] = 49

            #update every step
            rew = obs[0].reward
            done = obs[0].step_type == environment.StepType.LAST
            episode_rewards[-1] += rew
            reward = episode_rewards[-1]

            if Action_Choose == False:  # only store the screen after the action is done
                replay_buffer.add(screen, action, rew, new_screen, float(done))
                mirror_new_screen = common._map_mirror(new_screen)
                mirror_screen = common._map_mirror(screen)
                replay_buffer.add(mirror_screen, action, rew,
                                  mirror_new_screen, float(done))

            if done:
                obs = env.reset()
                Action_Choose = False
                group_list = common.init(env, obs)
                episode_rewards.append(0.0)

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(
                        batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights,
                     batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                        batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones,
                                  weights)
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes,
                                                    new_priorities)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target()

            num_episodes = len(episode_rewards)
            #test for me
            if num_episodes > old_num:
                old_num = num_episodes
                print("now the episode is {}".format(num_episodes))
            #test for me
            if (num_episodes > 102):
                mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            else:
                mean_100ep_reward = round(np.mean(episode_rewards), 1)
            if done and print_freq is not None and len(
                    episode_rewards) % print_freq == 0:
                print("get the log")
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("reward", reward)
                logger.record_tabular("mean 100 episode reward",
                                      mean_100ep_reward)
                logger.record_tabular("% time spent exploring",
                                      int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts
                    and num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log(
                            "Saving model due to mean reward increase: {} -> {}"
                            .format(saved_mean_reward, mean_100ep_reward))
                    U.save_state(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(
                    saved_mean_reward))
            U.load_state(model_file)

    return ActWrapper(act)
Beispiel #17
0
def learn(
    env,
    q_func,
    lr=5e-4,
    max_timesteps=100000,
    buffer_size=50000,
    exploration_fraction=0.1,
    exploration_final_eps=0.02,
    train_freq=1,
    batch_size=32,
    print_freq=100,
    checkpoint_freq=10000,
    checkpoint_path=None,
    learning_starts=1000,
    gamma=1.0,
    target_network_update_freq=500,
    prioritized_replay=False,
    prioritized_replay_alpha=0.6,
    prioritized_replay_beta0=0.4,
    prioritized_replay_beta_iters=None,
    prioritized_replay_eps=1e-6,
    param_noise=False,
    callback=None,
    epoch_steps=20000,
    gpu_memory=1.0,
    double_q=False,
    scope="deepq",
    directory='.',
    nb_test_steps=10000,
):
    """Train a deepq model.

    Parameters
    -------
    env: gym.Env
        environment to train on
    q_func: (tf.Variable, int, str, bool) -> tf.Variable
        the model that takes the following inputs:
            observation_in: object
                the output of observation placeholder
            num_actions: int
                number of actions
            scope: str
            reuse: bool
                should be passed to outer variable scope
        and returns a tensor of shape (batch_size, num_actions) with values of every action.
    lr: float
        learning rate for adam optimizer
    max_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
        set to None to disable printing
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to max_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model
    config = tf.ConfigProto(allow_soft_placement=True)
    config.gpu_options.per_process_gpu_memory_fraction = gpu_memory
    config.gpu_options.polling_inactive_delay_msecs = 25
    sess = tf.Session(config=config)
    sess.__enter__()

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph

    def make_obs_ph(name):
        return ObservationInput(env.observation_space, name=name)

    act, act_greedy, train, update_target, debug = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        param_noise=param_noise,
        double_q=bool(double_q),
        scope=scope)

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                                alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = max_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        max_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()
    reset = True

    #recording
    records = {'loss': [], 'online_reward': [], 'test_reward': []}

    with tempfile.TemporaryDirectory() as td:
        td = checkpoint_path or td

        model_file = os.path.join(td, "model")
        model_saved = False
        if tf.train.latest_checkpoint(td) is not None:
            load_state(model_file)
            logger.log('Loaded model from {}'.format(model_file))
            model_saved = True

        ep_losses, ep_means, losses = [], [], []
        print("===== LEARNING STARTS =====")
        for t in range(max_timesteps):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                # for detailed explanation.
                update_param_noise_threshold = -np.log(1. - exploration.value(
                    t) + exploration.value(t) / float(env.action_space.n))
                kwargs['reset'] = reset
                kwargs[
                    'update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True
            action = act(np.array(obs)[None], update_eps=update_eps,
                         **kwargs)[0]
            env_action = action
            reset = False
            new_obs, rew, done, _ = env.step(env_action)
            # Store transition in the replay buffer.
            timelimit_env = env
            while (not hasattr(timelimit_env, '_elapsed_steps')):
                timelimit_env = timelimit_env.env

            if timelimit_env._elapsed_steps < timelimit_env._max_episode_steps:
                # Store transition in the replay buffer.
                replay_buffer.add(obs, action, rew, new_obs, float(done))
            else:
                replay_buffer.add(obs, action, rew, new_obs, float(not done))

            obs = new_obs

            episode_rewards[-1] += rew
            if done:
                obs = env.reset()
                episode_rewards.append(0.0)
                reset = True
                if losses:
                    ep_losses.append(np.mean(losses))
                    losses = []

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(
                        batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights,
                     batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                        batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones,
                                  weights)
                losses.append(td_errors)
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes,
                                                    new_priorities)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            num_episodes = len(episode_rewards)

            if (t + 1) % epoch_steps == 0 and (t + 1) > learning_starts:
                test_reward = test(env,
                                   act_greedy,
                                   nb_test_steps=nb_test_steps)
                records['test_reward'].append(test_reward)
                records['loss'].append(np.mean(ep_losses))
                records['online_reward'].append(
                    round(np.mean(episode_rewards[-101:-1]), 1))
                pickle.dump(records,
                            open(os.path.join(directory, "records.pkl"), "wb"))
                print("==== EPOCH %d ===" % ((t + 1) / epoch_steps))
                print(tabulate([[k, v[-1]] for (k, v) in records.items()]))

            if done and print_freq is not None and len(
                    episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward",
                                      mean_100ep_reward)
                logger.record_tabular("% time spent exploring",
                                      int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and (t + 1) > learning_starts
                    and num_episodes > 100 and (t + 1) % checkpoint_freq == 0):
                print("Saving model to model_%d.pkl" % (t + 1))
                act.save(
                    os.path.join(directory, "model_" + str(t + 1) + ".pkl"))
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log(
                            "Saving model due to mean reward increase: {} -> {}"
                            .format(saved_mean_reward, mean_100ep_reward))
                    save_state(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward

        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(
                    saved_mean_reward))
            load_state(model_file)
    return act, records
def learn(env,
          network,
          seed=None,
          lr=5e-4,
          total_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=3000,
          batch_size=32,
          print_freq=100,
          checkpoint_freq=10000,
          checkpoint_path=None,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=3000,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          callback=None,
          load_path=None,
          **network_kwargs
            ):
    """Train a deepq model.
    Parameters
    -------
    env: gym.Env
        environment to train on
    network: string or a function
        neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models
        (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which
        will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that)
    seed: int or None
        prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used.
    lr: float
        learning rate for adam optimizer
    total_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
    batch_size: int
        size of a batch sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to total_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    param_noise: bool
        whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905)
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.
    load_path: str
        path to load the model from. (default: None)
    **network_kwargs
        additional keyword arguments to pass to the network builder.
    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model

    sess = get_session()
    set_global_seeds(seed)

    q_func = build_q_func(network, **network_kwargs)

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph

    observation_space = env.observation_space
    def make_obs_ph(name):
        return ObservationInput(observation_space, name=name)


    act, train, update_target, debug = deepq.build_train(
        make_obs_ph=lambda name: ObservationInput(env.observation_space, name=name),
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=0.99,
        double_q=False
        #grad_norm_clipping=10,
        # param_noise=param_noise
    )

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = total_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(10000),
                                 initial_p=1.0,
                                 final_p=0.02)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()


    old_state = None





    formula_LTLf_1 = "!d U(g)"
    monitoring_RightToLeft = MonitoringSpecification(
        ltlf_formula=formula_LTLf_1,
        r=0,
        c=-0.01,
        s=10,
        f=-10
    )

    formula_LTLf_2 = "F(G(bb)) "  # break brick
    monitoring_BreakBrick = MonitoringSpecification(
        ltlf_formula=formula_LTLf_2,
        r=10,
        c=-0.01,
        s=10,
        f=0
    )

    monitoring_specifications = [monitoring_BreakBrick, monitoring_RightToLeft]




    def RightToLeftConversion(observation) -> TraceStep:

        done=False
        global old_state
        if arrays_equal(observation[-9:], np.zeros((len(observation[-9:])))):  ### Checking if all Bricks are broken
            # print('goal reached')
            goal = True  # all bricks are broken
            done = True
        else:
            goal = False

        dead = False
        if done and not goal:
            dead = True


        order = check_ordered(observation[-9:])
        if not order:
            # print('wrong order', state[5:])
            dead=True
            done = True

        if old_state is not None:  # if not the first state
            if not arrays_equal(old_state[-9:], observation[-9:]):
                brick_broken = True
                # check_ordered(state[-9:])
                # print(' a brick is broken')
            else:
                brick_broken = False
        else:
            brick_broken = False




        dictionary={'g': goal, 'd': dead, 'o': order, 'bb':brick_broken}
        #print(dictionary)
        return dictionary

    multi_monitor = MultiRewardMonitor(
        monitoring_specifications=monitoring_specifications,
        obs_to_trace_step=RightToLeftConversion
    )


    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()
    reset = True
            # initialize
    done = False
    #monitor.get_reward(None, False) # add first state in trace
        

    with tempfile.TemporaryDirectory() as td:
        td = checkpoint_path or td

        model_file = os.path.join(td, "model")
        model_saved = False

        if tf.train.latest_checkpoint(td) is not None:
            load_variables(model_file)
            logger.log('Loaded model from {}'.format(model_file))
            model_saved = True
        elif load_path is not None:
            load_variables(load_path)
            logger.log('Loaded model from {}'.format(load_path))

        episodeCounter=0
        num_episodes=0
        for t in itertools.count():
            
            # Take action and update exploration to the newest value
            action = act(obs[None], update_eps=exploration.value(t))[0]
            #print(action)
            #print(action)
            new_obs, rew, done, _ = env.step(action)

            done=False
            #done=False ## FOR FIRE ONLY

            #print(new_obs)

            #new_obs.append()

            start_time = time.time()
            rew, is_perm = multi_monitor(new_obs)
            #print("--- %s seconds ---" % (time.time() - start_time))
            old_state=new_obs
            #print(rew)


            done=done or is_perm



            # Store transition in the replay buffer.
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            obs = new_obs

            episode_rewards[-1] += rew


            is_solved = t > 100 and np.mean(episode_rewards[-101:-1]) >= 200
            if episodeCounter % 100 == 0 or episodeCounter<1:
                # Show off the result
                #print("coming here Again and Again")
                env.render()


            if done:
                episodeCounter+=1
                num_episodes+=1
                obs = env.reset()
                old_state=None
                episode_rewards.append(0)



                multi_monitor.reset()
                #monitor.get_reward(None, False)




            else:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if t > 1000:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(64)
                    train(obses_t, actions, rewards, obses_tp1, dones, np.ones_like(rewards))

                # Update target network periodically.
                if t % 1000 == 0:
                    update_target()
            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            if done and len(episode_rewards) % 10 == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", len(episode_rewards))
                logger.record_tabular("currentEpisodeReward", episode_rewards[-1])
                logger.record_tabular("mean 100 episode reward", round(np.mean(episode_rewards[-101:-1]), 1))
                logger.record_tabular("% time spent exploring", int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts and
                    num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log("Saving model due to mean reward increase: {} -> {}".format(
                                   saved_mean_reward, mean_100ep_reward))
                    act.save_act()
                    #save_variables(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        # if model_saved:
        #     if print_freq is not None:
        #         logger.log("Restored model with mean reward: {}".format(saved_mean_reward))
        #     load_variables(model_file)

    return act
Beispiel #19
0
class deep_q_net:

    def __init__(self,
                 state_size,
                 action_size,
                 path="Learning/Weights/weights.h5",
                 new_weights=True,
                 memory_size=100000,
                 replay_start_size=6000,
                 epsilon=1,
                 epsilon_min=.05,
                 max_step_for_epsilon_decay=125000*3,
                 prioritized_replay=False,
                 alpha=0.6,
                 beta=0.4,
                 beta_inc=0.0000005):

        self.state_size = state_size
        self.action_size = action_size
        self.path = path

        self.use_prio_buffer = prioritized_replay
        if not prioritized_replay:
            self.memory = deque(maxlen=memory_size)
        else:
            self.prio_memory = PrioritizedReplayBuffer(memory_size, alpha)
            self.beta = beta
            self.beta_inc = beta_inc
            # self.beta_schedule = LinearSchedule(max_step_for_epsilon_decay,
            #                                     1,
            #                                     0.4)

        self.gamma = 0.95    # discount rate
        self.epsilon = epsilon  # exploration rate
        self.epsilon_min = epsilon_min
        self.epsilon_decay = 0.995
        self.max_step_for_lin_epsilon_decay = max_step_for_epsilon_decay

        self.epsilon_decay_linear = self.epsilon / self.max_step_for_lin_epsilon_decay

        self.learning_rate = 0.00025
        self.replay_start_size = replay_start_size
        self.model = self._build_model()
        self.target_model = clone_model(self.model) #self._build_model()
        self.target_model.compile(optimizer='sgd', loss='mse')

        self.step = 0

        if not new_weights:
            self.model.load_weights(path)

        self.update_target()

        self.callback = Evaluation.create_tensorboard()

    def _build_model(self):

        config = tf.ConfigProto()
        config.gpu_options.allow_growth = True
        config.gpu_options.per_process_gpu_memory_fraction = 0.5

        K.tensorflow_backend.set_session(tf.Session(config=config))

        # Neural Net for Deep-Q learning Model
        model = Sequential()
        model.add(Conv2D(16, 5, strides=1,
                         activation='relu',
                         input_shape=self.state_size,
                         #data_format="channels_first",
                         kernel_initializer='he_normal',
                         padding='same'))
        model.add(Conv2D(32, 3, strides=1,
                         activation='relu',
                         kernel_initializer='he_normal',
                         #data_format="channels_first"
                         padding='same'))
        # model.add(Convolution2D(64, 3, strides=1, activation='relu'))
        model.add(Flatten())
        model.add(Dense(128, activation='relu', kernel_initializer='he_normal'))
        model.add(Dense(self.action_size, activation='linear', kernel_initializer='he_normal'))

        def abs_err(prediction, target):
            return K.abs(prediction - target)

        model.compile(loss=self._huber_loss,#'mse',
                      # optimizer=Adam(lr=self.learning_rate))
                      optimizer=RMSprop(lr=self.learning_rate),
                      metrics=[abs_err])

        return model

    def _huber_loss(self, target, prediction):
        error = prediction - target
        print("Loss: ", K.mean(K.sqrt(1 + K.square(error)) - 1, axis=-1))
        return K.mean(K.sqrt(1 + K.square(error)) - 1, axis=-1)

    def remember(self, state, action, reward, next_state, done):
        if not self.use_prio_buffer:
            self.memory.append((state, action, reward, next_state, done))
        else:
            self.prio_memory.add(state, action, reward, next_state, done)
        # print(state, action, reward, next_state, done)

    def act(self, state):
        if np.random.rand() <= self.epsilon:
            return random.randrange(self.action_size)
        act_values = self.model.predict(state)
        return np.argmax(act_values[0])  # returns action

    def get_minibatch(self, batch_size):
        if not self.use_prio_buffer:
            return None, random.sample(self.memory, batch_size), None
        else:
            self.beta += self.beta_inc
            states, actions, rewards, next_states, dones, weights, idxes = self.prio_memory.sample(batch_size, self.beta)
            minibatch = zip(states, actions, rewards, next_states, dones)
            return idxes, minibatch, weights
            # return None, self.prio_memory.sample(batch_size,self.beta), None

    def replay(self, batch_size):

        if (not self.use_prio_buffer and len(self.memory) < self.replay_start_size) or \
                (self.use_prio_buffer and len(self.prio_memory) < self.replay_start_size):
            return

        tree_idx, minibatch, is_weights = self.get_minibatch(batch_size)

        # random.sample(self.memory, batch_size)
        # except ValueError:
            # minibatch = self.memory

        if isinstance(self.state_size, int):
            state_array = np.ndarray(shape=(32, self.state_size))
        else:
            state_array = np.ndarray(shape=(32, self.state_size[0], self.state_size[1], self.state_size[2]))

        y = np.ndarray(shape=(32, self.action_size))
        actions = np.ndarray(shape=(32,), dtype=int)
        i = 0
        for state, action, reward, next_state, done in minibatch:

            # self.model.fit(state, target_f, epochs=1, verbose=0)

            state_array[i] = state
            y[i] = self.set_target(reward, state, next_state, action, done)
            actions[i] = int(action)
            i += 1
            # self.model.fit(state, target_f, epochs=1, verbose=0)

        # self.model.fit(prediction, y, batch_size=1)
        # self.model.train_on_batch(state_array, y)
        self.train(state_array, y, is_weights, tree_idx, actions, minibatch)

        self.decrease_epsilon_linear()

    def train(self, states, target, is_weights, tree_idx, actions, minibatch):
        if not self.use_prio_buffer:
            self.model.train_on_batch(states, target)
        # self.model.fit(prediction, target, verbose=0, callbacks=[self.callback])

        else:
            is_weights = np.reshape(is_weights, newshape=(is_weights.shape[0]))
            self.model.fit(states, target, sample_weight=is_weights, verbose=0)

            #abs_errs = np.abs(self.model.predict_on_batch(states)[np.arange(32), actions] - target[np.arange(32), actions])

            batch_size = len(minibatch)

            predictions = self.model.predict_on_batch(states)[np.arange(batch_size), actions]
            tar_vals = [self.set_target(r,s,na,a,d) for r,s,na,a,d in minibatch] #target[np.arange(batch_size), actions]

            # huber loss
            error = predictions - tar_vals
            #print("Loss: ", K.mean(K.sqrt(1 + K.square(error)) - 1, axis=-1))
            abs_errs = np.sqrt(1 + np.square(error)) - 1

            #abs_errs = self._huber_loss(tar_vals, predictions)

            abs_errs = abs_errs + 0.01

            self.prio_memory.update_priorities(tree_idx, abs_errs)

    def set_target(self, reward, state, next_state, action, done):
        target = reward
        if not done:
            target = reward + self.gamma * \
                     np.amax(self.target_model.predict(next_state)[0])
        target_f = self.model.predict(state)
        target_f[0][action] = target
        return target_f

    def decrease_epsilon_factor(self):
        if (not self.use_prio_buffer and len(self.memory) < self.replay_start_size) or \
                (self.use_prio_buffer and len(self.prio_memory) < self.replay_start_size):
            return
        if self.epsilon > self.epsilon_min:
            self.epsilon *= self.epsilon_decay

    def decrease_epsilon_linear(self):
        if self.epsilon > self.epsilon_min:
            self.epsilon -= self.epsilon_decay_linear

    def save_weights(self):
        self.model.save_weights(self.path)

    def update_target(self):
        self.target_model.set_weights(self.model.get_weights())
def learn(env,
          q_func,
          num_actions=4,
          lr=5e-4,
          max_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=1,
          checkpoint_freq=10000,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          num_cpu=16,
          param_noise=False,
          param_noise_threshold=0.05,
          callback=None):
  """Train a deepq model.

Parameters
-------
env: pysc2.env.SC2Env
    environment to train on
q_func: (tf.Variable, int, str, bool) -> tf.Variable
    the model that takes the following inputs:
        observation_in: object
            the output of observation placeholder
        num_actions: int
            number of actions
        scope: str
        reuse: bool
            should be passed to outer variable scope
    and returns a tensor of shape (batch_size, num_actions) with values of every action.
lr: float
    learning rate for adam optimizer
max_timesteps: int
    number of env steps to optimizer for
buffer_size: int
    size of the replay buffer
exploration_fraction: float
    fraction of entire training period over which the exploration rate is annealed
exploration_final_eps: float
    final value of random action probability
train_freq: int
    update the model every `train_freq` steps.
    set to None to disable printing
batch_size: int
    size of a batched sampled from replay buffer for training
print_freq: int
    how often to print out training progress
    set to None to disable printing
checkpoint_freq: int
    how often to save the model. This is so that the best version is restored
    at the end of the training. If you do not wish to restore the best version at
    the end of the training set this variable to None.
learning_starts: int
    how many steps of the model to collect transitions for before learning starts
gamma: float
    discount factor
target_network_update_freq: int
    update the target network every `target_network_update_freq` steps.
prioritized_replay: True
    if True prioritized replay buffer will be used.
prioritized_replay_alpha: float
    alpha parameter for prioritized replay buffer
prioritized_replay_beta0: float
    initial value of beta for prioritized replay buffer
prioritized_replay_beta_iters: int
    number of iterations over which beta will be annealed from initial value
    to 1.0. If set to None equals to max_timesteps.
prioritized_replay_eps: float
    epsilon to add to the TD errors when updating priorities.
num_cpu: int
    number of cpus to use for training
callback: (locals, globals) -> None
    function called at every steps with state of the algorithm.
    If callback returns true training stops.

Returns
-------
act: ActWrapper
    Wrapper over act function. Adds ability to save it and load it.
    See header of baselines/deepq/categorical.py for details on the act function.
"""
  # Create all the functions necessary to train the model

  sess = U.make_session(num_cpu=num_cpu)
  sess.__enter__()

  def make_obs_ph(name):
    return U.BatchInput((32, 32), name=name)

  act, train, update_target, debug = deepq.build_train(
    make_obs_ph=make_obs_ph,
    q_func=q_func,
    num_actions=num_actions,
    optimizer=tf.train.AdamOptimizer(learning_rate=lr),
    gamma=gamma,
    grad_norm_clipping=10,
    scope="deepq")
  #
  # act_y, train_y, update_target_y, debug_y = deepq.build_train(
  #   make_obs_ph=make_obs_ph,
  #   q_func=q_func,
  #   num_actions=num_actions,
  #   optimizer=tf.train.AdamOptimizer(learning_rate=lr),
  #   gamma=gamma,
  #   grad_norm_clipping=10,
  #   scope="deepq_y"
  # )

  act_params = {
    'make_obs_ph': make_obs_ph,
    'q_func': q_func,
    'num_actions': num_actions,
  }

  # Create the replay buffer
  if prioritized_replay:
    replay_buffer = PrioritizedReplayBuffer(
      buffer_size, alpha=prioritized_replay_alpha)
    # replay_buffer_y = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha)

    if prioritized_replay_beta_iters is None:
      prioritized_replay_beta_iters = max_timesteps
    beta_schedule = LinearSchedule(
      prioritized_replay_beta_iters,
      initial_p=prioritized_replay_beta0,
      final_p=1.0)

    # beta_schedule_y = LinearSchedule(prioritized_replay_beta_iters,
    #                                  initial_p=prioritized_replay_beta0,
    #                                  final_p=1.0)
  else:
    replay_buffer = ReplayBuffer(buffer_size)
    # replay_buffer_y = ReplayBuffer(buffer_size)

    beta_schedule = None
    # beta_schedule_y = None
  # Create the schedule for exploration starting from 1.
  exploration = LinearSchedule(
    schedule_timesteps=int(exploration_fraction * max_timesteps),
    initial_p=1.0,
    final_p=exploration_final_eps)

  # Initialize the parameters and copy them to the target network.
  U.initialize()
  update_target()
  # update_target_y()

  episode_rewards = [0.0]
  saved_mean_reward = None

  obs = env.reset()
  # Select all marines first
  obs = env.step(
    actions=[sc2_actions.FunctionCall(_SELECT_ARMY, [_SELECT_ALL])])

  player_relative = obs[0].observation["screen"][_PLAYER_RELATIVE]

  screen = (player_relative == _PLAYER_NEUTRAL).astype(int)  #+ path_memory

  player_y, player_x = (player_relative == _PLAYER_FRIENDLY).nonzero()
  player = [int(player_x.mean()), int(player_y.mean())]

  if (player[0] > 16):
    screen = shift(LEFT, player[0] - 16, screen)
  elif (player[0] < 16):
    screen = shift(RIGHT, 16 - player[0], screen)

  if (player[1] > 16):
    screen = shift(UP, player[1] - 16, screen)
  elif (player[1] < 16):
    screen = shift(DOWN, 16 - player[1], screen)

  reset = True
  with tempfile.TemporaryDirectory() as td:
    model_saved = False
    model_file = os.path.join("model/", "mineral_shards")
    print(model_file)

    for t in range(max_timesteps):
      if callback is not None:
        if callback(locals(), globals()):
          break
      # Take action and update exploration to the newest value
      kwargs = {}
      if not param_noise:
        update_eps = exploration.value(t)
        update_param_noise_threshold = 0.
      else:
        update_eps = 0.
        if param_noise_threshold >= 0.:
          update_param_noise_threshold = param_noise_threshold
        else:
          # Compute the threshold such that the KL divergence between perturbed and non-perturbed
          # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
          # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
          # for detailed explanation.
          update_param_noise_threshold = -np.log(
            1. - exploration.value(t) +
            exploration.value(t) / float(num_actions))
        kwargs['reset'] = reset
        kwargs[
          'update_param_noise_threshold'] = update_param_noise_threshold
        kwargs['update_param_noise_scale'] = True

      action = act(
        np.array(screen)[None], update_eps=update_eps, **kwargs)[0]

      # action_y = act_y(np.array(screen)[None], update_eps=update_eps, **kwargs)[0]

      reset = False

      coord = [player[0], player[1]]
      rew = 0

      if (action == 0):  #UP

        if (player[1] >= 8):
          coord = [player[0], player[1] - 8]
          #path_memory_[player[1] - 16 : player[1], player[0]] = -1
        elif (player[1] > 0):
          coord = [player[0], 0]
          #path_memory_[0 : player[1], player[0]] = -1
          #else:
          #  rew -= 1

      elif (action == 1):  #DOWN

        if (player[1] <= 23):
          coord = [player[0], player[1] + 8]
          #path_memory_[player[1] : player[1] + 16, player[0]] = -1
        elif (player[1] > 23):
          coord = [player[0], 31]
          #path_memory_[player[1] : 63, player[0]] = -1
          #else:
          #  rew -= 1

      elif (action == 2):  #LEFT

        if (player[0] >= 8):
          coord = [player[0] - 8, player[1]]
          #path_memory_[player[1], player[0] - 16 : player[0]] = -1
        elif (player[0] < 8):
          coord = [0, player[1]]
          #path_memory_[player[1], 0 : player[0]] = -1
          #else:
          #  rew -= 1

      elif (action == 3):  #RIGHT

        if (player[0] <= 23):
          coord = [player[0] + 8, player[1]]
          #path_memory_[player[1], player[0] : player[0] + 16] = -1
        elif (player[0] > 23):
          coord = [31, player[1]]
          #path_memory_[player[1], player[0] : 63] = -1

      if _MOVE_SCREEN not in obs[0].observation["available_actions"]:
        obs = env.step(actions=[
          sc2_actions.FunctionCall(_SELECT_ARMY, [_SELECT_ALL])
        ])

      new_action = [
        sc2_actions.FunctionCall(_MOVE_SCREEN, [_NOT_QUEUED, coord])
      ]

      # else:
      #   new_action = [sc2_actions.FunctionCall(_NO_OP, [])]

      obs = env.step(actions=new_action)

      player_relative = obs[0].observation["screen"][_PLAYER_RELATIVE]
      new_screen = (player_relative == _PLAYER_NEUTRAL).astype(
        int)  #+ path_memory

      player_y, player_x = (
        player_relative == _PLAYER_FRIENDLY).nonzero()
      player = [int(player_x.mean()), int(player_y.mean())]

      if (player[0] > 16):
        new_screen = shift(LEFT, player[0] - 16, new_screen)
      elif (player[0] < 16):
        new_screen = shift(RIGHT, 16 - player[0], new_screen)

      if (player[1] > 16):
        new_screen = shift(UP, player[1] - 16, new_screen)
      elif (player[1] < 16):
        new_screen = shift(DOWN, 16 - player[1], new_screen)

      rew = obs[0].reward

      done = obs[0].step_type == environment.StepType.LAST

      # Store transition in the replay buffer.
      replay_buffer.add(screen, action, rew, new_screen, float(done))
      # replay_buffer_y.add(screen, action_y, rew, new_screen, float(done))

      screen = new_screen

      episode_rewards[-1] += rew
      reward = episode_rewards[-1]

      if done:
        obs = env.reset()
        player_relative = obs[0].observation["screen"][
          _PLAYER_RELATIVE]

        screen = (player_relative == _PLAYER_NEUTRAL).astype(
          int)  #+ path_memory

        player_y, player_x = (
          player_relative == _PLAYER_FRIENDLY).nonzero()
        player = [int(player_x.mean()), int(player_y.mean())]

        # Select all marines first
        env.step(actions=[
          sc2_actions.FunctionCall(_SELECT_ARMY, [_SELECT_ALL])
        ])
        episode_rewards.append(0.0)
        #episode_minerals.append(0.0)

        reset = True

      if t > learning_starts and t % train_freq == 0:
        # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
        if prioritized_replay:

          experience = replay_buffer.sample(
            batch_size, beta=beta_schedule.value(t))
          (obses_t, actions, rewards, obses_tp1, dones, weights,
           batch_idxes) = experience

          # experience_y = replay_buffer.sample(batch_size, beta=beta_schedule.value(t))
          # (obses_t_y, actions_y, rewards_y, obses_tp1_y, dones_y, weights_y, batch_idxes_y) = experience_y
        else:

          obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
            batch_size)
          weights, batch_idxes = np.ones_like(rewards), None

          # obses_t_y, actions_y, rewards_y, obses_tp1_y, dones_y = replay_buffer_y.sample(batch_size)
          # weights_y, batch_idxes_y = np.ones_like(rewards_y), None

        td_errors = train(obses_t, actions, rewards, obses_tp1, dones,
                          weights)

        # td_errors_y = train_x(obses_t_y, actions_y, rewards_y, obses_tp1_y, dones_y, weights_y)

        if prioritized_replay:
          new_priorities = np.abs(td_errors) + prioritized_replay_eps
          # new_priorities = np.abs(td_errors) + prioritized_replay_eps
          replay_buffer.update_priorities(batch_idxes,
                                          new_priorities)
          # replay_buffer.update_priorities(batch_idxes, new_priorities)

      if t > learning_starts and t % target_network_update_freq == 0:
        # Update target network periodically.
        update_target()
        # update_target_y()

      mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
      num_episodes = len(episode_rewards)
      if done and print_freq is not None and len(
          episode_rewards) % print_freq == 0:
        logger.record_tabular("steps", t)
        logger.record_tabular("episodes", num_episodes)
        logger.record_tabular("reward", reward)
        logger.record_tabular("mean 100 episode reward",
                              mean_100ep_reward)
        logger.record_tabular("% time spent exploring",
                              int(100 * exploration.value(t)))
        logger.dump_tabular()

      if (checkpoint_freq is not None and t > learning_starts
          and num_episodes > 100 and t % checkpoint_freq == 0):
        if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
          if print_freq is not None:
            logger.log(
              "Saving model due to mean reward increase: {} -> {}".
                format(saved_mean_reward, mean_100ep_reward))
          U.save_state(model_file)
          model_saved = True
          saved_mean_reward = mean_100ep_reward
    if model_saved:
      if print_freq is not None:
        logger.log("Restored model with mean reward: {}".format(
          saved_mean_reward))
      U.load_state(model_file)

  return ActWrapper(act)
def learn(env,
          q_func,
          num_actions=4,
          lr=5e-4,
          max_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=1,
          checkpoint_freq=10000,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          num_cpu=16,
          param_noise=False,
          param_noise_threshold=0.05,
          callback=None):

    # Create all the functions necessary to train the model

    # Returns a session that will use <num_cpu> CPU's only
    sess = U.make_session(num_cpu=num_cpu)
    sess.__enter__()

    # Creates a placeholder for a batch of tensors of a given shape and dtyp
    def make_obs_ph(name):
        return U.BatchInput((64, 64), name=name)

    # act, train, update_target are function, debug is dict
    act, train, update_target, debug = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=num_actions,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10)

    # Choose use prioritized replay buffer or normal replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                                alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = max_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None

    # Create the schedule for exploration starting from 1
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        max_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    # SC2的部分開始

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    episode_rewards = [0.0]
    saved_mean_reward = None

    path_memory = np.zeros((64, 64))

    obs = env.reset()

    # Select all marines
    obs = env.step(
        actions=[sc2_actions.FunctionCall(_SELECT_ARMY, [_SELECT_ALL])])

    # obs is tuple, obs[0] is 'pysc2.env.environment.TimeStep', obs[0].observation is dictionary.
    player_relative = obs[0].observation["screen"][_PLAYER_RELATIVE]

    # 利用path memory記憶曾經走過的軌跡
    screen = player_relative + path_memory

    # 取得兩個陸戰隊的中心位置
    player_y, player_x = (player_relative == _PLAYER_FRIENDLY).nonzero()
    player = [int(player_x.mean()), int(player_y.mean())]

    reset = True
    with tempfile.TemporaryDirectory() as td:
        model_saved = False
        model_file = os.path.join(td, "model")

        for t in range(max_timesteps):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                if param_noise_threshold >= 0.:
                    update_param_noise_threshold = param_noise_threshold
                else:
                    update_param_noise_threshold = -np.log(
                        1. - exploration.value(t) +
                        exploration.value(t) / float(num_actions))
                kwargs['reset'] = reset
                kwargs[
                    'update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True
            # np.array()[None] 是指多包一個維度在外面 e.g. [1] -> [[1]]
            action = act(np.array(screen)[None],
                         update_eps=update_eps,
                         **kwargs)[0]
            reset = False

            coord = [player[0], player[1]]
            rew = 0

            # 只有四個action,分別是上下左右,走過之後在路徑上留下一整排-3,目的是與水晶碎片的id(=3)相抵銷,代表有順利採集到。
            path_memory_ = np.array(path_memory, copy=True)
            if (action == 0):  # UP

                if (player[1] >= 16):
                    coord = [player[0], player[1] - 16]
                    path_memory_[player[1] - 16:player[1], player[0]] = -3
                elif (player[1] > 0):
                    coord = [player[0], 0]
                    path_memory_[0:player[1], player[0]] = -3

            elif (action == 1):  # DOWN

                if (player[1] <= 47):
                    coord = [player[0], player[1] + 16]
                    path_memory_[player[1]:player[1] + 16, player[0]] = -3
                elif (player[1] > 47):
                    coord = [player[0], 63]
                    path_memory_[player[1]:63, player[0]] = -3

            elif (action == 2):  # LEFT

                if (player[0] >= 16):
                    coord = [player[0] - 16, player[1]]
                    path_memory_[player[1], player[0] - 16:player[0]] = -3
                elif (player[0] < 16):
                    coord = [0, player[1]]
                    path_memory_[player[1], 0:player[0]] = -3

            elif (action == 3):  # RIGHT

                if (player[0] <= 47):
                    coord = [player[0] + 16, player[1]]
                    path_memory_[player[1], player[0]:player[0] + 16] = -3
                elif (player[0] > 47):
                    coord = [63, player[1]]
                    path_memory_[player[1], player[0]:63] = -3

            # 更新path_memory
            path_memory = np.array(path_memory_)

            # 如果不能移動陸戰隊,想必是還沒圈選到陸戰隊,圈選他們
            if _MOVE_SCREEN not in obs[0].observation["available_actions"]:
                obs = env.step(actions=[
                    sc2_actions.FunctionCall(_SELECT_ARMY, [_SELECT_ALL])
                ])

            # 移動陸戰隊
            new_action = [
                sc2_actions.FunctionCall(_MOVE_SCREEN, [_NOT_QUEUED, coord])
            ]

            # 取得環境給的observation
            obs = env.step(actions=new_action)

            # 這裡要重新取得player_relative,因為上一行的obs是個有複數資訊的tuple
            # 但我們要存入replay_buffer的只有降維後的screen畫面
            player_relative = obs[0].observation["screen"][_PLAYER_RELATIVE]
            new_screen = player_relative + path_memory

            # 取得reward
            rew = obs[0].reward

            # StepType.LAST 代表done的意思
            done = obs[0].step_type == environment.StepType.LAST

            # Store transition in the replay buffer
            replay_buffer.add(screen, action, rew, new_screen, float(done))

            # 確實存入之後就能以新screen取代舊screen
            screen = new_screen

            episode_rewards[-1] += rew

            if done:
                # 重新取得敵我中立關係位置圖
                obs = env.reset()
                # player_relative = obs[0].observation["screen"][_PLAYER_RELATIVE]

                # # 還是看不懂為何要加上path_memory
                # screen = player_relative + path_memory

                # player_y, player_x = (player_relative == _PLAYER_FRIENDLY).nonzero()
                # player = [int(player_x.mean()), int(player_y.mean())]

                # # 圈選全部的陸戰隊(為何要在done observation做這件事情?)
                # env.step(actions=[sc2_actions.FunctionCall(_SELECT_ARMY, [_SELECT_ALL])])
                episode_rewards.append(0.0)

                # 清空path_memory
                path_memory = np.zeros((64, 64))

                reset = True

            # 定期從replay buffer中抽experience來訓練,以及train target network
            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(
                        batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights,
                     batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                        batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                # 這裡的train來自deepq.build_train
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones,
                                  weights)
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes,
                                                    new_priorities)

            # target network
            if t > learning_starts and t % target_network_update_freq == 0:
                # 同樣來自deepq.build_train
                # Update target network periodically
                update_target()

            # 下LOG追蹤reward
            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(
                    episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode", mean_100ep_reward)
                logger.record_tabular("% time spent exploring",
                                      int(100 * exploration.value(t)))
                logger.dump_tabular()

            # 當model進步時,就存檔下來
            if (checkpoint_freq is not None and t > learning_starts
                    and num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log(
                            "Saving model due to mean reward increase: {} -> {}"
                            .format(saved_mean_reward, mean_100ep_reward))
                    U.save_state(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
            if model_saved:
                if print_freq is not None:
                    logger.log("Restored model with mean reward: {}".format(
                        saved_mean_reward))
                U.load_state(model_file)

        return ActWrapper(act)
Beispiel #22
0
class Agent:

    def __init__(self, sess):
        print("Initializing the agent...")

        self.sess = sess
        self.env = Environment()
        self.state_size = self.env.get_state_size()
        self.action_size = self.env.get_action_size()

        print("Creation of the main QNetwork...")
        self.mainQNetwork = QNetwork(self.state_size, self.action_size, 'main')
        print("Main QNetwork created !\n")

        print("Creation of the target QNetwork...")
        self.targetQNetwork = QNetwork(self.state_size, self.action_size,
                                       'target')
        print("Target QNetwork created !\n")

        self.buffer = PrioritizedReplayBuffer(parameters.BUFFER_SIZE,
                                              parameters.ALPHA)

        self.epsilon = parameters.EPSILON_START
        self.beta = parameters.BETA_START

        self.initial_learning_rate = parameters.LEARNING_RATE

        trainables = tf.trainable_variables()
        self.update_target_ops = updateTargetGraph(trainables)

        self.nb_ep = 1
        self.best_run = -1e10

    def pre_train(self):
        print("Beginning of the pre-training...")

        for i in range(parameters.PRE_TRAIN_STEPS):

            s = self.env.reset()
            done = False
            episode_step = 0
            episode_reward = 0

            while episode_step < parameters.MAX_EPISODE_STEPS and not done:

                a = random.randint(0, self.action_size - 1)
                s_, r, done, info = self.env.act(a)
                self.buffer.add(s, a, r, s_, done)

                s = s_
                episode_reward += r
                episode_step += 1

            if i % 100 == 0:
                print("\tPre-train step n", i)

            self.best_run = max(self.best_run, episode_reward)

        print("End of the pre training !")

    def run(self):
        print("Beginning of the run...")

        self.pre_train()

        self.total_steps = 0
        self.nb_ep = 1

        while self.nb_ep < parameters.TRAINING_STEPS:

            self.learning_rate = self.initial_learning_rate * \
                (parameters.TRAINING_STEPS - self.nb_ep) / \
                parameters.TRAINING_STEPS

            s = self.env.reset()
            episode_reward = 0
            done = False

            memory = deque()
            discount_R = 0

            episode_step = 0
            max_step = parameters.MAX_EPISODE_STEPS + \
                self.nb_ep // parameters.EP_ELONGATION

            # Render parameters
            self.env.set_render(self.nb_ep % parameters.RENDER_FREQ == 0)

            while episode_step < max_step and not done:

                if random.random() < self.epsilon:
                    a = random.randint(0, self.action_size - 1)
                else:
                    a = self.sess.run(self.mainQNetwork.predict,
                                      feed_dict={self.mainQNetwork.inputs: [s]})
                    a = a[0]

                s_, r, done, info = self.env.act(a)
                episode_reward += r

                memory.append((s, a, r, s_, done))

                if len(memory) > parameters.N_STEP_RETURN:
                    s_mem, a_mem, r_mem, ss_mem, done_mem = memory.popleft()
                    discount_R = r_mem
                    for i, (si, ai, ri, s_i, di) in enumerate(memory):
                        discount_R += ri * parameters.DISCOUNT ** (i + 1)
                    self.buffer.add(s_mem, a_mem, discount_R, s_, done)

                if episode_step % parameters.TRAINING_FREQ == 0:

                    train_batch = self.buffer.sample(parameters.BATCH_SIZE,
                                                     self.beta)
                    # Incr beta
                    if self.beta <= parameters.BETA_STOP:
                        self.beta += parameters.BETA_INCR

                    feed_dict = {self.mainQNetwork.inputs: train_batch[0]}
                    oldQvalues = self.sess.run(self.mainQNetwork.Qvalues,
                                               feed_dict=feed_dict)
                    tmp = [0] * len(oldQvalues)
                    for i, oldQvalue in enumerate(oldQvalues):
                        tmp[i] = oldQvalue[train_batch[1][i]]
                    oldQvalues = tmp

                    feed_dict = {self.mainQNetwork.inputs: train_batch[3]}
                    mainQaction = self.sess.run(self.mainQNetwork.predict,
                                                feed_dict=feed_dict)

                    feed_dict = {self.targetQNetwork.inputs: train_batch[3]}
                    targetQvalues = self.sess.run(self.targetQNetwork.Qvalues,
                                                  feed_dict=feed_dict)

                    # Done multiplier :
                    # equals 0 if the episode was done
                    # equals 1 else
                    done_multiplier = (1 - train_batch[4])
                    doubleQ = targetQvalues[range(parameters.BATCH_SIZE),
                                            mainQaction]
                    targetQvalues = train_batch[2] + \
                        parameters.DISCOUNT * doubleQ * done_multiplier

                    errors = np.square(targetQvalues - oldQvalues) + 1e-6
                    self.buffer.update_priorities(train_batch[6], errors)

                    feed_dict = {self.mainQNetwork.inputs: train_batch[0],
                                 self.mainQNetwork.Qtarget: targetQvalues,
                                 self.mainQNetwork.actions: train_batch[1],
                                 self.mainQNetwork.learning_rate: self.learning_rate}
                    _ = self.sess.run(self.mainQNetwork.train,
                                      feed_dict=feed_dict)

                    update_target(self.update_target_ops, self.sess)

                s = s_
                episode_step += 1
                self.total_steps += 1

            # Decay epsilon
            if self.epsilon > parameters.EPSILON_STOP:
                self.epsilon -= parameters.EPSILON_DECAY

            DISPLAYER.add_reward(episode_reward)
            # if episode_reward > self.best_run and \
            #         self.nb_ep > 50:
            #     self.best_run = episode_reward
            #     print("Save best", episode_reward)
            #     SAVER.save('best')
            #     self.play(1)

            self.total_steps += 1

            if self.nb_ep % parameters.DISP_EP_REWARD_FREQ == 0:
                print('Episode %2i, Reward: %7.3f, Steps: %i, Epsilon: %.3f'
                      ', Max steps: %i, Learning rate: %g' % (
                          self.nb_ep, episode_reward, episode_step,
                          self.epsilon, max_step, self.learning_rate))

            # Save the model
            if self.nb_ep % parameters.SAVE_FREQ == 0:
                SAVER.save(self.nb_ep)

            self.nb_ep += 1

    def play(self, number_run):
        print("Playing for", number_run, "runs")

        try:
            for i in range(number_run):

                self.env.set_render(True)

                s = self.env.reset()
                episode_reward = 0
                done = False

                episode_step = 0
                max_step = parameters.MAX_EPISODE_STEPS + \
                    self.nb_ep // parameters.EP_ELONGATION

                while episode_step < max_step and not done:
                    a = self.sess.run(self.mainQNetwork.predict,
                                      feed_dict={self.mainQNetwork.inputs: [s]})
                    a = a[0]
                    s, r, done, info = self.env.act(a)

                    episode_reward += r
                    episode_step += 1

                print("Episode reward :", episode_reward)

        except KeyboardInterrupt as e:
            pass

        except Exception as e:
            print("Exception :", e)

        finally:
            self.env.set_render(False)
            print("End of the demo")
            self.env.close()

    def stop(self):
        self.env.close()
Beispiel #23
0
class Agent:
    def __init__(self, level_name):
        # level name == model name => set in train.py/play.py
        self.level_name = level_name

        # setup environment
        self.env = make_custom_env(disc_acts=True)

        # one hot encoded version of our actions
        self.possible_actions = np.array(
            np.identity(self.env.action_space.n, dtype=int).tolist())

        # resest graph
        tf.reset_default_graph()

        # instantiate the DQNetwork
        self.DQNetwork = DDQNPrio(state_size,
                                  self.env.action_space.n,
                                  learning_rate,
                                  name="DDQNPrio")

        # instantiate the TargetNetwork
        self.TargetNetwork = DDQNPrio(state_size,
                                      self.env.action_space.n,
                                      learning_rate,
                                      name="TargetNetwork")

        # instantiate a linear decay schedule for the exploration rate
        self.epsilon_schedule = LinearSchedule(DECAY_STEPS,
                                               initial_p=EXPLORE_START,
                                               final_p=EXPLORE_STOP)

        # instantiate memory
        self.memory = PrioritizedReplayBuffer(size=memory_size,
                                              alpha=REPLAY_ALPHA)
        self.beta_schedule = LinearSchedule(REPLAY_BETA0_ITERS,
                                            initial_p=REPLAY_BETA0,
                                            final_p=1.0)

        # saver will help us save our model
        self.saver = tf.train.Saver(save_relative_paths=True)

        # setup tensorboard writer
        self.writer = tf.summary.FileWriter("logs/{}/".format(self.level_name))

        # write initial loss
        tf.summary.scalar("Loss", self.DQNetwork.loss)
        self.write_op = tf.summary.merge_all()

        # set the initial number of lives
        self.lives = 4

        # initialize the memory: fill the memory with experiences
        for i in range(pretrain_length):
            if i == 0:
                print("Initializing Memory with {} experiences!".format(
                    pretrain_length))
                # initialize the x0 - previous position - to 24 (initial position)
                x0 = 24

                # initialize stuck variables
                stuck = False
                stuck_pos_cp = 24

                # reset the environment
                state = self.env.reset()

            # Get next state, the rewards, done by taking a random action
            choice = random.randint(1, len(self.possible_actions)) - 1
            action = self.possible_actions[choice]
            next_state, reward, done, info = self.env.step(choice)

            # compute the current x_position
            x1 = self._current_xpos(int(info['xpos']),
                                    int(info['xpos_multiplier']))

            # compute the positional reward
            x0, reward = self.x_pos_reward(x1, x0, reward)

            # check if Mario is stuck
            if i % STUCK_STEPS == 0:
                stuck, reward = self.check_stuck(x1, stuck_pos_cp, reward)

            # check if Mario is still alive
            killed, reward = self.check_killed(int(info['lives']), reward)

            if done or killed or stuck:
                # we inished the episode
                next_state = np.zeros((HEIGHT, WIDTH, N_FRAMES), dtype=np.int)

                # add experience to memory
                self.memory.add(state, action, reward, next_state, done)

                # start a new episode
                state = self.env.reset()

                # reset x0 - previous position - to 24 (initial position)
                x0 = 24

                # reset stuck variables
                stuck = False
                stuck_pos_cp = 24
            else:
                # add experience to memory
                self.memory.add(state, action, reward, next_state, done)

                # our new state is now the next_state
                state = next_state

    def predict_action(self, sess, state, actions, t):
        # first we randomize a number
        exp_tradeoff = np.random.rand()

        # compute the current exploration probability
        # exponential decay
        # explore_probability = EXPLORE_STOP + (EXPLORE_START - EXPLORE_STOP) * np.exp(-DECAY_RATE * decay_step)
        # linear decay
        explore_probability = self.epsilon_schedule.value(t)

        if explore_probability > exp_tradeoff:
            # make a random action
            choice = random.randint(1, len(self.possible_actions)) - 1
            action = self.possible_actions[choice]
        else:
            # transform LazyFrames into np array [None, HEIGHT, WIDTH, N_FRAMES]
            state = np.array(state)

            # estimate the Qs values state
            Qs = sess.run(self.DQNetwork.output,
                          feed_dict={
                              self.DQNetwork.inputs_:
                              state.reshape((1, *state.shape))
                          })

            # take the biggest Q value (= best action)
            choice = np.argmax(Qs)
            action = self.possible_actions[choice]

        return action, choice, explore_probability

    def train(self):
        config = tf.ConfigProto()
        config.gpu_options.allow_growth = True  # pylint: disable=no-member

        with tf.Session(config=config) as sess:
            # initialize the variables
            sess.run(tf.global_variables_initializer())

            # initialize decay step and tau
            t = 0
            tau = 0

            # Update the parameters of our TargetNetwork with DQN_weights
            update_target = self.update_target_graph()
            sess.run(update_target)

            # score tracker
            score_tracker = []

            print("Total Number of Steps:", TOTAL_TIMESTEPS)
            print("Full Priority Replay after {} steps".format(
                REPLAY_BETA0_ITERS))
            print("Exploration Probability @ {} after: {} steps".format(
                EXPLORE_STOP, DECAY_STEPS))

            for episode in range(TOTAL_EPISODES):
                # set step to 0
                step = 0

                # initialize the stuck_pos_cp to 24 (initial position)
                stuck_pos_cp = 24

                # initialize the x0 - previous position - to 24 (initial position)
                x0 = 24
                x1 = 24

                # initialize stuck to False
                stuck = False

                # initialize rewards of episode
                episode_rewards = [0.0]

                # initialize episode loss
                episode_loss = []

                # make a new episode and observe the first state
                state = self.env.reset()

                print("Episode:", episode)

                while step < MAX_STEPS:
                    step += 1
                    t += 1
                    tau += 1

                    # predict an action
                    action, choice, explore_probability = self.predict_action(
                        sess, state, self.possible_actions, t)

                    # perform the action and get the next_state, reward, and done information
                    next_state, reward, done, info = self.env.step(choice)

                    if episode_render:
                        self.env.render()

                    # check if Mario is still alive
                    killed, reward = self.check_killed(int(info['lives']),
                                                       reward)

                    if not killed:
                        # compute the current x_position
                        x1 = self._current_xpos(int(info['xpos']),
                                                int(info['xpos_multiplier']))

                        # compute the positional reward
                        x0, reward = self.x_pos_reward(x1, x0, reward)

                    # check if Mario is stuck
                    if step % STUCK_STEPS == 0:
                        stuck, reward = self.check_stuck(
                            x1, stuck_pos_cp, reward)

                    # check if Mario has finished the level
                    if done:
                        reward = 0.0
                        print("\tEpisode ended!")

                    if step == MAX_STEPS:
                        print("\tMax Steps per Episode reached.")

                    # TODO: implement time penality for taking too long....
                    if t % TIME_DECAY_PENALTY == 0:
                        reward -= 1.0

                    # add the reward to total reward
                    episode_rewards.append(reward)

                    if killed or stuck or done or step == MAX_STEPS:
                        # the episode ends so no next state
                        next_state = np.zeros((HEIGHT, WIDTH, N_FRAMES),
                                              dtype=np.int)

                        # set step = MAX_STEPS to end episode
                        step = MAX_STEPS

                        # get total reward of the episode
                        total_reward = np.sum(episode_rewards)
                        average_loss = np.mean(episode_loss)

                        print("Episode:", episode, "Total Steps:", t,
                              "Total reward:", total_reward, "Xpos:", x0,
                              "Explore P:", explore_probability,
                              "Average Training Loss:", average_loss)

                        # remember the episode and the score
                        score_tracker.append({
                            "episode": episode,
                            "reward": total_reward,
                            "xpos": x0
                        })

                        # store transition <s_i, a, r_{i+1}, s_{i+1}> in memory
                        self.memory.add(state, action, reward, next_state,
                                        done)
                    else:
                        # store transition <s_i, a, r_{i+1}, s_{i+1}> in memory
                        self.memory.add(state, action, reward, next_state,
                                        done)

                        # s_{i} := s_{i+1}
                        state = next_state

                    #### LEARNING PART ####
                    # Obtain random mini-batch from prioritized experience replay memory
                    experience = self.memory.sample(
                        batch_size, beta=self.beta_schedule.value(t))
                    (states_t, actions, rewards, states_tp1, dones, weights,
                     idxes) = experience

                    target_Qs_batch = []

                    # DOUBLE DQN Logic
                    # Use DQNNetwork to select the action to take at next_state (a') (action with the highest Q-value)
                    # Use TargetNetwork to calculate the Q_val of Q(s',a')
                    # See below in set Q-targets

                    # Get Q values for next_state
                    q_next_state = sess.run(
                        self.DQNetwork.output,
                        feed_dict={self.DQNetwork.inputs_: states_tp1})

                    # Calculate Qtarget for all actions that state
                    q_target_next_state = sess.run(
                        self.TargetNetwork.output,
                        feed_dict={self.TargetNetwork.inputs_: states_tp1})

                    # set Q-targets
                    for i in range(batch_size):
                        terminal = dones[i]

                        # retrieve a' action from the DDQNPrio
                        action = np.argmax(q_next_state[i])

                        # if we are in a terminal state i.e. if episode ends with s+1, target only equals reward
                        if terminal:
                            target_Qs_batch.append(rewards[i])
                        else:
                            # otherwise take action a' from DDQNetwork
                            # and set Qtarget = r + GAMMA * TargetNetwork(s',a')
                            target = rewards[
                                i] + GAMMA * q_target_next_state[i][action]
                            target_Qs_batch.append(target)

                    # all mini batch targets
                    targets = np.array([each for each in target_Qs_batch])

                    # run a forward and backward pass to get the TD-errors
                    _, loss, absolute_errors = sess.run(
                        [
                            self.DQNetwork.optimizer, self.DQNetwork.loss,
                            self.DQNetwork.absolute_errors
                        ],
                        feed_dict={
                            self.DQNetwork.inputs_: states_t,
                            self.DQNetwork.target_Q: targets,
                            self.DQNetwork.actions_: actions,
                            self.DQNetwork.importance_weights_ph_: weights
                        })

                    # update the experience priorities according to absolute errors
                    new_priorities = absolute_errors + REPLAY_EPS
                    self.memory.update_priorities(idxes, new_priorities)

                    # store loss
                    episode_loss.append(loss)

                    # write tf summaries
                    summary = sess.run(
                        self.write_op,
                        feed_dict={
                            self.DQNetwork.inputs_: states_t,
                            self.DQNetwork.target_Q: targets,
                            self.DQNetwork.actions_: actions,
                            self.DQNetwork.importance_weights_ph_: weights
                        })
                    self.writer.add_summary(summary, episode)
                    self.writer.flush()

                    if tau > MAX_TAU:
                        # Update the parameters of our TargetNetwork with DQN_weights
                        update_target = self.update_target_graph()
                        sess.run(update_target)
                        tau = 0
                        print("Model updated")

                # # save model every 5 episodes
                # if episode % 5 == 0:
                #     self.saver.save(sess, "./models/{0}/".format(self.level_name), global_step=episode)
                #     print("Model Saved")

            sorted_scores = sorted(score_tracker,
                                   key=lambda ele: ele['xpos'],
                                   reverse=True)
            print("Sorted according to MAX XPOS\n", sorted_scores)
            sorted_scores = sorted(score_tracker,
                                   key=lambda ele: ele['reward'],
                                   reverse=True)
            print("Sorted according to MAX REWARD\n", sorted_scores)
            self.env.close()

    def _current_xpos(self, xpos, xpos_multiplier):
        """
        Compute the current position of Mario.

        Inputs:
        - xpos: x_position (from 0 to 255)
        - xpos_multiplier: how many times the xpos has been looped

        Returns:
        - current x_position
        """
        return xpos + xpos_multiplier * 255

    def x_pos_reward(self, x1, x0, reward):
        """
        Computes the positional reward; reward = x1 - x0
        - x1: current position
        - x0: previous position

        Returns:
        - new previous position x0 = x1
        - update reward
        """
        reward += x1 - x0
        return x1, reward

    def check_stuck(self, xpos, stuck_pos_cp, reward):
        """
        Checks if Mario is stuck i.e. Mario's xpos has not changed since the last check.

        Inputs:
        - xpos: Mario's current x_position
        - stuck_pos_cp: Mario's x_position at the last check.
        - reward: the current step's reward

        Returns:
        - stuck: bool - True if Mario's x_position hasn't changed
        - reward: float - updated reward
        """
        stuck = False
        if xpos == stuck_pos_cp:
            reward = 0
            stuck = True
            print("\tMario is stuck! Restarting!", reward)

        return stuck, reward

    def check_killed(self, curr_n_lives, reward):
        """
        Checks if Mario has died. If so adjusts the reward.

        Inputs:
        - curr_n_lives: Mario's current number of lives
        - reward: the current step's reward

        Returns:
        - killed: bool - True if Mario's has died.
        - reward: float - updated reward
        """
        killed = False
        if curr_n_lives != self.lives:
            reward = PENALTY_DYING  # update reward with dying penalty
            killed = True
            print("\tMario died! Restarting!", reward)

        return killed, reward

    def update_target_graph(self):
        """
        # This function helps us to copy one set of variables to another
        # In our case we use it when we want to copy the parameters of DQN to Target_network
        # Thanks of the very good implementation of Arthur Juliani https://github.com/awjuliani
        """
        # Get the parameters of our DDQNPrio
        from_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
                                      "DDQNPrio")

        # Get the parameters of our Target_network
        to_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
                                    "TargetNetwork")

        op_holder = []

        # Update our target_network parameters with DQNNetwork parameters
        for from_var, to_var in zip(from_vars, to_vars):
            op_holder.append(to_var.assign(from_var))
        return op_holder
Beispiel #24
0
def learn(env,
          network,
          seed=None,
          lr=5e-4,
          total_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=100,
          checkpoint_freq=10000,
          checkpoint_path=None,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          callback=None,
          load_path=None,
          thompson=True,
          prior="no prior",
          **network_kwargs):
    """Train a deepq model.

    Parameters
    -------
    env: gym.Env
        environment to train on
    network: string or a function
        neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models
        (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which
        will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that)
    seed: int or None
        prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used.
    lr: float
        learning rate for adam optimizer
    total_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
        set to None to disable printing
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to total_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    param_noise: bool
        whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905)
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.
    load_path: str
        path to load the model from. (default: None)
    **network_kwargs
        additional keyword arguments to pass to the network builder.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """
    blr_params = BLRParams()

    # Create all the functions necessary to train the model

    sess = get_session()
    set_global_seeds(seed)

    # q_func = build_q_func(network, **network_kwargs)
    q_func = build_q_func_and_features(network,
                                       hiddens=[blr_params.feat_dim],
                                       **network_kwargs)

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph

    observation_space = env.observation_space

    def make_obs_ph(name):
        return ObservationInput(observation_space, name=name)

    #deep mind optimizer
    # dm_opt = tf.train.RMSPropOptimizer(learning_rate=0.00025,decay=0.95,momentum=0.0,epsilon=0.00001,centered=True)
    act, train, update_target, debug, blr_additions = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(
            learning_rate=lr
        ),  #tf.train.RMSPropOptimizer(learning_rate=lr,momentum=0.95),#
        gamma=gamma,
        grad_norm_clipping=10,
        param_noise=param_noise,
        thompson=thompson,
        double_q=thompson)

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                                alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = total_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        # replay_buffer = ReplayBuffer(buffer_size)
        replay_buffer = ReplayBufferPerActionNew(buffer_size,
                                                 env.action_space.n)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        total_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    num_actions = env.action_space.n
    if thompson:
        # Create parameters for Bayesian Regression
        feat_dim = blr_additions['feat_dim']
        num_models = 5
        print("num models is: {}".format(num_models))
        w_sample = np.random.normal(loc=0,
                                    scale=blr_params.sigma,
                                    size=(num_actions, num_models, feat_dim))
        w_mu = np.zeros((num_actions, feat_dim))
        w_cov = np.zeros((num_actions, feat_dim, feat_dim))
        for i in range(num_actions):
            w_cov[i] = blr_params.sigma * np.eye(feat_dim)

        phiphiT = np.zeros((num_actions, feat_dim, feat_dim), dtype=np.float32)
        phiphiT_inv = np.zeros((num_actions, feat_dim, feat_dim),
                               dtype=np.float32)
        for i in range(num_actions):
            phiphiT[i] = (1 / blr_params.sigma) * np.eye(feat_dim)
            phiphiT_inv[i] = blr_params.sigma * np.eye(feat_dim)
        old_phiphiT_inv = [phiphiT_inv for i in range(5)]

        phiY = np.zeros((num_actions, feat_dim), dtype=np.float32)
        YY = np.zeros(num_actions)

        model_idx = np.random.randint(0, num_models, size=num_actions)
        blr_ops = blr_additions['blr_ops']
        blr_ops_old = blr_additions['blr_ops_old']

        last_layer_weights = np.zeros((feat_dim, num_actions))
        phiphiT0 = np.copy(phiphiT)

        invgamma_a = [blr_params.a0 for _ in range(num_actions)]
        invgamma_b = [blr_params.a0 for _ in range(num_actions)]
    # Initialize the parameters and copy them to the target network.
    U.initialize()
    # update_target()
    if thompson:
        blr_additions['update_old']()

        if isinstance(blr_additions['update_old_target'], list):
            for update_net in reversed(blr_additions['update_old_target']):
                update_net()
        else:
            blr_additions['update_old_target']()

        if blr_additions['old_networks'] is not None:
            for key in blr_additions['old_networks'].keys():
                blr_additions['old_networks'][key]["update"]()

    episode_rewards = [0.0]
    # episode_Q_estimates = [0.0]
    unclipped_episode_rewards = [0.0]
    # eval_rewards = [0.0]

    old_networks_num = 5
    # episode_pseudo_count = [[0.0] for i in range(old_networks_num)]
    saved_mean_reward = None
    obs = env.reset()
    reset = True

    with tempfile.TemporaryDirectory() as td:
        td = checkpoint_path or td

        model_file = os.path.join(td, "model")
        model_saved = False

        if tf.train.latest_checkpoint(td) is not None:
            load_variables(model_file)
            logger.log('Loaded model from {}'.format(model_file))
            model_saved = True
        elif load_path is not None:
            load_variables(load_path)
            logger.log('Loaded model from {}'.format(load_path))

        actions_hist = [0 for _ in range(num_actions)]
        actions_hist_total = [0 for _ in range(num_actions)]
        last_layer_weights_decaying_average = None
        blr_counter = 0
        action_buffers_size = 512
        action_buffers = [
            ReplayBuffer(action_buffers_size) for _ in range(num_actions)
        ]
        eval_flag = False
        eval_counter = 0
        for t in tqdm(range(total_timesteps)):

            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                # for detailed explanation.
                update_param_noise_threshold = -np.log(1. - exploration.value(
                    t) + exploration.value(t) / float(env.action_space.n))
                kwargs['reset'] = reset
                kwargs[
                    'update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True

            if thompson:
                # for each action sample one of the num_models samples of w
                model_idx = np.random.randint(0, num_models, size=num_actions)
                cur_w = np.zeros((num_actions, feat_dim))
                for i in range(num_actions):
                    cur_w[i] = w_sample[i, model_idx[i]]
                action, estimate = act(np.array(obs)[None], cur_w[None])
                actions_hist[int(action)] += 1
                actions_hist_total[int(action)] += 1
            else:
                action, estimate = act(np.array(obs)[None],
                                       update_eps=update_eps,
                                       **kwargs)
            env_action = action
            reset = False
            new_obs, unclipped_rew, done_list, _ = env.step(env_action)
            if isinstance(done_list, list):
                done, real_done = done_list
            else:
                done, real_done = done_list, done_list
            rew = np.sign(unclipped_rew)

            # Store transition in the replay buffer.
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            action_buffers[action].add(obs, action, rew, new_obs, float(done))
            if action_buffers[action]._next_idx == 0:
                obses_a, actions_a, rewards_a, obses_tp1_a, dones_a = replay_buffer.get_samples(
                    [i for i in range(action_buffers_size)])
                phiphiT_a, phiY_a, YY_a = blr_ops_old(obses_a, actions_a,
                                                      rewards_a, obses_tp1_a,
                                                      dones_a)
                phiphiT[action] += phiphiT_a
                phiY[action] += phiY_a
                YY[action] += YY_a

                precision = phiphiT[action] + phiphiT0[action]
                cov = np.linalg.pinv(precision)
                mu = np.array(
                    np.dot(cov, (phiY[action] + np.dot(
                        phiphiT0[action], last_layer_weights[:, action]))))
                invgamma_a[action] += 0.5 * action_buffers_size
                b_upd = 0.5 * YY[action]
                b_upd += 0.5 * np.dot(
                    last_layer_weights[:, action].T,
                    np.dot(phiphiT0[action], last_layer_weights[:, action]))
                b_upd -= 0.5 * np.dot(mu.T, np.dot(precision, mu))
                invgamma_b[action] += b_upd

                # old_phiphiT_inv_a = [np.tile(oppTi[action], (action_buffers_size,1,1)) for oppTi in old_phiphiT_inv]
                # old_pseudo_count = blr_additions['old_pseudo_counts'](obses_a, *old_phiphiT_inv_a)
                # old_pseudo_count = np.sum(old_pseudo_count, axis=-1)
                # for i in range(old_networks_num):
                #     idx = ((blr_counter-1)-i) % old_networks_num # arrange networks from newest to oldest
                #     episode_pseudo_count[i][-1] += old_pseudo_count[idx]

            # if real_done:
            #     for a in range(num_actions):
            #         if action_buffers[a]._next_idx != 0:
            #             obses_a, actions_a, rewards_a, obses_tp1_a, dones_a = replay_buffer.get_samples([i for i in range(action_buffers[a]._next_idx)])
            #             nk = obses_a.shape[0]
            #
            #             # old_phiphiT_inv_a = [np.tile(oppTi[action],(nk,1,1)) for oppTi in old_phiphiT_inv]
            #             # old_pseudo_count = blr_additions['old_pseudo_counts'](obses_a, *old_phiphiT_inv_a)
            #             # old_pseudo_count = np.sum(old_pseudo_count, axis=-1)
            #             # for i in range(old_networks_num):
            #             #     idx = ((blr_counter-1)-i) % old_networks_num # arrange networks from newest to oldest
            #             #     episode_pseudo_count[i][-1] += old_pseudo_count[idx]
            #
            #             phiphiT_a, phiY_a, YY_a = blr_ops_old(obses_a, actions_a, rewards_a, obses_tp1_a, dones_a)
            #             phiphiT[a] += phiphiT_a
            #             phiY[a] += phiY_a
            #             YY[a] += YY_a
            #
            #             action_buffers[a]._next_idx = 0

            obs = new_obs
            episode_rewards[-1] += rew
            # episode_Q_estimates[-1] += estimate
            unclipped_episode_rewards[-1] += unclipped_rew

            if t % 250000 == 0 and t > 0:
                eval_flag = True

            if done:
                obs = env.reset()
                episode_rewards.append(0.0)
                # episode_Q_estimates.append(0.0)
                reset = True
                if real_done:
                    unclipped_episode_rewards.append(0.0)
                    # for i in range(old_networks_num):
                    #     episode_pseudo_count[i].append(0.0)
                    # every time full episode ends run eval episode
                    if eval_flag:
                        te = 0
                        print("running evaluation")
                        eval_rewards = [0.0]
                        while te < 125000:
                            # for te in range(125000):
                            real_done = False
                            print(te)
                            while not real_done:
                                action, _ = blr_additions['eval_act'](
                                    np.array(obs)[None])
                                new_obs, unclipped_rew, done_list, _ = env.step(
                                    action)
                                if isinstance(done_list, list):
                                    done, real_done = done_list
                                else:
                                    done, real_done = done_list, done_list
                                eval_rewards[-1] += unclipped_rew
                                obs = new_obs
                                te += 1
                                if done:
                                    obs = env.reset()
                                if real_done:
                                    eval_rewards.append(0.0)
                        obs = env.reset()
                        eval_rewards.pop()
                        mean_reward_eval = round(np.mean(eval_rewards), 2)
                        logger.record_tabular("mean eval episode reward",
                                              mean_reward_eval)
                        logger.dump_tabular()
                        eval_flag = False
                    # eval_counter += 1
                    # if eval_counter % 10 == 0:
                    #     if t > learning_starts:
                    #         real_done = False
                    #         while not real_done:
                    #             action, _ = blr_additions['eval_act'](np.array(obs)[None])
                    #             new_obs, unclipped_rew, done_list, _ = env.step(action)
                    #             done, real_done = done_list
                    #             eval_rewards[-1] += unclipped_rew
                    #             obs = new_obs
                    #         eval_rewards.append(0.0)
                    #         obs = env.reset()

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(
                        batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights,
                     batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                        batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones,
                                  weights)
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes,
                                                    new_priorities)

            if thompson:
                if t > learning_starts and t % (
                        blr_params.update_w * target_network_update_freq) == 0:
                    phiphiT_inv = np.zeros_like(phiphiT)
                    for i in range(num_actions):
                        try:
                            phiphiT_inv[i] = np.linalg.inv(phiphiT[i])
                        except:
                            phiphiT_inv[i] = np.linalg.pinv(phiphiT[i])
                    old_phiphiT_inv[blr_counter % 5] = phiphiT_inv
                    llw = sess.run(blr_additions['last_layer_weights'])
                    phiphiT, phiY, phiphiT0, last_layer_weights, YY, invgamma_a, invgamma_b = BayesRegression(
                        phiphiT,
                        phiY,
                        replay_buffer,
                        blr_additions['feature_extractor'],
                        blr_additions['target_feature_extractor'],
                        num_actions,
                        blr_params,
                        w_mu,
                        w_cov,
                        llw,
                        prior=prior,
                        blr_ops=blr_additions['blr_ops'],
                        sdp_ops=blr_additions['sdp_ops'],
                        old_networks=blr_additions['old_networks'],
                        blr_counter=blr_counter,
                        old_feat=blr_additions['old_feature_extractor'],
                        a=invgamma_a)
                    blr_counter += 1
                    if seed is not None:
                        print('seed is {}'.format(seed))
                    blr_additions['update_old']()
                    if isinstance(blr_additions['update_old_target'], list):
                        for update_net in reversed(
                                blr_additions['update_old_target']):
                            update_net()
                    else:
                        blr_additions['update_old_target']()
                    if blr_additions['old_networks'] is not None:
                        blr_additions['old_networks'][blr_counter %
                                                      5]["update"]()

            if thompson:
                if t > 0 and t % blr_params.sample_w == 0:
                    # sampling num_models samples of w
                    if debug:
                        print(actions_hist)
                    else:
                        if t % 10000 == 0:
                            print(actions_hist)
                    actions_hist = [0 for _ in range(num_actions)]
                    # if t > 1000000:
                    adaptive_sigma = True
                    # else:
                    #     adaptive_sigma = False
                    cov_norms = []
                    cov_norms_no_sigma = []
                    sampled_sigmas = []
                    for i in range(num_actions):
                        if prior == 'no prior' or last_layer_weights is None:
                            cov = np.linalg.inv(phiphiT[i])
                            mu = np.array(np.dot(cov, phiY[i]))
                        elif prior == 'last layer':
                            cov = np.linalg.inv(phiphiT[i])
                            mu = np.array(
                                np.dot(cov, (phiY[i] + (1 / blr_params.sigma) *
                                             last_layer_weights[:, i])))
                        elif prior == 'single sdp':
                            try:
                                cov = np.linalg.inv(phiphiT[i] + phiphiT0)
                            except:
                                print("singular matrix using pseudo inverse")
                                cov = np.linalg.pinv(phiphiT[i] + phiphiT0)
                            mu = np.array(
                                np.dot(cov, (phiY[i] + np.dot(
                                    phiphiT0, last_layer_weights[:, i]))))
                        elif prior == 'sdp' or prior == 'linear':
                            try:
                                cov = np.linalg.inv(phiphiT[i] + phiphiT0[i])
                            except:
                                # print("singular matrix")
                                cov = np.linalg.pinv(phiphiT[i] + phiphiT0[i])
                            mu = np.array(
                                np.dot(cov, (phiY[i] + np.dot(
                                    phiphiT0[i], last_layer_weights[:, i]))))
                        else:
                            print("No valid prior")
                            exit(0)

                        for j in range(num_models):
                            if adaptive_sigma:
                                sigma = invgamma_b[i] * invgamma.rvs(
                                    invgamma_a[i])
                            else:
                                sigma = blr_params.sigma
                            try:
                                w_sample[i, j] = np.random.multivariate_normal(
                                    mu, sigma * cov)
                            except:
                                w_sample[i, j] = mu

                        cov_norms.append(np.linalg.norm(sigma * cov))
                        cov_norms_no_sigma.append(np.linalg.norm(cov))
                        sampled_sigmas.append(sigma)

                    if t % 7 == 0:
                        for i, cov_norm in enumerate(cov_norms):
                            print(
                                "cov*sigma norm for action {}: {}, visits: {}".
                                format(i, cov_norm,
                                       len(replay_buffer.buffers[i])))

            # if t > learning_starts and t % target_network_update_freq == 0:
            # Update target network periodically.
            # print(update_target)
            # update_target()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            mean_10ep_reward = round(np.mean(episode_rewards[-11:-1]), 1)
            mean_100ep_reward_unclipped = round(
                np.mean(unclipped_episode_rewards[-101:-1]), 1)
            mean_10ep_reward_unclipped = round(
                np.mean(unclipped_episode_rewards[-11:-1]), 1)
            # mean_100ep_reward_eval = round(np.mean(eval_rewards[-101:-1]), 1)
            # mean_10ep_reward_eval = round(np.mean(eval_rewards[-11:-1]), 1)
            # mean_100ep_est = round(np.mean(episode_Q_estimates[-101:-1]), 1)
            # mean_10ep_est = round(np.mean(episode_Q_estimates[-11:-1]), 1)
            num_episodes = len(episode_rewards)
            # mean_10ep_pseudo_count = [0.0 for _ in range(old_networks_num)]
            # mean_100ep_pseudo_count = [0.0 for _ in range(old_networks_num)]
            # for i in range(old_networks_num):
            #     mean_10ep_pseudo_count[i] = round(np.log(np.mean(episode_pseudo_count[i][-11:-1])), 1)
            #     mean_100ep_pseudo_count[i] = round(np.log(np.mean(episode_pseudo_count[i][-101:-1])), 1)

            # if done and print_freq is not None and len(episode_rewards) % print_freq == 0:
            if t % 10000 == 0 and t > 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward",
                                      mean_100ep_reward)
                logger.record_tabular("mean 10 episode reward",
                                      mean_10ep_reward)
                logger.record_tabular("mean 100 unclipped episode reward",
                                      mean_100ep_reward_unclipped)
                logger.record_tabular("mean 10 unclipped episode reward",
                                      mean_10ep_reward_unclipped)
                # logger.record_tabular("mean 100 eval episode reward", mean_100ep_reward_eval)
                # logger.record_tabular("mean 10 eval episode reward", mean_10ep_reward_eval)
                # for i in range(old_networks_num):
                #     logger.record_tabular("mean 10 episode pseudo count for -{} net".format(i+1), mean_10ep_pseudo_count[i])
                #     logger.record_tabular("mean 100 episode pseudo count for -{} net".format(i+1), mean_100ep_pseudo_count[i])
                # logger.record_tabular("mean 100 episode Q estimates", mean_100ep_est)
                # logger.record_tabular("mean 10 episode Q estimates", mean_10ep_est)
                logger.dump_tabular()
                if t % 7 == 0:
                    print("len(unclipped_episode_rewards)")
                    print(len(unclipped_episode_rewards))
                    print("len(episode_rewards)")
                    print(len(episode_rewards))

            if (checkpoint_freq is not None and t > learning_starts
                    and num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log(
                            "Saving model due to mean reward increase: {} -> {}"
                            .format(saved_mean_reward, mean_100ep_reward))
                    save_variables(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(
                    saved_mean_reward))
            load_variables(model_file)

    return act
Beispiel #25
0
def learn(env,
          q_func,
          lr=5e-4,
          max_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=1,
          checkpoint_freq=10000,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          num_cpu=16,
          param_noise=False,
          callback=None):
    """Train a deepq model.

  Parameters
  -------
  env: gym.Env
      environment to train on
  q_func: (tf.Variable, int, str, bool) -> tf.Variable
      the model that takes the following inputs:
          observation_in: object
              the output of observation placeholder
          num_actions: int
              number of actions
          scope: str
          reuse: bool
              should be passed to outer variable scope
      and returns a tensor of shape (batch_size, num_actions) with values of every action.
  lr: float
      learning rate for adam optimizer
  max_timesteps: int
      number of env steps to optimizer for
  buffer_size: int
      size of the replay buffer
  exploration_fraction: float
      fraction of entire training period over which the exploration rate is annealed
  exploration_final_eps: float
      final value of random action probability
  train_freq: int
      update the model every `train_freq` steps.
      set to None to disable printing
  batch_size: int
      size of a batched sampled from replay buffer for training
  print_freq: int
      how often to print out training progress
      set to None to disable printing
  checkpoint_freq: int
      how often to save the model. This is so that the best version is restored
      at the end of the training. If you do not wish to restore the best version at
      the end of the training set this variable to None.
  learning_starts: int
      how many steps of the model to collect transitions for before learning starts
  gamma: float
      discount factor
  target_network_update_freq: int
      update the target network every `target_network_update_freq` steps.
  prioritized_replay: True
      if True prioritized replay buffer will be used.
  prioritized_replay_alpha: float
      alpha parameter for prioritized replay buffer
  prioritized_replay_beta0: float
      initial value of beta for prioritized replay buffer
  prioritized_replay_beta_iters: int
      number of iterations over which beta will be annealed from initial value
      to 1.0. If set to None equals to max_timesteps.
  prioritized_replay_eps: float
      epsilon to add to the TD errors when updating priorities.
  num_cpu: int
      number of cpus to use for training
  param_noise: bool
      where param noise should be present
  callback: (locals, globals) -> None
      function called at every steps with state of the algorithm.
      If callback returns true training stops.

  Returns
  -------
  act: ActWrapper
      Wrapper over act function. Adds ability to save it and load it.
      See header of baselines/deepq/categorical.py for details on the act function.
  """
    # Create all the functions necessary to train the model

    sess = U.make_session(num_cpu=num_cpu)
    sess.__enter__()

    def make_obs_ph(name):
        print("ENV.OBSERVATION_SPACE: {}".format(env.observation_space))
        return ObservationInput(env.observation_space, name=name)

    act, train, update_target, debug = build_graph.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        param_noise=param_noise,
    )

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                                alpha=prioritized_replay_alpha)

        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = max_timesteps

        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None

    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        max_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()
    reset = True
    mean_100ep_reward = 0
    rew = 0
    num_episodes = 0

    with tempfile.TemporaryDirectory() as td:
        model_file = os.path.join(td, "model")
        print("model_file : %s" % model_file)
        model_saved = False
        history = np.stack((obs, obs, obs, obs), axis=2)
        history = np.reshape([history], (1, 84, 84, 4))

        for t in range(max_timesteps):
            if callback is not None:
                if callback(locals()):
                    break

            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                # for detailed explanation.
                update_param_noise_threshold = -np.log(1. - exploration.value(
                    t) + exploration.value(t) / float(env.action_space.n))

                kwargs['reset'] = reset
                kwargs[
                    'update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True

            reshape_obs = np.reshape([obs], (1, 84, 84, 1))
            history = np.append(reshape_obs, history[:, :, :, :3], axis=3)
            processed_obs = np.reshape([history], (84, 84, 4))

            action = act(np.array(processed_obs)[None],
                         update_eps=update_eps,
                         **kwargs)[0]
            reset = False
            new_obs, rew, done, _ = env.step(action)

            obs = new_obs

            next_state = np.reshape([new_obs], (1, 84, 84, 1))
            next_history = np.append(next_state, history[:, :, :, :3], axis=3)
            processed_new_obs = np.reshape([history], (84, 84, 4))

            # Store transition in the replay buffer.
            replay_buffer.add(processed_obs, action, rew, processed_new_obs,
                              float(done))

            episode_rewards[-1] += rew
            epi_reward = episode_rewards[-1]

            if done:
                obs = env.reset()
                episode_rewards.append(0.0)
                reset = True
                history = np.stack(
                    (next_state, next_state, next_state, next_state), axis=2)
                history = np.reshape([history], (1, 84, 84, 4))
            else:
                history = next_history

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.

                if prioritized_replay:
                    experience = replay_buffer.sample(
                        batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights,
                     batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                        batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None

                td_errors = train(obses_t, actions, rewards, obses_tp1, dones,
                                  weights)

                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes,
                                                    new_priorities)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            num_episodes = len(episode_rewards)

            if done and print_freq is not None and len(
                    episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("reward", epi_reward)
                logger.record_tabular("mean 100 episode reward",
                                      mean_100ep_reward)
                logger.record_tabular("% time spent exploring",
                                      int(100 * exploration.value(t)))
                logger.dump_tabular()

            if checkpoint_freq is not None and t > learning_starts and num_episodes > 100 and t % checkpoint_freq == 0:
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log(
                            "Saving model due to mean reward increase: {} -> {}"
                            .format(saved_mean_reward, mean_100ep_reward))
                        print(
                            "Saving model due to mean reward increase: {} -> {}"
                            .format(saved_mean_reward, mean_100ep_reward))
                    U.save_state(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward

        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(
                    saved_mean_reward))
            U.load_state(model_file)

    return ActWrapper(act, act_params)
Beispiel #26
0
                # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                # for detailed explanation.
                update_param_noise_threshold = -np.log(
                    1. - exploration.value(num_iters) +
                    exploration.value(num_iters) / float(env.action_space.n))
                kwargs['reset'] = reset
                kwargs[
                    'update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = (
                    num_iters % args.param_noise_update_freq == 0)

            action = act(np.array(obs)[None], update_eps=update_eps,
                         **kwargs)[0]
            reset = False
            new_obs, rew, done, _ = env.step(action)
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            total_reward += rew
            obs = new_obs
            if done:
                num_iters_since_reset = 0
                total_reward = 0
                obs = env.reset()
                reset = True

            if (num_iters > max(5 * args.batch_size,
                                args.replay_buffer_size // 20)
                    and num_iters % args.learning_freq == 0):
                # Sample a bunch of transitions from replay buffer
                if args.prioritized:
                    experience = replay_buffer.sample(
                        args.batch_size, beta=beta_schedule.value(num_iters))
Beispiel #27
0
def run_mountaincar_and_save_results(lr, kappa, timesteps_per_update_target,
                                     timesteps_per_action_taken, gamma,
                                     prioritize, alpha, beta, folder_path):

    episode_length = [0]
    Q_errors = []
    state_errors = []
    grad_sums_of_squares = []

    with tf.variable_scope("Q"):
        Q_params, Q_function = Q_model(256, tf.nn.softplus)

    with tf.variable_scope('Q_target'):
        Q_params_target, Q_function_target = Q_model(256, tf.nn.softplus)

    obses = tf.placeholder(tf.float32, shape=[None, 2])
    actions = tf.placeholder(tf.int32, shape=[None])
    rewards = tf.placeholder(tf.float32, shape=[None])
    next_obses = tf.placeholder(tf.float32, shape=[None, 2])
    dones = tf.placeholder(tf.float32, shape=[None])
    weights = tf.placeholder(tf.float32, shape=[None])
    Q_values_target = tf.placeholder(tf.float32, shape=[None])

    Q_function_obses = Q_function(obses)
    Q_values_per_action = Q_function_obses[0]
    Q_difference = tf.reduce_sum(Q_values_per_action * tf.one_hot(actions, 3),
                                 axis=1) - Q_values_target
    state_prediction = Q_function_obses[1]

    if prioritize:
        Q_error = tf.reduce_mean(tf.square(Q_difference) * weights)
        state_error = tf.reduce_mean(
            tf.square(
                tf.reduce_sum(state_prediction *
                              tf.expand_dims(tf.one_hot(actions, 3), 1),
                              axis=2) - next_obses) *
            tf.expand_dims(weights, 1))
    else:
        Q_error = tf.reduce_mean(tf.square(Q_difference))
        state_error = tf.reduce_mean(
            tf.square(
                tf.reduce_sum(state_prediction *
                              tf.expand_dims(tf.one_hot(actions, 3), 1),
                              axis=2) - next_obses))

    total_error = Q_error
    if kappa > 0:
        total_error += kappa * state_error

    Q_actions = tf.argmax(Q_values_per_action, axis=1)

    Q_values_target_Bellman = rewards + (1 - dones) * gamma * tf.reduce_sum(
        tf.one_hot(tf.argmax(Q_function(next_obses)[0], axis=1), 3) *
        Q_function_target(next_obses)[0],
        axis=1)

    update_target = tf.group(*[
        tf.assign(Q_param_target, Q_param)
        for Q_param, Q_param_target in zip(Q_params, Q_params_target)
    ])

    lr_variable = tf.get_variable('lr', (),
                                  initializer=tf.constant_initializer(0.1))

    grads = tf.gradients(total_error, Q_params)
    grad_sum_of_squares = sum(
        [tf.reduce_sum(x * x) for x in grads if x is not None])

    Q_Adam = tf.train.AdamOptimizer(learning_rate=lr_variable)
    Q_minimize = Q_Adam.minimize(Q_error)
    total_minimize = Q_Adam.minimize(total_error)

    sess = tf.Session()

    sess.run(tf.global_variables_initializer())

    Q_table, memory, N, env, high, low = fill_Q_table()

    obses_valid_0 = np.array(sum([[i] * N * 3 for i in range(N)], []))
    obses_valid_1 = np.array(sum([[i] * 3 for i in range(N)], []) * N)
    actions_valid = np.array([0, 1, 2] * N * N)
    obses_valid = (np.stack(
        (obses_valid_0, obses_valid_1), axis=1) + 0.5) / N * (high - low) + low
    Q_values_target_valid = Q_table[obses_valid_0, obses_valid_1,
                                    actions_valid]
    weights_valid = np.ones(N * N * 3)

    def valid_error():
        return sess.run(Q_error,
                        feed_dict={
                            obses: obses_valid,
                            actions: actions_valid,
                            Q_values_target: Q_values_target_valid,
                            weights: weights_valid
                        })

    valid_error_current = 1e20
    valid_error_new = valid_error()

    while valid_error_new < 0.999 * valid_error_current:

        valid_error_current = valid_error_new
        print('valid error = %.6f' % valid_error_current)
        sess.run(tf.assign(lr_variable, valid_error_current / 1000))

        for _ in range(64):

            sess.run(Q_minimize,
                     feed_dict={
                         obses: obses_valid,
                         actions: actions_valid,
                         Q_values_target: Q_values_target_valid,
                         weights: weights_valid
                     })

        valid_error_new = valid_error()

        print('valid error new = %.6f' % valid_error_new)

    sess.run(tf.assign(lr_variable, lr))

    obs = env.reset()

    if prioritize:
        replay_buffer = PrioritizedReplayBuffer(50000, alpha)
        for mem in memory:
            replay_buffer.add(*mem)

    episode_rew = 0

    for t in range(100000):

        if t % timesteps_per_action_taken == 0:
            action = sess.run(Q_actions, feed_dict={obses: obs[None]})[0]
            next_obs, rew, done, _ = env.step(action)
            episode_rew += rew
            if prioritize:
                replay_buffer.add(obs, action, rew, next_obs, done)
            else:
                memory.append((obs, action, rew, next_obs, done))
                if len(memory) > 50000:
                    del memory[0]
            obs = next_obs
            episode_length[-1] += 1

            if done:
                obs = env.reset()
                print('episode reward = %d' % episode_rew)
                episode_rew = 0
                episode_length.append(0)

        if prioritize:

            beta_current = (beta * (100000 - t) + t) / 100000
            obses_current, actions_current, rewards_current, next_obses_current, dones_current, weights_current, idxes_current = replay_buffer.sample(
                32, beta_current)

        else:
            idxes = [np.random.randint(len(memory)) for _ in range(32)]
            tuples = [memory[idx] for idx in idxes]

            obses_current = np.array([s[0] for s in tuples])
            actions_current = np.array([s[1] for s in tuples])
            rewards_current = np.array([s[2] for s in tuples])
            next_obses_current = np.array([s[3] for s in tuples])
            dones_current = np.array([float(s[4]) for s in tuples])
            weights_current = np.ones(32)

        Q_values_target_current = sess.run(Q_values_target_Bellman,
                                           feed_dict={
                                               rewards: rewards_current,
                                               next_obses: next_obses_current,
                                               dones: dones_current
                                           })

        if prioritize:
            new_weights = np.abs(
                sess.run(Q_difference,
                         feed_dict={
                             obses: obses_current,
                             actions: actions_current,
                             Q_values_target: Q_values_target_current,
                             next_obses: next_obses_current
                         })) + 1e-6
            replay_buffer.update_priorities(idxes_current, new_weights)

        Q_errors.append(
            sess.run(Q_error,
                     feed_dict={
                         obses: obses_current,
                         actions: actions_current,
                         Q_values_target: Q_values_target_current,
                         next_obses: next_obses_current,
                         weights: weights_current
                     }).astype(np.float64))

        state_errors.append(
            sess.run(state_error,
                     feed_dict={
                         obses: obses_current,
                         actions: actions_current,
                         Q_values_target: Q_values_target_current,
                         next_obses: next_obses_current,
                         weights: weights_current
                     }).astype(np.float64))

        grad_sums_of_squares.append(
            sess.run(grad_sum_of_squares,
                     feed_dict={
                         obses: obses_current,
                         actions: actions_current,
                         Q_values_target: Q_values_target_current,
                         next_obses: next_obses_current,
                         weights: weights_current
                     }).astype(np.float64))

        sess.run(total_minimize,
                 feed_dict={
                     obses: obses_current,
                     actions: actions_current,
                     Q_values_target: Q_values_target_current,
                     next_obses: next_obses_current,
                     weights: weights_current
                 })

        if t % timesteps_per_update_target == 0:
            sess.run(update_target)

        if t % 1000 == 0:
            print('t = %d' % t)

    print('saving progress and params...')

    if not os.path.exists(folder_path + 'params/'):
        os.makedirs(folder_path + 'params/')

    with open(folder_path + 'progress.json', 'w') as f:
        data = {
            'episode_length': episode_length,
            'Q_errors': Q_errors,
            'state_errors': state_errors,
            'grad_sums_of_squares': grad_sums_of_squares
        }

        json.dump(data, f)

    saver = tf.train.Saver({v.name: v for v in Q_params})
    saver.save(sess, folder_path + 'params/params.ckpt')

    with open(folder_path + 'params/params.pkl', 'wb') as f:
        cloudpickle.dump([sess.run(param) for param in Q_params], f)

    print('saved...')

    # tidy up

    sess.close()
    tf.reset_default_graph()
Beispiel #28
0
def learn(env,
          q_func,
          beta1=0.9,
          beta2=0.999,
          epsilon=1e-8,
          max_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          exploration_schedule=None,
          start_lr=5e-4,
          end_lr=5e-4,
          start_step=0,
          end_step=1,
          train_freq=1,
          batch_size=32,
          print_freq=100,
          checkpoint_freq=10000,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          callback=None,
          model_directory=None,
          lamda=0.1):
    """Train a deepq model.

    Parameters
    -------
    env: gym.Env
        environment to train on
    q_func: (tf.Variable, int, str, bool) -> tf.Variable
        the model that takes the following inputs:
            observation_in: object
                the output of observation placeholder
            num_actions: int
                number of actions
            scope: str
            reuse: bool
                should be passed to outer variable scope
        and returns a tensor of shape (batch_size, num_actions) with values of every action.
    lr: float
        learning rate for adam optimizer
    beta1: float
        beta1 parameter for adam
    beta2: float
        beta2 parameter for adam
    epsilon: float
        epsilon parameter for adam
    max_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    exploration_schedule: Schedule
        a schedule for exploration chance
    train_freq: int
        update the model every `train_freq` steps.
        set to None to disable printing
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to max_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model

    sess = tf.Session()
    sess.__enter__()

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph
    observation_space_shape = env.observation_space.shape

    def make_obs_ph(name):
        return ObservationInput(env.observation_space, name=name)

    global_step = tf.Variable(0, trainable=False)
    lr = interpolated_decay(start_lr, end_lr, global_step, start_step,
                            end_step)
    act, train, update_target, debug = multiheaded_build_graph.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr,
                                         beta1=beta1,
                                         beta2=beta2,
                                         epsilon=epsilon),
        gamma=gamma,
        grad_norm_clipping=10,
        param_noise=param_noise,
        global_step=global_step,
        lamda=lamda,
    )
    tf.summary.FileWriter(logger.get_dir(), graph_def=sess.graph_def)

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                                alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = max_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    if exploration_schedule is None:
        exploration = LinearSchedule(schedule_timesteps=int(
            exploration_fraction * max_timesteps),
                                     initial_p=1.0,
                                     final_p=exploration_final_eps)
    else:
        exploration = exploration_schedule

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()
    reset = True
    with tempfile.TemporaryDirectory() as td:
        model_saved = False
        if model_directory is None:
            model_directory = pathlib.Path(td)
        model_file = str(model_directory / "model")
        for t in range(max_timesteps):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                # for detailed explanation.
                update_param_noise_threshold = -np.log(1. - exploration.value(
                    t) + exploration.value(t) / float(env.action_space.n))
                kwargs['reset'] = reset
                kwargs[
                    'update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True
            action = act(np.array(obs)[None], update_eps=update_eps,
                         **kwargs)[0]
            if isinstance(env.action_space, gym.spaces.MultiBinary):
                env_action = np.zeros(env.action_space.n)
                env_action[action] = 1
            else:
                env_action = action
            reset = False
            new_obs, rew, done, _ = env.step(env_action)
            # Store transition in the replay buffer.
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            obs = new_obs

            episode_rewards[-1] += rew
            if done:
                obs = env.reset()
                episode_rewards.append(0.0)
                reset = True

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(
                        batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights,
                     batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                        batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones,
                                  weights)
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes,
                                                    new_priorities)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(
                    episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward",
                                      mean_100ep_reward)
                logger.record_tabular("% time spent exploring",
                                      int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts
                    and num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log(
                            "Saving model due to mean reward increase: {} -> {}"
                            .format(saved_mean_reward, mean_100ep_reward))
                    U.save_state(model_file)
                    act.save(str(model_directory / "act_model.pkl"))
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(
                    saved_mean_reward))
            U.load_state(model_file)

    return act
Beispiel #29
0
def learn(env,
          network,
          seed=None,
          lr=5e-4,
          total_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=5,
          batch_size=32,
          print_freq=100,
          checkpoint_freq=10000,
          checkpoint_path=None,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          callback=None,
          load_path=None,
          **network_kwargs):
    """Train a deepq model.

    Parameters
    -------
    env: gym.Env
        environment to train on
    network: string or a function
        neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models
        (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which
        will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that)
    seed: int or None
        prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used.
    lr: float
        learning rate for adam optimizer
    total_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
    batch_size: int
        size of a batch sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to total_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    param_noise: bool
        whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905)
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.
    load_path: str
        path to load the trained model from. (default: None)(used in test stage)
    **network_kwargs
        additional keyword arguments to pass to the network builder.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.

    """

    # Create all the functions necessary to train the model
    sess = get_session()
    set_global_seeds(seed)
    med_libs = MedLibs()
    '''Define Q network 
    inputs: observation place holder(make_obs_ph), num_actions, scope, reuse
    outputs(tensor of shape batch_size*num_actions): values of each action, Q(s,a_{i})
    '''
    q_func = build_q_func(network, **network_kwargs)
    '''  To put observations into a placeholder  '''
    # TODO: Can only deal with Discrete and Box observation spaces for now
    # observation_space = env.observation_space (default)
    # Use sub_obs_space instead

    observation_space = med_libs.subobs_space

    def make_obs_ph(name):
        return ObservationInput(observation_space, name=name)

    '''  Customize action  '''
    # TODO: subset of action space.
    action_dim = med_libs.sub_act_dim
    ''' 
    Returns: deepq.build_train()
        act: (tf.Variable, bool, float) -> tf.Variable
            function to select and action given observation.
            act is computed by [build_act] or [build_act_with_param_noise]
        train: (object, np.array, np.array, object, np.array, np.array) -> np.array
            optimize the error in Bellman's equation.
        update_target: () -> ()
            copy the parameters from optimized Q function to the target Q function. 
        debug: {str: function}
            a bunch of functions to print debug data like q_values.
    '''

    act, train, update_target, debug = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=action_dim,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        double_q=True,
        grad_norm_clipping=10,
        param_noise=param_noise)

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': action_dim,
    }
    '''Contruct an act object using ActWrapper'''
    act = ActWrapper(act, act_params)
    ''' Create the replay buffer'''
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                                alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = total_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    '''Create the schedule for exploration starting from 1.'''
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        total_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)
    '''
    Initialize all the uninitialized variables in the global scope and copy them to the target network.
    '''
    U.initialize()
    update_target()
    episode_rewards = [0.0]
    saved_mean_reward = None

    obs = env.reset()
    sub_obs = med_libs.custom_obs(obs)  # TODO: customize observations
    pre_obs = obs
    reset = True
    mydict = med_libs.action_dict
    already_starts = False

    with tempfile.TemporaryDirectory() as td:
        td = checkpoint_path or td
        model_file = os.path.join(td, "model")
        model_saved = False

        if tf.train.latest_checkpoint(td) is not None:
            load_variables(model_file)
            logger.log('Loaded model from {}'.format(model_file))
            model_saved = True

        elif load_path is not None:
            # load_path: a trained model/policy
            load_variables(load_path)
            logger.log('Loaded model from {}'.format(load_path))
        ''' Training loop starts'''
        t = 0
        while t < total_timesteps:
            if callback is not None:
                if callback(locals(), globals()):
                    break
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                update_param_noise_threshold = -np.log(1. - exploration.value(
                    t) + exploration.value(t) / float(env.action_space.n))
                kwargs['reset'] = reset
                kwargs[
                    'update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True
            ''' Choose action: take action and update exploration to the newest value
            '''
            # TODO: Mixed action strategy
            # Normal status, action is easily determined by rules, use [obs]
            action = med_libs.simple_case_action(obs)
            # Distraction status, action is determined by Q, with [sub_obs]
            if action == -10:
                action = act(np.array(sub_obs)[None],
                             update_eps=update_eps,
                             **kwargs)[0]
                action = med_libs.action_Q_env(
                    action
                )  # TODO:action_Q_env, from Q_action(0~2) to env_action(2~4)

            reset = False
            ''' Step action '''
            new_obs, rew, done, d_info = env.step(action)
            d_att_last = int(pre_obs[0][0])
            d_att_now = int(obs[0][0])
            d_att_next = int(new_obs[0][0])
            ''' Store transition in the replay buffer.'''
            pre_obs = obs
            obs = new_obs
            sub_new_obs = med_libs.custom_obs(new_obs)

            if (d_att_last == 0 and d_att_now == 1) and not already_starts:
                already_starts = True

            if already_starts and d_att_now == 1:
                replay_buffer.add(sub_obs, action, rew, sub_new_obs,
                                  float(done))
                episode_rewards[-1] += rew  # Sum of rewards
                t = t + 1
                print(
                    '>> Iteration:{}, State[d_att,cd_activate,L4_available,ssl4_activate,f_dc]:{}'
                    .format(t, sub_obs))
                print(
                    'Dis_Last:{}, Dis_Now:{}, Dis_Next:{},Reward+Cost:{}, Action:{}'
                    .format(
                        d_att_last, d_att_now, d_att_next, rew,
                        list(mydict.keys())[list(
                            mydict.values()).index(action)]))

            # update sub_obs
            sub_obs = sub_new_obs

            # Done and Reset
            if done:
                print('Done infos: ', d_info)
                print('======= end =======')
                obs = env.reset()
                sub_obs = med_libs.custom_obs(obs)  # TODO: custom obs
                pre_obs = obs  # TODO: save obs at t-1
                already_starts = False
                episode_rewards.append(0.0)
                reset = True

            # Update the Q network parameters
            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(
                        batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights,
                     batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                        batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None

                # Calculate td-errors
                actions = med_libs.action_env_Q(
                    actions
                )  # TODO:action_env_Q, from env_action(2~4) to Q_action(0~2)
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones,
                                  weights)

                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes,
                                                    new_priorities)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically, copy weights of Q to target Q
                update_target()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(
                    episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward",
                                      mean_100ep_reward)
                logger.record_tabular("% time spent exploring",
                                      int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts
                    and num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log(
                            "Saving model due to mean reward increase: {} -> {}"
                            .format(saved_mean_reward, mean_100ep_reward))
                    save_variables(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward

        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(
                    saved_mean_reward))
            load_variables(model_file)

    return act
Beispiel #30
0
def learn(env,
          q_func,
          num_actions=3,
          lr=5e-4,
          max_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=1,
          checkpoint_freq=10000,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          num_cpu=16,
          param_noise=False,
          param_noise_threshold=0.05,
          callback=None,
          demo_replay=[]
          ):
  """Train a deepq model.

  Parameters
  -------
  env: pysc2.env.SC2Env
      environment to train on
  q_func: (tf.Variable, int, str, bool) -> tf.Variable
      the model that takes the following inputs:
          observation_in: object
              the output of observation placeholder
          num_actions: int
              number of actions
          scope: str
          reuse: bool
              should be passed to outer variable scope
      and returns a tensor of shape (batch_size, num_actions) with values of every action.
  lr: float
      learning rate for adam optimizer
  max_timesteps: int
      number of env steps to optimizer for
  buffer_size: int
      size of the replay buffer
  exploration_fraction: float
      fraction of entire training period over which the exploration rate is annealed
  exploration_final_eps: float
      final value of random action probability
  train_freq: int
      update the model every `train_freq` steps.
      set to None to disable printing
  batch_size: int
      size of a batched sampled from replay buffer for training
  print_freq: int
      how often to print out training progress
      set to None to disable printing
  checkpoint_freq: int
      how often to save the model. This is so that the best version is restored
      at the end of the training. If you do not wish to restore the best version at
      the end of the training set this variable to None.
  learning_starts: int
      how many steps of the model to collect transitions for before learning starts
  gamma: float
      discount factor
  target_network_update_freq: int
      update the target network every `target_network_update_freq` steps.
  prioritized_replay: True
      if True prioritized replay buffer will be used.
  prioritized_replay_alpha: float
      alpha parameter for prioritized replay buffer
  prioritized_replay_beta0: float
      initial value of beta for prioritized replay buffer
  prioritized_replay_beta_iters: int
      number of iterations over which beta will be annealed from initial value
      to 1.0. If set to None equals to max_timesteps.
  prioritized_replay_eps: float
      epsilon to add to the TD errors when updating priorities.
  num_cpu: int
      number of cpus to use for training
  callback: (locals, globals) -> None
      function called at every steps with state of the algorithm.
      If callback returns true training stops.

  Returns
  -------
  act: ActWrapper
      Wrapper over act function. Adds ability to save it and load it.
      See header of baselines/deepq/categorical.py for details on the act function.
  """
  # Create all the functions necessary to train the model

  sess = U.make_session(num_cpu=num_cpu)
  sess.__enter__()

  def make_obs_ph(name):
    return U.BatchInput((64, 64), name=name)

  act, train, update_target, debug = deepq.build_train(
    make_obs_ph=make_obs_ph,
    q_func=q_func,
    num_actions=num_actions,
    optimizer=tf.train.AdamOptimizer(learning_rate=lr),
    gamma=gamma,
    grad_norm_clipping=10
  )
  act_params = {
    'make_obs_ph': make_obs_ph,
    'q_func': q_func,
    'num_actions': num_actions,
  }

  # Create the replay buffer
  if prioritized_replay:
    replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha)
    if prioritized_replay_beta_iters is None:
      prioritized_replay_beta_iters = max_timesteps
    beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                   initial_p=prioritized_replay_beta0,
                                   final_p=1.0)
  else:
    replay_buffer = ReplayBuffer(buffer_size)
    beta_schedule = None
  # Create the schedule for exploration starting from 1.
  exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * max_timesteps),
                               initial_p=1.0,
                               final_p=exploration_final_eps)

  # Initialize the parameters and copy them to the target network.
  U.initialize()
  update_target()

  episode_rewards = [0.0]
  saved_mean_reward = None

  obs = env.reset()
  # Select all marines first

  player_relative = obs[0].observation["screen"][_PLAYER_RELATIVE]

  screen = player_relative

  obs = common.init(env, obs)

  group_id = 0
  reset = True
  with tempfile.TemporaryDirectory() as td:
    model_saved = False
    model_file = os.path.join(td, "model")

    for t in range(max_timesteps):
      if callback is not None:
        if callback(locals(), globals()):
          break
      # Take action and update exploration to the newest value
      kwargs = {}
      if not param_noise:
        update_eps = exploration.value(t)
        update_param_noise_threshold = 0.
      else:
        update_eps = 0.
        if param_noise_threshold >= 0.:
          update_param_noise_threshold = param_noise_threshold
        else:
          # Compute the threshold such that the KL divergence between perturbed and non-perturbed
          # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
          # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
          # for detailed explanation.
          update_param_noise_threshold = -np.log(1. - exploration.value(t) + exploration.value(t) / float(num_actions))
        kwargs['reset'] = reset
        kwargs['update_param_noise_threshold'] = update_param_noise_threshold
        kwargs['update_param_noise_scale'] = True

      # custom process for DefeatZerglingsAndBanelings

      obs, screen, player = common.select_marine(env, obs)

      action = act(np.array(screen)[None], update_eps=update_eps, **kwargs)[0]
      reset = False
      rew = 0

      new_action = None

      obs, new_action = common.marine_action(env, obs, player, action)
      army_count = env._obs.observation.player_common.army_count

      try:
        if army_count > 0 and _ATTACK_SCREEN in obs[0].observation["available_actions"]:
          obs = env.step(actions=new_action)
        else:
          new_action = [sc2_actions.FunctionCall(_NO_OP, [])]
          obs = env.step(actions=new_action)
      except Exception as e:
        #print(e)
        1 # Do nothing

      player_relative = obs[0].observation["screen"][_PLAYER_RELATIVE]
      new_screen = player_relative

      rew += obs[0].reward

      done = obs[0].step_type == environment.StepType.LAST

      selected = obs[0].observation["screen"][_SELECTED]
      player_y, player_x = (selected == _PLAYER_FRIENDLY).nonzero()

      if(len(player_y)>0):
        player = [int(player_x.mean()), int(player_y.mean())]

      if(len(player) == 2):

        if(player[0]>32):
          new_screen = common.shift(LEFT, player[0]-32, new_screen)
        elif(player[0]<32):
          new_screen = common.shift(RIGHT, 32 - player[0], new_screen)

        if(player[1]>32):
          new_screen = common.shift(UP, player[1]-32, new_screen)
        elif(player[1]<32):
          new_screen = common.shift(DOWN, 32 - player[1], new_screen)

      # Store transition in the replay buffer.
      replay_buffer.add(screen, action, rew, new_screen, float(done))
      screen = new_screen

      episode_rewards[-1] += rew
      reward = episode_rewards[-1]

      if done:
        print("Episode Reward : %s" % episode_rewards[-1])
        obs = env.reset()
        player_relative = obs[0].observation["screen"][_PLAYER_RELATIVE]

        screen = player_relative

        group_list = common.init(env, obs)

        # Select all marines first
        #env.step(actions=[sc2_actions.FunctionCall(_SELECT_UNIT, [_SELECT_ALL])])
        episode_rewards.append(0.0)

        reset = True

      if t > learning_starts and t % train_freq == 0:
        # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
        if prioritized_replay:
          experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t))
          (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience
        else:
          obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(batch_size)
          weights, batch_idxes = np.ones_like(rewards), None
        td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights)
        if prioritized_replay:
          new_priorities = np.abs(td_errors) + prioritized_replay_eps
          replay_buffer.update_priorities(batch_idxes, new_priorities)

      if t > learning_starts and t % target_network_update_freq == 0:
        # Update target network periodically.
        update_target()

      mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
      num_episodes = len(episode_rewards)
      if done and print_freq is not None and len(episode_rewards) % print_freq == 0:
        logger.record_tabular("steps", t)
        logger.record_tabular("episodes", num_episodes)
        logger.record_tabular("reward", reward)
        logger.record_tabular("mean 100 episode reward", mean_100ep_reward)
        logger.record_tabular("% time spent exploring", int(100 * exploration.value(t)))
        logger.dump_tabular()

      if (checkpoint_freq is not None and t > learning_starts and
              num_episodes > 100 and t % checkpoint_freq == 0):
        if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
          if print_freq is not None:
            logger.log("Saving model due to mean reward increase: {} -> {}".format(
              saved_mean_reward, mean_100ep_reward))
          U.save_state(model_file)
          model_saved = True
          saved_mean_reward = mean_100ep_reward
    if model_saved:
      if print_freq is not None:
        logger.log("Restored model with mean reward: {}".format(saved_mean_reward))
      U.load_state(model_file)

  return ActWrapper(act)
Beispiel #31
0
def pok_learn(env,
          q_func,
          lr=5e-4,
          max_timesteps=1000, #DP DEL 000
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=100,
          checkpoint_freq=10000,
          learning_starts=1500,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          callback=None):
    """Train a deepq model.

    Parameters
    -------
    env: gym.Env
        environment to train on
    q_func: (tf.Variable, int, str, bool) -> tf.Variable
        the model that takes the following inputs:
            observation_in: object
                the output of observation placeholder
            num_actions: int
                number of actions
            scope: str
            reuse: bool
                should be passed to outer variable scope
        and returns a tensor of shape (batch_size, num_actions) with values of every action.
    lr: float
        learning rate for adam optimizer
    max_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
        set to None to disable printing
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to max_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model

    sess = tf.Session()
    sess.__enter__()

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph
    observation_space_shape = env.observation_space.shape #ok
    def make_obs_ph(name):
        return U.BatchInput(observation_space_shape, name=name)

    act, train, update_target, debug = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n, #ok
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        param_noise=param_noise
    )

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n, #ok
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = max_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1. #DP - don't need this
    # exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * max_timesteps),
    #                              initial_p=1.0,
    #                              final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    episode_rewards = [0.0]
    td_error_list = []
    saved_mean_reward = None
    saved_td_error = None
    obs = env.reset() #ok
    reset = True
    with tempfile.TemporaryDirectory() as td:
        model_saved = False
        model_file = os.path.join(td, "model")
        for t in range(max_timesteps):
            if callback is not None:
                if callback(locals(), globals()): #DP this somehow uses exploration
                    break
            #DP - not needed
            # Take action and update exploration to the newest value
            # kwargs = {}
            # if not param_noise:
            #     update_eps = exploration.value(t)
            #     update_param_noise_threshold = 0.
            # else:
            #     update_eps = 0.
                # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                # for detailed explanation.
                
                           
                # update_param_noise_threshold = -np.log(1. - exploration.value(t) + exploration.value(t) / float(env.action_space.n))
                # kwargs['reset'] = reset
                # kwargs['update_param_noise_threshold'] = update_param_noise_threshold
                # kwargs['update_param_noise_scale'] = True
            action = np.int64(env.action_space.sample()) #act(np.array(obs)[None], update_eps=update_eps, **kwargs)[0] #DP this is what we replace - what does act do??
            env_action = action #DP action
            reset = False
            new_obs, rew, done, _ = env.step(env_action) #ok
            # Store transition in the replay buffer.
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            obs = new_obs

            episode_rewards[-1] += rew
            if done:
                obs = env.reset()
                episode_rewards.append(0.0)
                reset = True
                
            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None

                # #DP EDIT
                # print("at step t " + str(t))
                # print("printing obses_t, actions, rewards, obses_tp1, dones, weights")
                # print(obses_t, actions, rewards, obses_tp1, dones, weights)
                # print("%"*30)
                
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights)
                td_error_list.append(np.mean(np.abs(td_errors)))
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes, new_priorities)

                

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target()

            #DP - convert to TD errors?
            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            if len(td_error_list) > 1000 / batch_size:
                mean_1000step_tderror = round(np.mean(td_error_list[-int(round(100/batch_size)):-1]),5)

            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward (how to interpret)?", mean_100ep_reward)
                if len(td_error_list) > 1000 / batch_size:
                    logger.record_tabular("mean abs 1000 td errs", mean_1000step_tderror) #DP
                logger.record_tabular("0% time spent exploring since using handlogs", 0) #int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts and
                    num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_td_error is None or mean_1000step_tderror < saved_td_error: #mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log("Saving model due to new avg trailing td error: {} -> {}".format( #DP
                                   saved_mean_reward, mean_1000step_tderror))
                    U.save_state(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
                    saved_td_error = mean_1000step_tderror
                    import pdb; pdb.set_trace()
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward & error: {} and {}".format(saved_mean_reward, saved_td_error))
            U.load_state(model_file)

    return act
Beispiel #32
0
def learn(env,
          network,
          seed=None,
          lr=5e-4,
          total_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=100,
          checkpoint_freq=10000,
          checkpoint_path=None,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          callback=None,
          load_path=None,
          **network_kwargs):
    """Train a deepq model.

    Parameters
    -------
    env: gym.Env
        environment to train on
    network: string or a function
        neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models
        (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which
        will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that)
    seed: int or None
        prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used.
    lr: float
        learning rate for adam optimizer
    total_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
        set to None to disable printing
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to total_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    param_noise: bool
        whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905)
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.
    load_path: str
        path to load the model from. (default: None)
    **network_kwargs
        additional keyword arguments to pass to the network builder.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model

    sess = get_session()
    set_global_seeds(seed)

    q_func = build_q_func(network, **network_kwargs)

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph

    observation_space = env.observation_space

    def make_obs_ph(name):
        return ObservationInput(observation_space, name=name)

    act, train, update_target, debug = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        param_noise=param_noise)

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                                alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = total_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        total_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()
    reset = True

    with tempfile.TemporaryDirectory() as td:
        td = checkpoint_path or td

        model_file = os.path.join(td, "model")
        model_saved = False

        if tf.train.latest_checkpoint(td) is not None:
            load_variables(model_file)
            logger.log('Loaded model from {}'.format(model_file))
            model_saved = True
        elif load_path is not None:
            load_variables(load_path)
            logger.log('Loaded model from {}'.format(load_path))

        for t in range(total_timesteps):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                # for detailed explanation.
                update_param_noise_threshold = -np.log(1. - exploration.value(
                    t) + exploration.value(t) / float(env.action_space.n))
                kwargs['reset'] = reset
                kwargs[
                    'update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True
            action = act(np.array(obs)[None], update_eps=update_eps,
                         **kwargs)[0]
            env_action = action
            reset = False
            new_obs, rew, done, _ = env.step(env_action)
            # Store transition in the replay buffer.
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            obs = new_obs

            episode_rewards[-1] += rew
            if done:
                obs = env.reset()
                episode_rewards.append(0.0)
                reset = True

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(
                        batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights,
                     batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                        batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones,
                                  weights)
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes,
                                                    new_priorities)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(
                    episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward",
                                      mean_100ep_reward)
                logger.record_tabular("% time spent exploring",
                                      int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts
                    and num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log(
                            "Saving model due to mean reward increase: {} -> {}"
                            .format(saved_mean_reward, mean_100ep_reward))
                    save_variables(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(
                    saved_mean_reward))
            load_variables(model_file)

    return act, debug['q_func'], debug['obs']
Beispiel #33
0
def learn(env,
          q_func,
          lr=5e-4,
          max_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=100,
          checkpoint_freq=10000,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          callback=None):
    sess = tf.Session()
    sess.__enter__()

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph
    if(env.is_single):
        observation_space_shape = env.observation_space.shape
        num_actions = env.action_space.n
    else:
        observation_space_shape = env.observation_space[0].shape
        num_actions = env.action_space[0].n
    num_agents=env.agentSize
    def make_obs_ph(name):
        return BatchInput(observation_space_shape, name=name)


    act, train, update_target, debug = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=num_actions,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        param_noise=param_noise
    )
    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': num_actions,
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size*num_agents, alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = max_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size*num_agents)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * max_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()
    reset = True
    with tempfile.TemporaryDirectory() as td:
        model_saved = False
        model_file = os.path.join(td, "model")
        for t in range(max_timesteps):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                # for detailed explanation.
                update_param_noise_threshold = -np.log(
                    1. - exploration.value(t) + exploration.value(t) / float(num_actions))
                kwargs['reset'] = reset
                kwargs['update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True
            action=[]
            qval=[]
            for i in range(num_agents):
                prediction=act(np.array(obs[i])[None], update_eps=update_eps, **kwargs)
                #print(prediction[0],prediction[1][0])
                action.append(prediction[0][0])
                qval.append(prediction[1][0])
            env_action = action
            reset = False
            new_obs, rew, done, _ = env.step(env_action,qval)
            # Store transition in the replay buffer.
            for i in range(num_agents):
                replay_buffer.add(obs[i], action[i], rew, new_obs[i], float(done))
            obs = new_obs
            episode_rewards[-1] += rew
            if done:
                obs = env.reset()
                episode_rewards.append(0.0)
                reset = True

            if t > learning_starts and t*num_agents % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                #print(obses_t.shape,actions.shape,rewards.shape,obses_tp1.shape,dones.shape)
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights)
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes, new_priorities)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward", mean_100ep_reward)
                logger.record_tabular("% time spent exploring", int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts and
                    num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log("Saving model due to mean reward increase: {} -> {}".format(
                            saved_mean_reward, mean_100ep_reward))
                    save_state(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(saved_mean_reward))
            load_state(model_file)

    return act,episode_rewards