Beispiel #1
0
plt.figure()
plt.hist(D.flatten(), bins=50, label='D')
#plt.hist(al.flatten(),bins= 50,label='al')
plt.hist(am1.flatten(), bins=50, label='am1')
# plt.xlim([0, 1])
plt.ylim([0, 3500])
plt.xlim([0, 2])
plt.legend()
plt.ylabel('count')
plt.xlabel('value')

#%% Comparison output
InputFolder_py = 'out/SICE_2020_py/'
InputFolder_fortran = 'out/SICE_2020_py - Kopi/'
#InputFolder_fortran = 'out/SICE_2020_py//'
tmp = bl.heatmap(
    rio.open(InputFolder_py + 'diagnostic_retrieval.tif').read(1), 'isnow_py')
isnow = rio.open(InputFolder_py + 'diagnostic_retrieval.tif').read(1)
ind_all_clean = np.logical_or(isnow == 0, isnow == 7)

var_list = ('albedo_bb_planar_sw', 'albedo_bb_spherical_sw')
for i in range(len(var_list)):
    var_py = rio.open(InputFolder_py + var_list[i] + '.tif').read(1)
    var_f = rio.open(InputFolder_fortran + var_list[i] + '.tif').read(1)
    diff = var_f - var_py
    diff[~ind_all_clean] = np.nan
    plt.figure(figsize=(10, 15))
    bl.heatmap(diff,
               'Approximation - Integration',
               col_lim=(-0.01, 0.01),
               cmap_in='seismic')
    plt.title(var_list[i])
Beispiel #2
0
     output_sice_f(OutputFolder+"boar.dat",'rBRR_'+str(i+1),4+i)
 
 #%%   plotting oulooks  
 try:
     os.mkdir(OutputFolder+'plots')
 except:
     print('folder exist')
     
 import matplotlib.pyplot as plt
    
 # fig,ax=bl.heatmap_discrete(rio.open(OutputFolder+'diagnostic_retrieval.tif').read(1),
 #                         'diagnostic_retrieval ')
 # ax.set_title(OutputFolder)
 # fig.savefig(OutputFolder+'plots/diagnostic_retrieval.png',bbox_inches='tight')
 
 var_list = ('albedo_bb_planar_sw','albedo_bb_spherical_sw')
 for i in range(len(var_list)):
     var_1 = rio.open(OutputFolder+var_list[i]+'.tif').read(1)
     plt.figure(figsize=(10,15))
     bl.heatmap(var_1,var_list[i], col_lim=(0, 1) ,cmap_in='jet')
     plt.title(OutputFolder)
     plt.savefig(OutputFolder+'plots/'+var_list[i]+'_diff.png',bbox_inches='tight')
 plt.ioff()  
 for i in np.append(np.arange(11), np.arange(21)):
     var_name = 'albedo_spectral_spherical_'+ str(i+1).zfill(2)
     var_1 = rio.open(OutputFolder+var_name+'.tif').read(1)
     plt.figure(figsize=(10,15))
     bl.heatmap(var_1,var_name, col_lim=(0, 1) ,cmap_in='jet')
     plt.title(OutputFolder)
     plt.savefig(OutputFolder+'plots/'+var_name+'.png',bbox_inches='tight')
 plt.ion()
Beispiel #3
0
    os.mkdir(InputFolder + 'plots')
except:
    print('folder exist')

fig, ax = bl.heatmap_discrete(
    rio.open(InputFolder + 'diagnostic_retrieval.tif').read(1),
    'diagnostic_retrieval ')
ax.set_title(InputFolder)
fig.savefig(InputFolder + 'plots/diagnostic_retrieval.png',
            bbox_inches='tight')

var_list = ('albedo_bb_planar_sw', 'albedo_bb_spherical_sw', 'r0')
for i in range(len(var_list)):
    var_1 = rio.open(InputFolder + var_list[i] + '.tif').read(1)
    plt.figure(figsize=(10, 15))
    bl.heatmap(var_1, var_list[i], col_lim=(0, 1), cmap_in='jet')
    plt.title(InputFolder)
    plt.savefig(InputFolder + 'plots/' + var_list[i] + '.png',
                bbox_inches='tight')
    plt.close()

var_list = ('O3_SICE', 'grain_diameter', 'snow_specific_area', 'al', 'conc')
for i in range(len(var_list)):
    var_1 = rio.open(InputFolder + var_list[i] + '.tif').read(1)
    plt.figure(figsize=(10, 15))
    bl.heatmap(var_1, var_list[i], cmap_in='jet')
    plt.title(InputFolder)
    plt.savefig(InputFolder + 'plots/' + var_list[i] + '.png',
                bbox_inches='tight')
    plt.close()