Beispiel #1
0
def toWm(latlon, lon=None, radius=R_MA, Wm=Wm, name=''):
    '''Convert a lat-/longitude point to a WM coordinate.

       @param latlon: Latitude (C{degrees}) or an (ellipsoidal or
                      spherical) geodetic C{LatLon} point.
       @keyword lon: Optional longitude (C{degrees} or C{None}).
       @keyword radius: Optional earth radius (C{meter}).
       @keyword Wm: Optional (sub-)class for the WM coordinate
                    (L{Wm}) or C{None}.
       @keyword name: Optional name (C{str}).

       @return: The WM coordinate (L{Wm}) or 3-tuple (easting,
                northing, radius) if I{Wm} is C{None}.

       @raise ValueError: If I{lon} value is missing, if I{latlon}
                          is not scalar, if I{latlon} is beyond the
                          valid WM range and L{rangerrors} is set
                          to C{True} or if I{radius} is invalid.

       @example:

       >>> p = LatLon(48.8582, 2.2945)  # 448251.8 5411932.7
       >>> w = toWm(p)  # 448252 5411933
       >>> p = LatLon(13.4125, 103.8667)  # 377302.4 1483034.8
       >>> w = toWm(p)  # 377302 1483035
    '''
    r, e = radius, None
    try:
        lat, lon = latlon.lat, latlon.lon
        if isinstance(latlon, _ELLB):
            r = latlon.datum.ellipsoid.a
            e = latlon.datum.ellipsoid.e
            if not name:  # use latlon.name
                name = _nameof(latlon) or name  # PYCHOK no effect
        lat = clipDMS(lat, _LatLimit)
    except AttributeError:
        lat, lon = parseDMS2(latlon, lon, clipLat=_LatLimit)

    s = sin(radians(lat))
    y = atanh(s)  # == log(tan((90 + lat) / 2)) == log(tanPI_2_2(radians(lat)))
    if e:
        y -= e * atanh(e * s)

    e, n = r * radians(lon), r * y
    return (e, n, r) if Wm is None else _xnamed(Wm(e, n, radius=r), name)
Beispiel #2
0
def toCss(latlon, cs0=_CassiniSoldner0, height=None, Css=Css, name=''):
    '''Convert an (ellipsoidal) geodetic point to a Cassini-Soldner location.

       @param latlon: Ellipsoidal point (C{LatLon}).
       @keyword cs0: Optional, the Cassini-Soldner projection to use
                     (L{CassiniSoldner}).
       @keyword height: Optional height for the point, overriding
                        the default height (C{meter}).
       @keyword Css: Optional (sub-)class to return the location
                     (L{Css}) or C{None}.
       @keyword name: Optional I{Css} name (C{str}).

       @return: The Cassini-Soldner location (L{Css}) or 3-tuple
                (C{easting, northing, height}) if I{Css} is C{None}.

       @raise ImportError: Package U{GeographicLib<http://PyPI.org/
                           project/geographiclib>} missing.

       @raise TypeError: If I{latlon} is not ellipsoidal.
    '''
    if not isinstance(latlon, _LLEB):
        raise TypeError('%s not %s: %r' % ('latlon', 'ellipsoidal', latlon))

    cs = _CassiniSoldner(cs0)

    C, E = cs.datum.ellipsoid, latlon.datum.ellipsoid
    if C.a != E.a or C.f != E.f:
        raise ValueError('%s mistmatch %r vs %r' % ('ellipsoidal', C, E))

    e, n, z, rk = cs.forward4(latlon.lat, latlon.lon)
    h = latlon.height if height is None else height

    if Css is None:
        r = e, n, h
    else:
        r = _xnamed(Css(e, n, h=h, cs0=cs), name or _nameof(latlon))
        r._latlon = latlon.lat, latlon.lon
        r._azi, r._rk = z, rk
    return r
Beispiel #3
0
def toOsgr(latlon, lon=None, datum=Datums.WGS84, Osgr=Osgr, name=''):
    '''Convert a lat-/longitude point to an OSGR coordinate.

       @param latlon: Latitude (C{degrees}) or an (ellipsoidal)
                      geodetic C{LatLon} point.
       @keyword lon: Optional longitude in degrees (scalar or C{None}).
       @keyword datum: Optional datum to convert (C{Datum}).
       @keyword Osgr: Optional (sub-)class to return the OSGR
                      coordinate (L{Osgr}) or C{None}.
       @keyword name: Optional I{Osgr} name (C{str}).

       @return: The OSGR coordinate (L{Osgr}) or 2-tuple (easting,
                northing) if I{Osgr} is C{None}.

       @raise TypeError: Non-ellipsoidal I{latlon} or I{datum}
                         conversion failed.

       @raise ValueError: Invalid I{latlon} or I{lon}.

       @example:

       >>> p = LatLon(52.65798, 1.71605)
       >>> r = toOsgr(p)  # TG 51409 13177
       >>> # for conversion of (historical) OSGB36 lat-/longitude:
       >>> r = toOsgr(52.65757, 1.71791, datum=Datums.OSGB36)
    '''
    if not isinstance(latlon, _LLEB):
        # XXX fix failing _LLEB.convertDatum()
        latlon = _LLEB(*parseDMS2(latlon, lon), datum=datum)
    elif lon is not None:
        raise ValueError('%s not %s: %r' % ('lon', None, lon))
    elif not name:  # use latlon.name
        name = _nameof(latlon) or name  # PYCHOK no effect

    E = _OSGB36.ellipsoid

    ll = _ll2datum(latlon, _OSGB36, 'latlon')
    a, b = map1(radians, ll.lat, ll.lon)

    sa, ca = sincos2(a)

    s = E.e2s2(sa)
    v = E.a * _F0 / sqrt(s)  # nu
    r = s / E.e12  # nu / rho == v / (v * E.e12 / s)

    x2 = r - 1  # η2
    ta = tan(a)

    ca3, ca5 = fpowers(ca, 5, 3)  # PYCHOK false!
    ta2, ta4 = fpowers(ta, 4, 2)  # PYCHOK false!

    vsa = v * sa
    I4 = (E.b * _F0 * _M(E.Mabcd, a) + _N0, (vsa / 2) * ca,
          (vsa / 24) * ca3 * fsum_(5, -ta2, 9 * x2),
          (vsa / 720) * ca5 * fsum_(61, ta4, -58 * ta2))

    V4 = (_E0, (v * ca), (v / 6) * ca3 * (r - ta2), (v / 120) * ca5 * fdot(
        (-18, 1, 14, -58), ta2, 5 + ta4, x2, ta2 * x2))

    d, d2, d3, d4, d5, d6 = fpowers(b - _B0, 6)  # PYCHOK false!
    n = fdot(I4, 1, d2, d4, d6)
    e = fdot(V4, 1, d, d3, d5)

    return (e, n) if Osgr is None else _xnamed(Osgr(e, n), name)
Beispiel #4
0
def toUtm(latlon, lon=None, datum=None, Utm=Utm, name='', cmoff=True):
    '''Convert a lat-/longitude point to a UTM coordinate.

       @param latlon: Latitude (C{degrees}) or an (ellipsoidal)
                      geodetic C{LatLon} point.
       @keyword lon: Optional longitude (C{degrees} or C{None}).
       @keyword datum: Optional datum for this UTM coordinate,
                       overriding I{latlon}'s datum (C{Datum}).
       @keyword Utm: Optional (sub-)class to use for the UTM
                     coordinate (L{Utm}) or C{None}.
       @keyword name: Optional I{Utm} name (C{str}).
       @keyword cmoff: Offset longitude from zone's central meridian,
                       apply false easting and false northing (C{bool}).

       @return: The UTM coordinate (L{Utm}) or a 6-tuple (zone, easting,
                northing, band, convergence, scale) if I{Utm} is C{None}
                or I{cmoff} is C{False}.

       @raise TypeError: If I{latlon} is not ellipsoidal.

       @raise RangeError: If I{lat} is outside the valid UTM bands or if
                          I{lat} or I{lon} outside the valid range and
                          I{rangerrrors} set to C{True}.

       @raise ValueError: If I{lon} value is missing or if I{latlon}
                          is invalid.

       @note: Implements Karney’s method, using 8-th order Krüger series,
              giving results accurate to 5 nm (or better) for distances
              up to 3900 km from the central meridian.

       @example:

       >>> p = LatLon(48.8582, 2.2945)  # 31 N 448251.8 5411932.7
       >>> u = toUtm(p)  # 31 N 448252 5411933
       >>> p = LatLon(13.4125, 103.8667) # 48 N 377302.4 1483034.8
       >>> u = toUtm(p)  # 48 N 377302 1483035
    '''
    try:
        lat, lon = latlon.lat, latlon.lon
        if not isinstance(latlon, _LLEB):
            raise TypeError('%s not %s: %r' %
                            ('latlon', 'ellipsoidal', latlon))
        if not name:  # use latlon.name
            name = _nameof(latlon) or name  # PYCHOK no effect
        d = datum or latlon.datum
    except AttributeError:
        lat, lon = parseDMS2(latlon, lon)
        d = datum or Datums.WGS84

    E = d.ellipsoid

    z, B, a, b = _toZBab4(lat, lon, cmoff)

    # easting, northing: Karney 2011 Eq 7-14, 29, 35
    cb, sb, tb = cos(b), sin(b), tan(b)

    T = tan(a)
    T12 = hypot1(T)
    S = sinh(E.e * atanh(E.e * T / T12))

    T_ = T * hypot1(S) - S * T12
    H = hypot(T_, cb)

    y = atan2(T_, cb)  # ξ' ksi
    x = asinh(sb / H)  # η' eta

    A0 = _K0 * E.A

    Ks = _Kseries(E.AlphaKs, x, y)  # Krüger series
    y = Ks.ys(y) * A0  # ξ
    x = Ks.xs(x) * A0  # η

    if cmoff:
        # C.F.F. Karney, "Test data for the transverse Mercator projection (2009)",
        # <http://GeographicLib.SourceForge.io/html/transversemercator.html> and
        # <http://Zenodo.org/record/32470#.W4LEJS2ZON8>
        x += _FalseEasting  # make x relative to false easting
        if y < 0:
            y += _FalseNorthing  # y relative to false northing in S

    # convergence: Karney 2011 Eq 23, 24
    p_ = Ks.ps(1)
    q_ = Ks.qs(0)
    c = degrees(atan(T_ / hypot1(T_) * tb) + atan2(q_, p_))

    # scale: Karney 2011 Eq 25
    s = E.e2s(sin(a)) * T12 / H * (A0 / E.a * hypot(p_, q_))

    if cmoff and Utm is not None:
        h = 'S' if a < 0 else 'N'  # hemisphere
        return _xnamed(
            Utm(z, h, x, y, band=B, datum=d, convergence=c, scale=s), name)
    else:  # zone, easting, northing, band, convergence and scale
        return z, x, y, B, c, s