Beispiel #1
0
    parser.add_argument(
        '--ckpt',
        type=str,
        default=  # noqa: E251
        'experiments/pretrained_models/stylegan2_ffhq_config_f_1024_official-f8a4b805.pth'  # noqa: E501
    )
    parser.add_argument('--channel_multiplier', type=int, default=2)

    args = parser.parse_args()

    args.latent = 512
    args.n_mlp = 8
    mmcv.mkdir_or_exist('samples')

    g_ema = StyleGAN2Generator(
        args.size,
        args.latent,
        args.n_mlp,
        channel_multiplier=args.channel_multiplier).to(device)
    checkpoint = torch.load(args.ckpt)['params_ema']

    g_ema.load_state_dict(checkpoint)

    if args.truncation < 1:
        with torch.no_grad():
            mean_latent = g_ema.mean_latent(args.truncation_mean)
    else:
        mean_latent = None

    generate(args, g_ema, device, mean_latent)
Beispiel #2
0
    return crt_net


if __name__ == '__main__':
    """Convert official stylegan2 weights from stylegan2-pytorch."""

    # configuration
    ori_net = torch.load('experiments/pretrained_models/stylegan2-ffhq.pth')
    save_path_g = 'experiments/pretrained_models/stylegan2_ffhq_config_f_1024_official.pth'  # noqa: E501
    save_path_d = 'experiments/pretrained_models/stylegan2_ffhq_config_f_1024_discriminator_official.pth'  # noqa: E501
    out_size = 1024
    channel_multiplier = 1

    # convert generator
    crt_net = StyleGAN2Generator(out_size,
                                 num_style_feat=512,
                                 num_mlp=8,
                                 channel_multiplier=channel_multiplier)
    crt_net = crt_net.state_dict()

    crt_net_params_ema = convert_net_g(ori_net['g_ema'], crt_net)
    torch.save(
        dict(params_ema=crt_net_params_ema, latent_avg=ori_net['latent_avg']),
        save_path_g)

    # convert discriminator
    crt_net = StyleGAN2Discriminator(out_size,
                                     channel_multiplier=channel_multiplier)
    crt_net = crt_net.state_dict()

    crt_net_params = convert_net_d(ori_net['d'], crt_net)
    torch.save(dict(params=crt_net_params), save_path_d)
Beispiel #3
0
def calculate_stylegan2_fid():
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    parser = argparse.ArgumentParser()
    parser.add_argument('ckpt',
                        type=str,
                        help='Path to the stylegan2 checkpoint.')
    parser.add_argument('fid_stats',
                        type=str,
                        help='Path to the dataset fid statistics.')
    parser.add_argument('--size', type=int, default=256)
    parser.add_argument('--channel_multiplier', type=int, default=2)
    parser.add_argument('--batch_size', type=int, default=64)
    parser.add_argument('--num_sample', type=int, default=50000)
    parser.add_argument('--truncation', type=float, default=1)
    parser.add_argument('--truncation_mean', type=int, default=4096)
    args = parser.parse_args()

    # create stylegan2 model
    generator = StyleGAN2Generator(out_size=args.size,
                                   num_style_feat=512,
                                   num_mlp=8,
                                   channel_multiplier=args.channel_multiplier,
                                   resample_kernel=(1, 3, 3, 1))
    generator.load_state_dict(torch.load(args.ckpt)['params_ema'])
    generator = nn.DataParallel(generator).eval().to(device)

    if args.truncation < 1:
        with torch.no_grad():
            truncation_latent = generator.mean_latent(args.truncation_mean)
    else:
        truncation_latent = None

    # inception model
    inception = load_patched_inception_v3(device)

    total_batch = math.ceil(args.num_sample / args.batch_size)

    def sample_generator(total_batch):
        for i in range(total_batch):
            with torch.no_grad():
                latent = torch.randn(args.batch_size, 512, device=device)
                samples, _ = generator([latent],
                                       truncation=args.truncation,
                                       truncation_latent=truncation_latent)
            yield samples

    features = extract_inception_features(sample_generator(total_batch),
                                          inception, total_batch, device)
    features = features.numpy()
    total_len = features.shape[0]
    features = features[:args.num_sample]
    print(f'Extracted {total_len} features, '
          f'use the first {features.shape[0]} features to calculate stats.')
    sample_mean = np.mean(features, 0)
    sample_cov = np.cov(features, rowvar=False)

    # load the dataset stats
    stats = torch.load(args.fid_stats)
    real_mean = stats['mean']
    real_cov = stats['cov']

    # calculate FID metric
    fid = calculate_fid(sample_mean, sample_cov, real_mean, real_cov)
    print('fid:', fid)