Beispiel #1
0
    def __init__(self, num_feat=64, deformable_groups=8):
        super(PCDAlignment, self).__init__()

        # Pyramid has three levels:
        # L3: level 3, 1/4 spatial size
        # L2: level 2, 1/2 spatial size
        # L1: level 1, original spatial size
        self.offset_conv1 = nn.ModuleDict()
        self.offset_conv2 = nn.ModuleDict()
        self.offset_conv3 = nn.ModuleDict()
        self.dcn_pack = nn.ModuleDict()
        self.feat_conv = nn.ModuleDict()

        # Pyramids
        for i in range(3, 0, -1):
            level = f'l{i}'
            self.offset_conv1[level] = nn.Conv2d(num_feat * 2, num_feat, 3, 1,
                                                 1)
            if i == 3:
                self.offset_conv2[level] = nn.Conv2d(num_feat, num_feat, 3, 1,
                                                     1)
            else:
                self.offset_conv2[level] = nn.Conv2d(num_feat * 2, num_feat, 3,
                                                     1, 1)
                self.offset_conv3[level] = nn.Conv2d(num_feat, num_feat, 3, 1,
                                                     1)
            self.dcn_pack[level] = DCNv2Pack(
                num_feat,
                num_feat,
                3,
                padding=1,
                deformable_groups=deformable_groups)

            if i < 3:
                self.feat_conv[level] = nn.Conv2d(num_feat * 2, num_feat, 3, 1,
                                                  1)

        # Cascading dcn
        self.cas_offset_conv1 = nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1)
        self.cas_offset_conv2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
        self.cas_dcnpack = DCNv2Pack(num_feat,
                                     num_feat,
                                     3,
                                     padding=1,
                                     deformable_groups=deformable_groups)

        self.upsample = nn.Upsample(scale_factor=2,
                                    mode='bilinear',
                                    align_corners=False)
        self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
Beispiel #2
0
    def __init__(self, num_feat=64, deformable_groups=8):
        super(PreDcn, self).__init__()

        self.offset_conv1 = nn.ModuleDict()
        self.dcn_pack = nn.ModuleDict()
        self.feat_conv = nn.ModuleDict()

        # Cascading dcn
        self.cas_offset_conv1 = nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1)
        self.cas_offset_conv2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
        self.cas_dcnpack = DCNv2Pack(num_feat,
                                     num_feat,
                                     3,
                                     padding=1,
                                     deformable_groups=deformable_groups)

        self.upsample = nn.Upsample(scale_factor=2,
                                    mode='bilinear',
                                    align_corners=False)
        self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)