Beispiel #1
0
    def rejection_sampling(self,
                           X: str,
                           N: int,
                           e: dict = None) -> ProbDist:  #533
        """
        Estimate the probability distribution of variable X given using 
        N samples and evidence e.  If not evidence is given, use the default
        for the Inference object.
        """
        if e == None:
            e = self.evidence

        # Q = ProbDist(X)
        """YOUR CODE"""
        countV = ProbDist(X)

        for j in range(N):  #N is the sample spaces.
            x = self.sample()  #   x←PRIOR-SAMPLE(bn)
            # px=ProbDist(x)
            #new way. want to find if e is subset of x items.
            setx = set(x.items())
            sete = set(e.items())
            if (sete.issubset(setx)):  #yay
                if x[X] is True:
                    countV[x[X]] = countV[x[X]] + 1
                if (x[X] is False):
                    countV[x[X]] = countV[x[X]] + 1
        # print(ProbDist.normalize(countV))
        return ProbDist.normalize(countV)  #<-- fix this too
Beispiel #2
0
    def enumeration_infer(self, X, e=None) -> ProbDist:  #page 525-528
        """
        Return the conditional probability distribution of variable X
        given evidence e
        """
        '''
        Use evidence passed to function call, otherwise use default
        '''
        if e == None:
            e = self.evidence

        assert X not in e, 'Query variable must be distinct from evidence'
        assert X in self.net.variables, 'Variable needs to be in network'
        """
        * Initialize a probability distribution 
        * For each outcome sum over all the hidden variables
        * Normalize
        """
        Q = ProbDist(X)
        # print(Q)
        # print('im here')
        # for each value xi of X do
        for xi in self.net.variable_values(X):
            # e[xi] = X
            exi = self.copy_assign(e, X, xi)
            # print(exi,'exiGHGHGHGHGHHGHGHGHGHGHG')
            # Q(xi)←ENUMERATE-ALL(bn.VARS, exi )
            Q[xi] = self.enumerate_all(self.net.variables, exi)
            # print(e)
        """YOUR CODE"""
        # return NORMALIZE(Q(X))
        # print(Q, "this is Q")
        return Q.normalize()
Beispiel #3
0
 def likelihood_weighting(self,
                          X: str,
                          N: int,
                          e: dict = None) -> ProbDist:  #page 534
     """Estimate the probability distribution of variable X given
     evidence e
     """
     if e == None:
         e = self.evidence
     W = ProbDist(X)
     for j in range(N):
         x, w = self.weighted_sample(e.copy())
         W[x[X]] = W[x[X]] + w
     return ProbDist.normalize(W)