Beispiel #1
0
    # Set accepted limit, lim
    lims = [1000]  # , 5000, 10000]
    distances = []
    for dist_measure in ['NRMSE']:
        distances.extend(['{}_{}'.format(t, dist_measure)
                          for t in config['targets']])
        distances.append(dist_measure)

    for lim in lims:
        for d in distances:
            print("Working on {}".format(d.upper()))
            figPath = os.path.join(output_dir, "Figures", str(lim), d)

            dir_util.mkpath(figPath)
            print("Plotting total histogram")
            hist1 = histogram_plot(results, distance=d, frac=100)
            hist1.savefig(
                os.path.join(figPath, 'full_histogram_{}.png'.format(DATASET)),
                bbox_inches='tight')
            print("Plotting fraction histogram")
            hist2 = histogram_plot(results, distance=d, limit=lim)
            hist2.savefig(
                os.path.join(
                    figPath, 'tol_{}_histogram_{}.png'.format(str(lim).replace('.', '_'), DATASET)),
                bbox_inches='tight')
            print("Considering {} lowest values".format(lim))
            # print("Generating scatter plot")
            # scatter_dist_plot(results, params, tolerance=tol, n_ticks=4)
            print("Generating KDE plot")
            g = kde_plot(results, params, limit=lim, n_ticks=4, d=d,
                         median_file=os.path.join(figPath, "medians.txt"))
Beispiel #2
0
distances = []
for dist_measure in ['NRMSE']:
    #     distances.extend(['{}_{}'.format(t, dist_measure)
    #                       for t in config['targets']])
    distances.append(dist_measure)
# for lim in lims:
for tol in tols:
    for d in distances:
        print("Working on {}".format(d.upper()))
        figPath = "/home/buck06191/Dropbox/phd/Bayesian_fitting/{}/{}/{}/{}/{}/{}/"\
            "Figures/{}".format(model_name, 'PLOS_paper', 'hypoxia',
                                'experimental', 'wide_range', 'tolerance', d)

        dir_util.mkpath(figPath)
        print("Plotting total histogram")
        hist1 = histogram_plot(results, distance=d, frac=1)
        hist1.savefig(os.path.join(figPath, 'full_histogram_experimental.png'),
                      bbox_inches='tight')
        print("Plotting fraction histogram")
        hist2 = histogram_plot(results, distance=d, tolerance=tol)
        hist2.savefig(os.path.join(
            figPath, 'tol_{}_histogram_experimental.png'.format(
                str(tol).replace('.', '_'))),
                      bbox_inches='tight')
        print("Considering {} lowest values".format(tol))
        # print("Generating scatter plot")
        # scatter_dist_plot(results, params, tolerance=tol, n_ticks=4)
        sorted_results = results.sort_values(by=d).head(5000)
        print("Generating KDE plot")
        g = kde_plot(sorted_results,
                     params,