Beispiel #1
0
def main():
    np.random.seed(42)
    X_train = np.array([
        [-3.0],
        [-1.0],
        [0.0],
        [1.0],
        [2.0],
        [4.0],
    ])
    Y_train = np.cos(X_train) + np.random.randn(X_train.shape[0], 1) * 0.2
    num_test = 10000
    X_test = np.linspace(-5, 5, num_test)
    X_test = X_test.reshape((num_test, 1))
    Y_test = np.cos(X_test)

    num_trees = 100
    depth_max = 5
    size_min_leaf = 2
    ratio_sampling = 0.8
    replace_samples = False
    num_features = 1
    split_random_location = True

    trees = trees_generic_trees.get_generic_trees(
        X_train, Y_train, num_trees, depth_max, size_min_leaf, ratio_sampling, replace_samples, num_features, split_random_location
    )

    mu, sigma = trees_common.predict_by_trees(X_test, trees)

    utils_plotting.plot_gp_via_distribution(X_train, Y_train, X_test, mu, sigma, Y_test, path_save=PATH_SAVE, str_postfix='cos')
Beispiel #2
0
    def compute_posteriors(self, X: np.ndarray,
                           trees: constants.TYPING_LIST) -> np.ndarray:
        """
        It returns posterior mean and standard deviation functions over `X`.

        :param X: inputs to test. Shape: (l, d).
        :type X: numpy.ndarray
        :param trees: list of trees.
        :type trees: list

        :returns: posterior mean and standard deviation functions
            over `X`. Shape: ((l, ), (l, )).
        :rtype: (numpy.ndarray, numpy.ndarray)

        :raises: AssertionError

        """

        assert isinstance(X, np.ndarray)
        assert isinstance(trees, list)
        assert len(X.shape) == 2
        assert X.shape[1] == self.num_dim

        pred_mean, pred_std = trees_common.predict_by_trees(X, trees)

        pred_mean = np.squeeze(pred_mean, axis=1)
        pred_std = np.squeeze(pred_std, axis=1)

        return pred_mean, pred_std
Beispiel #3
0
def main():
    time_start = time.time()

    np.random.seed(42)
    X_train = np.array([
        [-3.0],
        [-1.0],
        [0.0],
        [1.0],
        [2.0],
        [4.0],
    ])
    Y_train = np.cos(X_train) + np.random.randn(X_train.shape[0], 1) * 0.2
    num_test = 10000
    X_test = np.linspace(-5, 5, num_test)
    X_test = X_test.reshape((num_test, 1))
    Y_test = np.cos(X_test)

    num_trees = 100
    depth_max = 5
    size_min_leaf = 2
    num_features = 1

    trees = trees_random_forest.get_random_forest(
        X_train, Y_train, num_trees, depth_max, size_min_leaf, num_features
    )

    mu, sigma = trees_common.predict_by_trees(X_test, trees)

    time_end = time.time()
    print('time consumed: {:.4f}'.format(time_end - time_start))

    utils_plotting.plot_gp_via_distribution(X_train, Y_train, X_test, mu, sigma, Y_test, path_save=PATH_SAVE, str_postfix='cos')
Beispiel #4
0
def _predict_by_trees(num_test):
    X_test = np.linspace(-5, 5, num_test)
    X_test = X_test.reshape((num_test, 1))

    mu, sigma = trees_common.predict_by_trees(X_test, trees)

    return mu, sigma
Beispiel #5
0
def test_predict_by_trees():
    np.random.seed(42)

    X = np.reshape(np.arange(0, 40), (10, 4))
    Y = np.random.randn(10, 1)
    depth_max = 4
    size_min_leaf = 2
    num_features = 2
    split_random_location = True

    node_1 = package_target._split(X, Y, num_features, split_random_location)
    package_target.split(node_1, depth_max, size_min_leaf, num_features,
                         split_random_location, 1)

    node_2 = package_target._split(X, Y, num_features, split_random_location)
    package_target.split(node_2, depth_max, size_min_leaf, num_features,
                         split_random_location, 1)

    node_3 = package_target._split(X, Y, num_features, split_random_location)
    package_target.split(node_3, depth_max, size_min_leaf, num_features,
                         split_random_location, 1)

    list_trees = [node_1, node_2, node_3]

    with pytest.raises(AssertionError) as error:
        package_target.predict_by_trees(np.array([4.0, 2.0, 3.0, 1.0]), node_1)
    with pytest.raises(AssertionError) as error:
        package_target.predict_by_trees(np.array([4.0, 2.0, 3.0, 1.0]), 'abc')
    with pytest.raises(AssertionError) as error:
        package_target.predict_by_trees(np.array([4.0, 2.0, 3.0, 1.0]),
                                        list_trees)
    with pytest.raises(AssertionError) as error:
        package_target.predict_by_trees('abc', list_trees)

    means, stds = package_target.predict_by_trees(X, list_trees)
    print(means)
    print(stds)

    means_truth = np.array([
        [0.33710618],
        [0.1254467],
        [0.68947573],
        [0.9866563],
        [0.16257799],
        [0.16258346],
        [0.85148454],
        [0.55084716],
        [0.30721653],
        [0.30721653],
    ])

    stds_truth = np.array([
        [0.29842457],
        [0.33330409],
        [0.44398864],
        [0.72536523],
        [0.74232577],
        [0.74232284],
        [0.83388663],
        [0.5615399],
        [0.64331582],
        [0.64331582],
    ])

    assert isinstance(means, np.ndarray)
    assert isinstance(stds, np.ndarray)
    assert len(means.shape) == 2
    assert len(stds.shape) == 2
    assert means.shape[0] == stds.shape[0] == X.shape[0]
    assert means.shape[1] == stds.shape[1] == 1

    assert np.all(np.abs(means - means_truth) < TEST_EPSILON)
    assert np.all(np.abs(stds - stds_truth) < TEST_EPSILON)

    X = np.random.randn(1000, 4)

    means, stds = package_target.predict_by_trees(X, list_trees)

    assert isinstance(means, np.ndarray)
    assert isinstance(stds, np.ndarray)
    assert len(means.shape) == 2
    assert len(stds.shape) == 2
    assert means.shape[0] == stds.shape[0] == X.shape[0]
    assert means.shape[1] == stds.shape[1] == 1