def __init__(self): self.batch_table = BatchTable() self.feature_table = InstanceFeatureTable() self.gltf_bin = bytearray()
class I3DM: def __init__(self): self.batch_table = BatchTable() self.feature_table = InstanceFeatureTable() self.gltf_bin = bytearray() def loadJSONBatch(self, data_in, object_wise=True): self.batch_table.loadJSONBatch(data_in, object_wise) def loadJSONInstances(self, i3dm_json, object_wise=True): self.loadJSONFeatures(i3dm_json, object_wise) def loadJSONFeatures(self, data_in, object_wise=True): self.feature_table.loadJSONBatch(data_in, object_wise) # If embed_gltf is false, gltf_bin is a URI string instead of GLTF data def writeBinary(self, gltf_bin, embed_gltf=True, num_batches=0, num_feature_features=0): self.embed_gltf = embed_gltf # Add the required field BATCH_LENGTH to the feature table, # as well as any other required globals num_batch_features = max(num_batches, self.batch_table.getNumFeatures()) self.feature_table.addGlobal('BATCH_LENGTH', num_batch_features) num_feature_features = max(num_feature_features, self.feature_table.getNumFeatures()) self.feature_table.addGlobal('INSTANCES_LENGTH', num_feature_features) self.batch_table.finalize() self.feature_table.finalize() # Generate the header output = self.writeHeader(gltf_bin, num_batch_features, num_feature_features) # Add the feature table JSON to the output feature_json = self.feature_table.getFeatureJSON() output.extend(feature_json) # Add the feature table binary to the output feature_bin = self.feature_table.getFeatureBin() output.extend(feature_bin) # Add the batch table JSON to the output batch_json = self.batch_table.getBatchJSON() output.extend(batch_json) # Add the batch table binary to the output batch_bin = self.batch_table.getBatchBin() output.extend(batch_bin) # Add the GLTF model body to the output output.extend(gltf_bin) return output # If embed_gltf is false, gltf_bin is a URI string instead of GLTF data def writeHeader(self, gltf_bin, num_batch_features, num_feature_features): len_feature_json = len(self.feature_table.getFeatureJSON()) len_feature_bin = len(self.feature_table.getFeatureBin()) len_batch_json = len(self.batch_table.getBatchJSON()) len_batch_bin = len(self.batch_table.getBatchBin()) length = I3DM_HEADER_LEN + \ len_feature_json + len_feature_bin + \ len_batch_json + len_batch_bin + \ len(gltf_bin) output = bytearray() output.extend(I3DM_MAGIC) output.extend(struct.pack('<I', I3DM_VERSION)) output.extend(struct.pack('<I', length)) output.extend(struct.pack('<I', len_feature_json)) output.extend(struct.pack('<I', len_feature_bin)) output.extend(struct.pack('<I', len_batch_json)) output.extend(struct.pack('<I', len_batch_bin)) output.extend(struct.pack('<I', 1 if self.embed_gltf else 0)) # Sanity check if (len(output) != I3DM_HEADER_LEN): raise ValueError("Incorrect i3dm header length") return output def readBinary(self, data): self.offset = 0 self.readHeader(data) # What it says on the tin # Now grab the feature table, batch table, and GLB self.feature_json = self.unpackString(data, self.len_feature_json) self.feature_bin = self.unpackString(data, self.len_feature_bin) self.batch_json = self.unpackString(data, self.len_batch_json) self.batch_bin = self.unpackString(data, self.len_batch_bin) self.gltf_bin = self.unpackString(data, self.length - self.offset) def readHeader(self, data): self.magic = self.unpack('4s', data) self.version = self.unpack('<I', data) if self.magic != I3DM_MAGIC or self.version > I3DM_VERSION: raise IOError("Unrecognized magic %s or bad version %d" % (self.magic, self.version)) self.length = self.unpack('<I', data) self.len_feature_json = self.unpack('<I', data) self.len_feature_bin = self.unpack('<I', data) self.len_batch_json = self.unpack('<I', data) self.len_batch_bin = self.unpack('<I', data) self.embed_gltf = self.unpack('<I', data) def getGLTFBin(self): return self.gltf_bin def unpackString(self, data, length): self.offset += length return data[self.offset - length:self.offset] def unpack(self, fmt, data): calc_len = struct.calcsize(fmt) self.offset += calc_len return struct.unpack(fmt, data[self.offset - calc_len:self.offset])[0]
def __init__(self): BatchTable.__init__(self)
def __init__(self): BatchTable.init(self) self.gltf_bin = bytearray() raise NotImplementedError
def __init__(self): BatchTable.__init__(self) self.features_global = {} self.features_json = bytearray() self.features_bin = bytearray() self.num_global_features = 0
class B3DM: def __init__(self): self.batch_table = BatchTable() self.feature_table = FeatureTable() self.gltf_bin = bytearray() def loadJSONBatch(self, data_in, object_wise=True): self.batch_table.loadJSONBatch(data_in, object_wise) def loadJSONFeature(self, data_in, object_wise=True): self.feature_table.loadJSONBatch(data_in, object_wise) def writeBinary(self, gltf_bin, num_batch_features=0, num_feature_features=0): # Add the required field BATCH_LENGTH to the feature table, # as well as any other required globals num_batch_features = max(num_batch_features, self.batch_table.getNumFeatures()) self.feature_table.addGlobal('BATCH_LENGTH', num_batch_features) num_feature_features = max(num_feature_features, self.feature_table.getNumFeatures()) self.batch_table.finalize() self.feature_table.finalize() # Generate the header output = self.writeHeader(gltf_bin, num_batch_features, num_feature_features) # Add the feature table JSON to the output feature_json = self.feature_table.getBatchJSON() output.extend(feature_json) # Add the batch table binary to the output feature_bin = self.feature_table.getBatchBin() output.extend(feature_bin) # Add the batch table JSON to the output batch_json = self.batch_table.getBatchJSON() output.extend(batch_json) # Add the batch table binary to the output batch_bin = self.batch_table.getBatchBin() output.extend(batch_bin) # Add the GLTF model body to the output output.extend(gltf_bin) return output def writeHeader(self, gltf_bin, num_feature_features, num_batch_features): len_feature_json = len(self.feature_table.getBatchJSON()) len_feature_bin = len(self.feature_table.getBatchBin()) len_batch_json = len(self.batch_table.getBatchJSON()) len_batch_bin = len(self.batch_table.getBatchBin()) length = B3DM_HEADER_LEN + \ len_feature_json + len_feature_bin + \ len_batch_json + len_batch_bin + \ len(gltf_bin) output = bytearray() output.extend("b3dm") output.extend(struct.pack('<I', B3DM_VERSION)) output.extend(struct.pack('<I', length)) output.extend(struct.pack('<I', len_feature_json)) output.extend(struct.pack('<I', len_feature_bin)) output.extend(struct.pack('<I', len_batch_json)) output.extend(struct.pack('<I', len_batch_bin)) # Sanity check if (len(output) != B3DM_HEADER_LEN): raise ValueError("Incorrect b3dm header length") return output