Beispiel #1
0
def test_get_range_hyps():
    with pytest.raises(AssertionError) as error:
        utils_covariance.get_range_hyps(1.0, 2)
    with pytest.raises(AssertionError) as error:
        utils_covariance.get_range_hyps('abc', 2)
    with pytest.raises(AssertionError) as error:
        utils_covariance.get_range_hyps('se', 1.2)
    with pytest.raises(AssertionError) as error:
        utils_covariance.get_range_hyps('se', 2, is_ard='abc')
    with pytest.raises(AssertionError) as error:
        utils_covariance.get_range_hyps('se', 2, is_ard=1)
    with pytest.raises(AssertionError) as error:
        utils_covariance.get_range_hyps('se', 2, is_fixed_noise=1)
    with pytest.raises(AssertionError) as error:
        utils_covariance.get_range_hyps('se', 2, is_fixed_noise='abc')

    cur_range = utils_covariance.get_range_hyps('se',
                                                2,
                                                is_ard=False,
                                                is_fixed_noise=False)
    assert isinstance(cur_range, list)
    assert cur_range == [[0.01, 1000.0], [0.01, 1000.0], [0.001, 10.0]]
    print(type(cur_range))
    print(cur_range)
Beispiel #2
0
def get_optimized_kernel(
        X_train: np.ndarray,
        Y_train: np.ndarray,
        prior_mu: constants.TYPING_UNION_CALLABLE_NONE,
        str_cov: str,
        str_optimizer_method: str = constants.STR_OPTIMIZER_METHOD_GP,
        str_modelselection_method: str = constants.STR_MODELSELECTION_METHOD,
        use_ard: bool = constants.USE_ARD,
        fix_noise: bool = constants.FIX_GP_NOISE,
        debug: bool = False) -> constants.TYPING_TUPLE_TWO_ARRAYS_DICT:
    """
    This function computes the kernel matrix optimized by optimization
    method specified, its inverse matrix, and the optimized hyperparameters.

    :param X_train: inputs. Shape: (n, d) or (n, m, d).
    :type X_train: numpy.ndarray
    :param Y_train: outputs. Shape: (n, 1).
    :type Y_train: numpy.ndarray
    :param prior_mu: prior mean function or None.
    :type prior_mu: callable or NoneType
    :param str_cov: the name of covariance function.
    :type str_cov: str.
    :param str_optimizer_method: the name of optimization method.
    :type str_optimizer_method: str., optional
    :param str_modelselection_method: the name of model selection method.
    :type str_modelselection_method: str., optional
    :param use_ard: flag for using automatic relevance determination.
    :type use_ard: bool., optional
    :param fix_noise: flag for fixing a noise.
    :type fix_noise: bool., optional
    :param debug: flag for printing log messages.
    :type debug: bool., optional

    :returns: a tuple of kernel matrix over `X_train`, kernel matrix
        inverse, and dictionary of hyperparameters.
    :rtype: tuple of (numpy.ndarray, numpy.ndarray, dict.)

    :raises: AssertionError, ValueError

    """

    # TODO: check to input same fix_noise to convert_hyps and restore_hyps
    utils_gp.validate_common_args(X_train, Y_train, str_cov, prior_mu, debug)
    assert isinstance(str_optimizer_method, str)
    assert isinstance(str_modelselection_method, str)
    assert isinstance(use_ard, bool)
    assert isinstance(fix_noise, bool)
    utils_covariance.check_str_cov('get_optimized_kernel', str_cov,
                                   X_train.shape)
    assert str_optimizer_method in constants.ALLOWED_OPTIMIZER_METHOD_GP
    assert str_modelselection_method in constants.ALLOWED_MODELSELECTION_METHOD
    use_gradient = bool(str_optimizer_method != 'Nelder-Mead')
    # TODO: Now, use_gradient is fixed as False.
    #    use_gradient = False

    time_start = time.time()

    if debug:
        logger.debug('str_optimizer_method: %s', str_optimizer_method)
        logger.debug('str_modelselection_method: %s',
                     str_modelselection_method)
        logger.debug('use_gradient: %s', use_gradient)

    prior_mu_train = utils_gp.get_prior_mu(prior_mu, X_train)
    if str_cov in constants.ALLOWED_COV_BASE:
        num_dim = X_train.shape[1]
    elif str_cov in constants.ALLOWED_COV_SET:
        num_dim = X_train.shape[2]
        use_gradient = False

    if str_modelselection_method == 'ml':
        neg_log_ml_ = lambda hyps: gp_likelihood.neg_log_ml(
            X_train,
            Y_train,
            hyps,
            str_cov,
            prior_mu_train,
            use_ard=use_ard,
            fix_noise=fix_noise,
            use_gradient=use_gradient,
            debug=debug)
    elif str_modelselection_method == 'loocv':
        # TODO: add use_ard.
        neg_log_ml_ = lambda hyps: gp_likelihood.neg_log_pseudo_l_loocv(
            X_train,
            Y_train,
            hyps,
            str_cov,
            prior_mu_train,
            fix_noise=fix_noise,
            debug=debug)
        use_gradient = False
    else:  # pragma: no cover
        raise ValueError(
            'get_optimized_kernel: missing conditions for str_modelselection_method.'
        )

    hyps_converted = utils_covariance.convert_hyps(str_cov,
                                                   utils_covariance.get_hyps(
                                                       str_cov,
                                                       num_dim,
                                                       use_ard=use_ard),
                                                   fix_noise=fix_noise)

    if str_optimizer_method in ['BFGS', 'SLSQP']:
        result_optimized = scipy.optimize.minimize(neg_log_ml_,
                                                   hyps_converted,
                                                   method=str_optimizer_method,
                                                   jac=use_gradient,
                                                   options={'disp': False})

        if debug:
            logger.debug('negative log marginal likelihood: %.6f',
                         result_optimized.fun)
            logger.debug('scipy message: %s', result_optimized.message)

        result_optimized = result_optimized.x
    elif str_optimizer_method in ['L-BFGS-B', 'SLSQP-Bounded']:
        if str_optimizer_method == 'SLSQP-Bounded':
            str_optimizer_method = 'SLSQP'

        bounds = utils_covariance.get_range_hyps(str_cov,
                                                 num_dim,
                                                 use_ard=use_ard,
                                                 fix_noise=fix_noise)
        result_optimized = scipy.optimize.minimize(neg_log_ml_,
                                                   hyps_converted,
                                                   method=str_optimizer_method,
                                                   bounds=bounds,
                                                   jac=use_gradient,
                                                   options={'disp': False})

        if debug:
            logger.debug('negative log marginal likelihood: %.6f',
                         result_optimized.fun)
            logger.debug('scipy message: %s', result_optimized.message)
        result_optimized = result_optimized.x
    elif str_optimizer_method in ['Nelder-Mead']:
        result_optimized = scipy.optimize.minimize(neg_log_ml_,
                                                   hyps_converted,
                                                   method=str_optimizer_method,
                                                   options={'disp': False})

        if debug:
            logger.debug('negative log marginal likelihood: %.6f',
                         result_optimized.fun)
            logger.debug('scipy message: %s', result_optimized.message)
        result_optimized = result_optimized.x
    else:  # pragma: no cover
        raise ValueError(
            'get_optimized_kernel: missing conditions for str_optimizer_method'
        )

    hyps = utils_covariance.restore_hyps(str_cov,
                                         result_optimized,
                                         use_ard=use_ard,
                                         fix_noise=fix_noise)

    hyps = utils_covariance.validate_hyps_dict(hyps, str_cov, num_dim)
    cov_X_X, inv_cov_X_X, _ = covariance.get_kernel_inverse(
        X_train, hyps, str_cov, fix_noise=fix_noise, debug=debug)
    time_end = time.time()

    if debug:
        logger.debug('hyps optimized: %s', utils_logger.get_str_hyps(hyps))
        logger.debug('time consumed to construct gpr: %.4f sec.',
                     time_end - time_start)
    return cov_X_X, inv_cov_X_X, hyps
Beispiel #3
0
def get_optimized_kernel(
        X_train,
        Y_train,
        prior_mu,
        str_cov,
        str_optimizer_method=constants.STR_OPTIMIZER_METHOD_GP,
        str_modelselection_method=constants.STR_MODELSELECTION_METHOD,
        is_fixed_noise=constants.IS_FIXED_GP_NOISE,
        debug=False):
    """
    This function computes the kernel matrix optimized by optimization method specified, its inverse matrix, and the optimized hyperparameters.

    :param X_train: inputs. Shape: (n, d) or (n, m, d).
    :type X_train: numpy.ndarray
    :param Y_train: outputs. Shape: (n, 1).
    :type Y_train: numpy.ndarray
    :param prior_mu: prior mean function or None.
    :type prior_mu: function or NoneType
    :param str_cov: the name of covariance function.
    :type str_cov: str.
    :param str_optimizer_method: the name of optimization method.
    :type str_optimizer_method: str., optional
    :param str_modelselection_method: the name of model selection method.
    :type str_modelselection_method: str., optional
    :param is_fixed_noise: flag for fixing a noise.
    :type is_fixed_noise: bool., optional
    :param debug: flag for printing log messages.
    :type debug: bool., optional

    :returns: a tuple of kernel matrix over `X_train`, kernel matrix inverse, and dictionary of hyperparameters.
    :rtype: tuple of (numpy.ndarray, numpy.ndarray, dict.)

    :raises: AssertionError, ValueError

    """

    # TODO: check to input same is_fixed_noise to convert_hyps and restore_hyps
    assert isinstance(X_train, np.ndarray)
    assert isinstance(Y_train, np.ndarray)
    assert callable(prior_mu) or prior_mu is None
    assert isinstance(str_cov, str)
    assert isinstance(str_optimizer_method, str)
    assert isinstance(str_modelselection_method, str)
    assert isinstance(is_fixed_noise, bool)
    assert isinstance(debug, bool)
    assert len(Y_train.shape) == 2
    assert X_train.shape[0] == Y_train.shape[0]
    _check_str_cov('get_optimized_kernel', str_cov, X_train.shape)
    assert str_optimizer_method in constants.ALLOWED_OPTIMIZER_METHOD_GP
    assert str_modelselection_method in constants.ALLOWED_MODELSELECTION_METHOD
    # TODO: fix this.
    is_gradient = True

    time_start = time.time()

    if debug:
        print('[DEBUG] get_optimized_kernel in gp.py: str_optimizer_method {}'.
              format(str_optimizer_method))
        print(
            '[DEBUG] get_optimized_kernel in gp.py: str_modelselection_method {}'
            .format(str_modelselection_method))

    prior_mu_train = get_prior_mu(prior_mu, X_train)
    if str_cov in constants.ALLOWED_GP_COV_BASE:
        num_dim = X_train.shape[1]
    elif str_cov in constants.ALLOWED_GP_COV_SET:
        num_dim = X_train.shape[2]
        is_gradient = False

    if str_modelselection_method == 'ml':
        neg_log_ml_ = lambda hyps: neg_log_ml(X_train,
                                              Y_train,
                                              hyps,
                                              str_cov,
                                              prior_mu_train,
                                              is_fixed_noise=is_fixed_noise,
                                              is_gradient=is_gradient,
                                              debug=debug)
    elif str_modelselection_method == 'loocv':
        neg_log_ml_ = lambda hyps: neg_log_pseudo_l_loocv(X_train,
                                                          Y_train,
                                                          hyps,
                                                          str_cov,
                                                          prior_mu_train,
                                                          is_fixed_noise=
                                                          is_fixed_noise,
                                                          debug=debug)
        is_gradient = False
    else:  # pragma: no cover
        raise ValueError(
            'get_optimized_kernel: missing conditions for str_modelselection_method.'
        )

    hyps_converted = utils_covariance.convert_hyps(
        str_cov,
        utils_covariance.get_hyps(str_cov, num_dim),
        is_fixed_noise=is_fixed_noise,
    )

    if str_optimizer_method == 'BFGS':
        result_optimized = scipy.optimize.minimize(neg_log_ml_,
                                                   hyps_converted,
                                                   method=str_optimizer_method,
                                                   jac=is_gradient,
                                                   options={'disp': False})
        result_optimized = result_optimized.x
    elif str_optimizer_method == 'L-BFGS-B':
        bounds = utils_covariance.get_range_hyps(str_cov,
                                                 num_dim,
                                                 is_fixed_noise=is_fixed_noise)
        result_optimized = scipy.optimize.minimize(neg_log_ml_,
                                                   hyps_converted,
                                                   method=str_optimizer_method,
                                                   bounds=bounds,
                                                   jac=is_gradient,
                                                   options={'disp': False})
        result_optimized = result_optimized.x
    # TODO: Fill this conditions
    elif str_optimizer_method == 'DIRECT':  # pragma: no cover
        raise NotImplementedError(
            'get_optimized_kernel: allowed str_optimizer_method, but it is not implemented.'
        )
    elif str_optimizer_method == 'CMA-ES':  # pragma: no cover
        raise NotImplementedError(
            'get_optimized_kernel: allowed str_optimizer_method, but it is not implemented.'
        )
    else:  # pragma: no cover
        raise ValueError(
            'get_optimized_kernel: missing conditions for str_optimizer_method'
        )

    hyps = utils_covariance.restore_hyps(str_cov,
                                         result_optimized,
                                         is_fixed_noise=is_fixed_noise)

    hyps, _ = utils_covariance.validate_hyps_dict(hyps, str_cov, num_dim)
    cov_X_X, inv_cov_X_X, grad_cov_X_X = get_kernel_inverse(
        X_train, hyps, str_cov, is_fixed_noise=is_fixed_noise, debug=debug)

    time_end = time.time()

    if debug:
        print('[DEBUG] get_optimized_kernel in gp.py: optimized hyps for gpr',
              hyps)
        print('[DEBUG] get_optimized_kernel in gp.py: time consumed',
              time_end - time_start, 'sec.')
    return cov_X_X, inv_cov_X_X, hyps
Beispiel #4
0
def get_optimized_kernel(
        X_train,
        Y_train,
        prior_mu,
        str_cov,
        str_optimizer_method=constants.STR_OPTIMIZER_METHOD_GP,
        str_modelselection_method=constants.STR_MODELSELECTION_METHOD,
        is_fixed_noise=constants.IS_FIXED_GP_NOISE,
        debug=False):
    # TODO: check to input same is_fixed_noise to convert_hyps and restore_hyps
    assert isinstance(X_train, np.ndarray)
    assert isinstance(Y_train, np.ndarray)
    assert callable(prior_mu) or prior_mu is None
    assert isinstance(str_cov, str)
    assert isinstance(str_optimizer_method, str)
    assert isinstance(str_modelselection_method, str)
    assert isinstance(is_fixed_noise, bool)
    assert isinstance(debug, bool)
    assert len(Y_train.shape) == 2
    assert X_train.shape[0] == Y_train.shape[0]
    _check_str_cov('get_optimized_kernel', str_cov, X_train.shape)
    assert str_optimizer_method in constants.ALLOWED_OPTIMIZER_METHOD_GP
    assert str_modelselection_method in constants.ALLOWED_MODELSELECTION_METHOD

    time_start = time.time()

    if debug:
        print('[DEBUG] get_optimized_kernel in gp.py: str_optimizer_method {}'.
              format(str_optimizer_method))
        print(
            '[DEBUG] get_optimized_kernel in gp.py: str_modelselection_method {}'
            .format(str_modelselection_method))

    prior_mu_train = get_prior_mu(prior_mu, X_train)
    if str_cov in constants.ALLOWED_GP_COV_BASE:
        num_dim = X_train.shape[1]
    elif str_cov in constants.ALLOWED_GP_COV_SET:
        num_dim = X_train.shape[2]

    if str_modelselection_method == 'ml':
        neg_log_ml = lambda hyps: -1.0 * log_ml(X_train,
                                                Y_train,
                                                hyps,
                                                str_cov,
                                                prior_mu_train,
                                                is_fixed_noise=is_fixed_noise,
                                                debug=debug)
    elif str_modelselection_method == 'loocv':
        neg_log_ml = lambda hyps: -1.0 * log_pseudo_l_loocv(X_train,
                                                            Y_train,
                                                            hyps,
                                                            str_cov,
                                                            prior_mu_train,
                                                            is_fixed_noise=
                                                            is_fixed_noise,
                                                            debug=debug)
    else:  # pragma: no cover
        raise ValueError(
            'get_optimized_kernel: missing conditions for str_modelselection_method.'
        )

    hyps_converted = utils_covariance.convert_hyps(
        str_cov,
        utils_covariance.get_hyps(str_cov, num_dim),
        is_fixed_noise=is_fixed_noise,
    )

    if str_optimizer_method == 'BFGS':
        result_optimized = scipy.optimize.minimize(neg_log_ml,
                                                   hyps_converted,
                                                   method=str_optimizer_method)
        result_optimized = result_optimized.x
    elif str_optimizer_method == 'L-BFGS-B':
        bounds = utils_covariance.get_range_hyps(str_cov,
                                                 num_dim,
                                                 is_fixed_noise=is_fixed_noise)
        result_optimized = scipy.optimize.minimize(neg_log_ml,
                                                   hyps_converted,
                                                   method=str_optimizer_method,
                                                   bounds=bounds)
        result_optimized = result_optimized.x
    # TODO: Fill this conditions
    elif str_optimizer_method == 'DIRECT':  # pragma: no cover
        raise NotImplementedError(
            'get_optimized_kernel: allowed str_optimizer_method, but it is not implemented.'
        )
    elif str_optimizer_method == 'CMA-ES':  # pragma: no cover
        raise NotImplementedError(
            'get_optimized_kernel: allowed str_optimizer_method, but it is not implemented.'
        )
    # INFO: It is allowed, but a condition is missed.
    else:  # pragma: no cover
        raise ValueError(
            'get_optimized_kernel: missing conditions for str_optimizer_method'
        )

    hyps = utils_covariance.restore_hyps(str_cov,
                                         result_optimized,
                                         is_fixed_noise=is_fixed_noise)

    hyps, _ = utils_covariance.validate_hyps_dict(hyps, str_cov, num_dim)
    cov_X_X, inv_cov_X_X = get_kernel_inverse(X_train,
                                              hyps,
                                              str_cov,
                                              debug=debug)

    time_end = time.time()

    if debug:
        print('[DEBUG] get_optimized_kernel in gp.py: optimized hyps for gpr',
              hyps)
        print('[DEBUG] get_optimized_kernel in gp.py: time consumed',
              time_end - time_start, 'sec.')
    return cov_X_X, inv_cov_X_X, hyps
def test_get_range_hyps():
    with pytest.raises(AssertionError) as error:
        package_target.get_range_hyps(1.0, 2)
    with pytest.raises(AssertionError) as error:
        package_target.get_range_hyps('abc', 2)
    with pytest.raises(AssertionError) as error:
        package_target.get_range_hyps('se', 1.2)
    with pytest.raises(AssertionError) as error:
        package_target.get_range_hyps('se', 2, use_ard='abc')
    with pytest.raises(AssertionError) as error:
        package_target.get_range_hyps('se', 2, use_ard=1)
    with pytest.raises(AssertionError) as error:
        package_target.get_range_hyps('se', 2, use_gp='abc')
    with pytest.raises(AssertionError) as error:
        package_target.get_range_hyps('se', 2, use_gp=1)
    with pytest.raises(AssertionError) as error:
        package_target.get_range_hyps('se', 2, fix_noise=1)
    with pytest.raises(AssertionError) as error:
        package_target.get_range_hyps('se', 2, fix_noise='abc')

    cur_range = package_target.get_range_hyps('se',
                                              2,
                                              use_ard=False,
                                              fix_noise=False)
    print(type(cur_range))
    print(cur_range)
    assert isinstance(cur_range, list)
    assert cur_range == [[0.001, 10.0], [0.01, 1000.0], [0.01, 1000.0]]

    cur_range = package_target.get_range_hyps('se',
                                              2,
                                              use_ard=False,
                                              fix_noise=False,
                                              use_gp=False)
    print(type(cur_range))
    print(cur_range)
    assert isinstance(cur_range, list)
    assert cur_range == [[0.001, 10.0], [2.00001, 200.0], [0.01, 1000.0],
                         [0.01, 1000.0]]

    cur_range = package_target.get_range_hyps('se',
                                              2,
                                              use_ard=True,
                                              fix_noise=False,
                                              use_gp=True)
    print(type(cur_range))
    print(cur_range)
    assert isinstance(cur_range, list)
    assert cur_range == [[0.001, 10.0], [0.01, 1000.0], [0.01, 1000.0],
                         [0.01, 1000.0]]

    cur_range = package_target.get_range_hyps('se',
                                              2,
                                              use_ard=False,
                                              fix_noise=True,
                                              use_gp=True)
    print(type(cur_range))
    print(cur_range)
    assert isinstance(cur_range, list)
    assert cur_range == [[0.01, 1000.0], [0.01, 1000.0]]