Beispiel #1
0
 def setup_schedulers(self):
     """Set up schedulers."""
     train_opt = self.opt['train']
     scheduler_type = train_opt['scheduler'].pop('type')
     if scheduler_type in ['MultiStepLR', 'MultiStepRestartLR']:
         for optimizer in self.optimizers:
             self.schedulers.append(
                 lr_scheduler.MultiStepRestartLR(optimizer,
                                                 **train_opt['scheduler']))
     elif scheduler_type == 'CosineAnnealingRestartLR':
         for optimizer in self.optimizers:
             self.schedulers.append(
                 lr_scheduler.CosineAnnealingRestartLR(
                     optimizer, **train_opt['scheduler']))
     elif scheduler_type == 'TrueCosineAnnealingLR':
         print('..', 'cosineannealingLR')
         for optimizer in self.optimizers:
             self.schedulers.append(
                 torch.optim.lr_scheduler.CosineAnnealingLR(
                     optimizer, **train_opt['scheduler']))
     elif scheduler_type == 'LinearLR':
         for optimizer in self.optimizers:
             self.schedulers.append(
                 lr_scheduler.LinearLR(optimizer, train_opt['total_iter']))
     elif scheduler_type == 'VibrateLR':
         for optimizer in self.optimizers:
             self.schedulers.append(
                 lr_scheduler.VibrateLR(optimizer, train_opt['total_iter']))
     else:
         raise NotImplementedError(
             f'Scheduler {scheduler_type} is not implemented yet.')
Beispiel #2
0
 def setup_schedulers(self):
     """Set up schedulers."""
     train_opt = self.opt['train']
     scheduler_type = train_opt['scheduler'].pop('type')
     if scheduler_type in ['MultiStepLR', 'MultiStepRestartLR']:
         for optimizer in self.optimizers:
             self.schedulers.append(lr_scheduler.MultiStepRestartLR(optimizer, **train_opt['scheduler']))
     elif scheduler_type == 'CosineAnnealingRestartLR':
         for optimizer in self.optimizers:
             self.schedulers.append(lr_scheduler.CosineAnnealingRestartLR(optimizer, **train_opt['scheduler']))
     else:
         raise NotImplementedError(f'Scheduler {scheduler_type} is not implemented yet.')