Beispiel #1
0
def predict_with_cov(X_train: np.ndarray, Y_train: np.ndarray, X_test: np.ndarray,
    cov_X_X: np.ndarray, inv_cov_X_X: np.ndarray, hyps: dict,
    str_cov: str=constants.STR_COV,
    prior_mu: constants.TYPING_UNION_CALLABLE_NONE=None,
    debug: bool=False
) -> constants.TYPING_TUPLE_THREE_ARRAYS:
    """
    This function returns posterior mean and posterior standard deviation
    functions over `X_test`, computed by Gaussian process regression with
    `X_train`, `Y_train`, `cov_X_X`, `inv_cov_X_X`, and `hyps`.

    :param X_train: inputs. Shape: (n, d) or (n, m, d).
    :type X_train: numpy.ndarray
    :param Y_train: outputs. Shape: (n, 1).
    :type Y_train: numpy.ndarray
    :param X_test: inputs. Shape: (l, d) or (l, m, d).
    :type X_test: numpy.ndarray
    :param cov_X_X: kernel matrix over `X_train`. Shape: (n, n).
    :type cov_X_X: numpy.ndarray
    :param inv_cov_X_X: kernel matrix inverse over `X_train`. Shape: (n, n).
    :type inv_cov_X_X: numpy.ndarray
    :param hyps: dictionary of hyperparameters for Gaussian process.
    :type hyps: dict.
    :param str_cov: the name of covariance function.
    :type str_cov: str., optional
    :param prior_mu: None, or prior mean function.
    :type prior_mu: NoneType, or callable, optional
    :param debug: flag for printing log messages.
    :type debug: bool., optional

    :returns: a tuple of posterior mean function over `X_test`, posterior
        standard deviation function over `X_test`, and posterior covariance
        matrix over `X_test`. Shape: ((l, 1), (l, 1), (l, l)).
    :rtype: tuple of (numpy.ndarray, numpy.ndarray, numpy.ndarray)

    :raises: AssertionError

    """

    utils_gp.validate_common_args(X_train, Y_train, str_cov, prior_mu, debug, X_test)
    assert isinstance(cov_X_X, np.ndarray)
    assert isinstance(inv_cov_X_X, np.ndarray)
    assert isinstance(hyps, dict)
    assert len(cov_X_X.shape) == 2
    assert len(inv_cov_X_X.shape) == 2
    assert (np.array(cov_X_X.shape) == np.array(inv_cov_X_X.shape)).all()
    utils_covariance.check_str_cov('predict_with_cov', str_cov,
        X_train.shape, shape_X2=X_test.shape)

    prior_mu_train = utils_gp.get_prior_mu(prior_mu, X_train)
    prior_mu_test = utils_gp.get_prior_mu(prior_mu, X_test)
    cov_X_Xs = covariance.cov_main(str_cov, X_train, X_test, hyps, False)
    cov_Xs_Xs = covariance.cov_main(str_cov, X_test, X_test, hyps, True)
    cov_Xs_Xs = (cov_Xs_Xs + cov_Xs_Xs.T) / 2.0

    mu_Xs = np.dot(np.dot(cov_X_Xs.T, inv_cov_X_X), Y_train - prior_mu_train) + prior_mu_test
    Sigma_Xs = cov_Xs_Xs - np.dot(np.dot(cov_X_Xs.T, inv_cov_X_X), cov_X_Xs)
    return mu_Xs, np.expand_dims(np.sqrt(np.maximum(np.diag(Sigma_Xs), 0.0)), axis=1), Sigma_Xs
Beispiel #2
0
    def optimize(
        self,
        X_train: np.ndarray,
        Y_train: np.ndarray,
        str_sampling_method: str = constants.STR_SAMPLING_METHOD_AO,
        num_samples: int = constants.NUM_SAMPLES_AO,
        str_mlm_method: str = constants.STR_MLM_METHOD,
    ) -> constants.TYPING_TUPLE_ARRAY_DICT:
        """
        It computes acquired example, candidates of acquired examples,
        acquisition function values for the candidates, covariance matrix,
        inverse matrix of the covariance matrix, hyperparameters optimized,
        and execution times.

        :param X_train: inputs. Shape: (n, d) or (n, m, d).
        :type X_train: numpy.ndarray
        :param Y_train: outputs. Shape: (n, 1).
        :type Y_train: numpy.ndarray
        :param str_sampling_method: the name of sampling method for
            acquisition function optimization.
        :type str_sampling_method: str., optional
        :param num_samples: the number of samples.
        :type num_samples: int., optional
        :param str_mlm_method: the name of marginal likelihood maximization
            method for Gaussian process regression.
        :type str_mlm_method: str., optional

        :returns: acquired example and dictionary of information. Shape: ((d, ), dict.).
        :rtype: (numpy.ndarray, dict.)

        :raises: AssertionError

        """

        assert isinstance(X_train, np.ndarray)
        assert isinstance(Y_train, np.ndarray)
        assert isinstance(str_sampling_method, str)
        assert isinstance(num_samples, int)
        assert isinstance(str_mlm_method, str)
        assert len(X_train.shape) == 2
        assert len(Y_train.shape) == 2
        assert Y_train.shape[1] == 1
        assert X_train.shape[0] == Y_train.shape[0]
        assert X_train.shape[1] == self.num_dim
        assert num_samples > 0
        assert str_sampling_method in constants.ALLOWED_SAMPLING_METHOD
        assert str_mlm_method in constants.ALLOWED_MLM_METHOD

        time_start = time.time()
        Y_train_orig = Y_train

        if self.normalize_Y and str_mlm_method != 'converged':
            if self.debug:
                self.logger.debug('Responses are normalized.')

            Y_train = utils_bo.normalize_min_max(Y_train)

        time_start_surrogate = time.time()

        if str_mlm_method == 'regular':
            cov_X_X, inv_cov_X_X, hyps = gp_kernel.get_optimized_kernel(
                X_train,
                Y_train,
                self.prior_mu,
                self.str_cov,
                str_optimizer_method=self.str_optimizer_method_gp,
                str_modelselection_method=self.str_modelselection_method,
                use_ard=self.use_ard,
                debug=self.debug)
        elif str_mlm_method == 'combined':
            from bayeso.gp import gp_likelihood
            from bayeso.utils import utils_gp
            from bayeso.utils import utils_covariance

            prior_mu_train = utils_gp.get_prior_mu(self.prior_mu, X_train)

            neg_log_ml_best = np.inf
            cov_X_X_best = None
            inv_cov_X_X_best = None
            hyps_best = None

            for cur_str_optimizer_method in ['BFGS', 'Nelder-Mead']:
                cov_X_X, inv_cov_X_X, hyps = gp_kernel.get_optimized_kernel(
                    X_train,
                    Y_train,
                    self.prior_mu,
                    self.str_cov,
                    str_optimizer_method=cur_str_optimizer_method,
                    str_modelselection_method=self.str_modelselection_method,
                    use_ard=self.use_ard,
                    debug=self.debug)
                cur_neg_log_ml_ = gp_likelihood.neg_log_ml(
                    X_train,
                    Y_train,
                    utils_covariance.convert_hyps(
                        self.str_cov, hyps, fix_noise=constants.FIX_GP_NOISE),
                    self.str_cov,
                    prior_mu_train,
                    use_ard=self.use_ard,
                    fix_noise=constants.FIX_GP_NOISE,
                    use_gradient=False,
                    debug=self.debug)

                if cur_neg_log_ml_ < neg_log_ml_best:
                    neg_log_ml_best = cur_neg_log_ml_
                    cov_X_X_best = cov_X_X
                    inv_cov_X_X_best = inv_cov_X_X
                    hyps_best = hyps

            cov_X_X = cov_X_X_best
            inv_cov_X_X = inv_cov_X_X_best
            hyps = hyps_best
        elif str_mlm_method == 'converged':
            fix_noise = constants.FIX_GP_NOISE

            if self.is_optimize_hyps:
                cov_X_X, inv_cov_X_X, hyps = gp_kernel.get_optimized_kernel(
                    X_train,
                    Y_train,
                    self.prior_mu,
                    self.str_cov,
                    str_optimizer_method=self.str_optimizer_method_gp,
                    str_modelselection_method=self.str_modelselection_method,
                    use_ard=self.use_ard,
                    debug=self.debug)

                self.is_optimize_hyps = not utils_bo.check_hyps_convergence(
                    self.historical_hyps, hyps, self.str_cov, fix_noise)
            else:  # pragma: no cover
                if self.debug:
                    self.logger.debug('hyps converged.')
                hyps = self.historical_hyps[-1]
                cov_X_X, inv_cov_X_X, _ = covariance.get_kernel_inverse(
                    X_train,
                    hyps,
                    self.str_cov,
                    fix_noise=fix_noise,
                    debug=self.debug)
        else:  # pragma: no cover
            raise ValueError('optimize: missing condition for str_mlm_method.')

        self.historical_hyps.append(hyps)

        time_end_surrogate = time.time()

        time_start_acq = time.time()
        fun_negative_acquisition = lambda X_test: -1.0 * self.compute_acquisitions(
            X_test, X_train, Y_train, cov_X_X, inv_cov_X_X, hyps)
        next_point, next_points = self._optimize(
            fun_negative_acquisition,
            str_sampling_method=str_sampling_method,
            num_samples=num_samples)
        time_end_acq = time.time()

        acquisitions = fun_negative_acquisition(next_points)
        time_end = time.time()

        dict_info = {
            'next_points': next_points,
            'acquisitions': acquisitions,
            'Y_original': Y_train_orig,
            'Y_normalized': Y_train,
            'cov_X_X': cov_X_X,
            'inv_cov_X_X': inv_cov_X_X,
            'hyps': hyps,
            'time_surrogate': time_end_surrogate - time_start_surrogate,
            'time_acq': time_end_acq - time_start_acq,
            'time_overall': time_end - time_start,
        }

        if self.debug:
            self.logger.debug('overall time consumed to acquire: %.4f sec.',
                              time_end - time_start)

        return next_point, dict_info
Beispiel #3
0
def get_optimized_kernel(
        X_train: np.ndarray,
        Y_train: np.ndarray,
        prior_mu: constants.TYPING_UNION_CALLABLE_NONE,
        str_cov: str,
        str_optimizer_method: str = constants.STR_OPTIMIZER_METHOD_GP,
        str_modelselection_method: str = constants.STR_MODELSELECTION_METHOD,
        use_ard: bool = constants.USE_ARD,
        fix_noise: bool = constants.FIX_GP_NOISE,
        debug: bool = False) -> constants.TYPING_TUPLE_TWO_ARRAYS_DICT:
    """
    This function computes the kernel matrix optimized by optimization
    method specified, its inverse matrix, and the optimized hyperparameters.

    :param X_train: inputs. Shape: (n, d) or (n, m, d).
    :type X_train: numpy.ndarray
    :param Y_train: outputs. Shape: (n, 1).
    :type Y_train: numpy.ndarray
    :param prior_mu: prior mean function or None.
    :type prior_mu: callable or NoneType
    :param str_cov: the name of covariance function.
    :type str_cov: str.
    :param str_optimizer_method: the name of optimization method.
    :type str_optimizer_method: str., optional
    :param str_modelselection_method: the name of model selection method.
    :type str_modelselection_method: str., optional
    :param use_ard: flag for using automatic relevance determination.
    :type use_ard: bool., optional
    :param fix_noise: flag for fixing a noise.
    :type fix_noise: bool., optional
    :param debug: flag for printing log messages.
    :type debug: bool., optional

    :returns: a tuple of kernel matrix over `X_train`, kernel matrix
        inverse, and dictionary of hyperparameters.
    :rtype: tuple of (numpy.ndarray, numpy.ndarray, dict.)

    :raises: AssertionError, ValueError

    """

    # TODO: check to input same fix_noise to convert_hyps and restore_hyps
    utils_gp.validate_common_args(X_train, Y_train, str_cov, prior_mu, debug)
    assert isinstance(str_optimizer_method, str)
    assert isinstance(str_modelselection_method, str)
    assert isinstance(use_ard, bool)
    assert isinstance(fix_noise, bool)
    utils_covariance.check_str_cov('get_optimized_kernel', str_cov,
                                   X_train.shape)
    assert str_optimizer_method in constants.ALLOWED_OPTIMIZER_METHOD_GP
    assert str_modelselection_method in constants.ALLOWED_MODELSELECTION_METHOD
    use_gradient = bool(str_optimizer_method != 'Nelder-Mead')
    # TODO: Now, use_gradient is fixed as False.
    #    use_gradient = False

    time_start = time.time()

    if debug:
        logger.debug('str_optimizer_method: %s', str_optimizer_method)
        logger.debug('str_modelselection_method: %s',
                     str_modelselection_method)
        logger.debug('use_gradient: %s', use_gradient)

    prior_mu_train = utils_gp.get_prior_mu(prior_mu, X_train)
    if str_cov in constants.ALLOWED_COV_BASE:
        num_dim = X_train.shape[1]
    elif str_cov in constants.ALLOWED_COV_SET:
        num_dim = X_train.shape[2]
        use_gradient = False

    if str_modelselection_method == 'ml':
        neg_log_ml_ = lambda hyps: gp_likelihood.neg_log_ml(
            X_train,
            Y_train,
            hyps,
            str_cov,
            prior_mu_train,
            use_ard=use_ard,
            fix_noise=fix_noise,
            use_gradient=use_gradient,
            debug=debug)
    elif str_modelselection_method == 'loocv':
        # TODO: add use_ard.
        neg_log_ml_ = lambda hyps: gp_likelihood.neg_log_pseudo_l_loocv(
            X_train,
            Y_train,
            hyps,
            str_cov,
            prior_mu_train,
            fix_noise=fix_noise,
            debug=debug)
        use_gradient = False
    else:  # pragma: no cover
        raise ValueError(
            'get_optimized_kernel: missing conditions for str_modelselection_method.'
        )

    hyps_converted = utils_covariance.convert_hyps(str_cov,
                                                   utils_covariance.get_hyps(
                                                       str_cov,
                                                       num_dim,
                                                       use_ard=use_ard),
                                                   fix_noise=fix_noise)

    if str_optimizer_method in ['BFGS', 'SLSQP']:
        result_optimized = scipy.optimize.minimize(neg_log_ml_,
                                                   hyps_converted,
                                                   method=str_optimizer_method,
                                                   jac=use_gradient,
                                                   options={'disp': False})

        if debug:
            logger.debug('negative log marginal likelihood: %.6f',
                         result_optimized.fun)
            logger.debug('scipy message: %s', result_optimized.message)

        result_optimized = result_optimized.x
    elif str_optimizer_method in ['L-BFGS-B', 'SLSQP-Bounded']:
        if str_optimizer_method == 'SLSQP-Bounded':
            str_optimizer_method = 'SLSQP'

        bounds = utils_covariance.get_range_hyps(str_cov,
                                                 num_dim,
                                                 use_ard=use_ard,
                                                 fix_noise=fix_noise)
        result_optimized = scipy.optimize.minimize(neg_log_ml_,
                                                   hyps_converted,
                                                   method=str_optimizer_method,
                                                   bounds=bounds,
                                                   jac=use_gradient,
                                                   options={'disp': False})

        if debug:
            logger.debug('negative log marginal likelihood: %.6f',
                         result_optimized.fun)
            logger.debug('scipy message: %s', result_optimized.message)
        result_optimized = result_optimized.x
    elif str_optimizer_method in ['Nelder-Mead']:
        result_optimized = scipy.optimize.minimize(neg_log_ml_,
                                                   hyps_converted,
                                                   method=str_optimizer_method,
                                                   options={'disp': False})

        if debug:
            logger.debug('negative log marginal likelihood: %.6f',
                         result_optimized.fun)
            logger.debug('scipy message: %s', result_optimized.message)
        result_optimized = result_optimized.x
    else:  # pragma: no cover
        raise ValueError(
            'get_optimized_kernel: missing conditions for str_optimizer_method'
        )

    hyps = utils_covariance.restore_hyps(str_cov,
                                         result_optimized,
                                         use_ard=use_ard,
                                         fix_noise=fix_noise)

    hyps = utils_covariance.validate_hyps_dict(hyps, str_cov, num_dim)
    cov_X_X, inv_cov_X_X, _ = covariance.get_kernel_inverse(
        X_train, hyps, str_cov, fix_noise=fix_noise, debug=debug)
    time_end = time.time()

    if debug:
        logger.debug('hyps optimized: %s', utils_logger.get_str_hyps(hyps))
        logger.debug('time consumed to construct gpr: %.4f sec.',
                     time_end - time_start)
    return cov_X_X, inv_cov_X_X, hyps
Beispiel #4
0
def test_get_prior_mu():
    fun_prior = lambda X: np.expand_dims(np.linalg.norm(X, axis=1), axis=1)
    fun_prior_1d = lambda X: np.linalg.norm(X, axis=1)
    X = np.reshape(np.arange(0, 90), (30, 3))

    with pytest.raises(AssertionError) as error:
        package_target.get_prior_mu(1, X)
    with pytest.raises(AssertionError) as error:
        package_target.get_prior_mu(fun_prior, 1)
    with pytest.raises(AssertionError) as error:
        package_target.get_prior_mu(fun_prior, np.arange(0, 100))
    with pytest.raises(AssertionError) as error:
        package_target.get_prior_mu(None, np.arange(0, 100))
    with pytest.raises(AssertionError) as error:
        package_target.get_prior_mu(fun_prior_1d, X)

    assert (package_target.get_prior_mu(None, X) == np.zeros((X.shape[0], 1))).all()
    assert (package_target.get_prior_mu(fun_prior, X) == fun_prior(X)).all()
Beispiel #5
0
def get_optimized_kernel(
        X_train,
        Y_train,
        prior_mu,
        str_cov,
        str_optimizer_method=constants.STR_OPTIMIZER_METHOD_GP,
        str_modelselection_method=constants.STR_MODELSELECTION_METHOD,
        is_fixed_noise=constants.IS_FIXED_GP_NOISE,
        debug=False):
    """
    This function computes the kernel matrix optimized by optimization method specified, its inverse matrix, and the optimized hyperparameters.

    :param X_train: inputs. Shape: (n, d) or (n, m, d).
    :type X_train: numpy.ndarray
    :param Y_train: outputs. Shape: (n, 1).
    :type Y_train: numpy.ndarray
    :param prior_mu: prior mean function or None.
    :type prior_mu: function or NoneType
    :param str_cov: the name of covariance function.
    :type str_cov: str.
    :param str_optimizer_method: the name of optimization method.
    :type str_optimizer_method: str., optional
    :param str_modelselection_method: the name of model selection method.
    :type str_modelselection_method: str., optional
    :param is_fixed_noise: flag for fixing a noise.
    :type is_fixed_noise: bool., optional
    :param debug: flag for printing log messages.
    :type debug: bool., optional

    :returns: a tuple of kernel matrix over `X_train`, kernel matrix inverse, and dictionary of hyperparameters.
    :rtype: tuple of (numpy.ndarray, numpy.ndarray, dict.)

    :raises: AssertionError, ValueError

    """

    # TODO: check to input same is_fixed_noise to convert_hyps and restore_hyps
    assert isinstance(X_train, np.ndarray)
    assert isinstance(Y_train, np.ndarray)
    assert callable(prior_mu) or prior_mu is None
    assert isinstance(str_cov, str)
    assert isinstance(str_optimizer_method, str)
    assert isinstance(str_modelselection_method, str)
    assert isinstance(is_fixed_noise, bool)
    assert isinstance(debug, bool)
    assert len(Y_train.shape) == 2
    assert X_train.shape[0] == Y_train.shape[0]
    utils_gp.check_str_cov('get_optimized_kernel', str_cov, X_train.shape)
    assert str_optimizer_method in constants.ALLOWED_OPTIMIZER_METHOD_GP
    assert str_modelselection_method in constants.ALLOWED_MODELSELECTION_METHOD
    # TODO: fix this.
    if str_optimizer_method != 'Nelder-Mead':
        is_gradient = True
    else:
        is_gradient = False

    time_start = time.time()

    if debug:
        logger.debug('str_optimizer_method: {}'.format(str_optimizer_method))
    if debug:
        logger.debug(
            'str_modelselection_method: {}'.format(str_modelselection_method))

    prior_mu_train = utils_gp.get_prior_mu(prior_mu, X_train)
    if str_cov in constants.ALLOWED_GP_COV_BASE:
        num_dim = X_train.shape[1]
    elif str_cov in constants.ALLOWED_GP_COV_SET:
        num_dim = X_train.shape[2]
        is_gradient = False

    if str_modelselection_method == 'ml':
        neg_log_ml_ = lambda hyps: neg_log_ml(X_train,
                                              Y_train,
                                              hyps,
                                              str_cov,
                                              prior_mu_train,
                                              is_fixed_noise=is_fixed_noise,
                                              is_gradient=is_gradient,
                                              debug=debug)
    elif str_modelselection_method == 'loocv':
        neg_log_ml_ = lambda hyps: neg_log_pseudo_l_loocv(X_train,
                                                          Y_train,
                                                          hyps,
                                                          str_cov,
                                                          prior_mu_train,
                                                          is_fixed_noise=
                                                          is_fixed_noise,
                                                          debug=debug)
        is_gradient = False
    else:  # pragma: no cover
        raise ValueError(
            'get_optimized_kernel: missing conditions for str_modelselection_method.'
        )

    hyps_converted = utils_covariance.convert_hyps(
        str_cov,
        utils_covariance.get_hyps(str_cov, num_dim),
        is_fixed_noise=is_fixed_noise,
    )

    if str_optimizer_method == 'BFGS':
        result_optimized = scipy.optimize.minimize(neg_log_ml_,
                                                   hyps_converted,
                                                   method=str_optimizer_method,
                                                   jac=is_gradient,
                                                   options={'disp': False})
        if debug:
            logger.debug('scipy message: {}'.format(result_optimized.message))

        result_optimized = result_optimized.x
    elif str_optimizer_method == 'L-BFGS-B':
        bounds = utils_covariance.get_range_hyps(str_cov,
                                                 num_dim,
                                                 is_fixed_noise=is_fixed_noise)
        result_optimized = scipy.optimize.minimize(neg_log_ml_,
                                                   hyps_converted,
                                                   method=str_optimizer_method,
                                                   bounds=bounds,
                                                   jac=is_gradient,
                                                   options={'disp': False})
        if debug:
            logger.debug('scipy message: {}'.format(result_optimized.message))

        result_optimized = result_optimized.x
    elif str_optimizer_method == 'Nelder-Mead':
        result_optimized = scipy.optimize.minimize(neg_log_ml_,
                                                   hyps_converted,
                                                   method=str_optimizer_method,
                                                   options={'disp': False})
        if debug:
            logger.debug('scipy message: {}'.format(result_optimized.message))

        result_optimized = result_optimized.x
    # TODO: Fill this conditions
    elif str_optimizer_method == 'DIRECT':  # pragma: no cover
        raise NotImplementedError(
            'get_optimized_kernel: allowed str_optimizer_method, but it is not implemented.'
        )
    else:  # pragma: no cover
        raise ValueError(
            'get_optimized_kernel: missing conditions for str_optimizer_method'
        )

    hyps = utils_covariance.restore_hyps(str_cov,
                                         result_optimized,
                                         is_fixed_noise=is_fixed_noise)

    hyps, _ = utils_covariance.validate_hyps_dict(hyps, str_cov, num_dim)
    cov_X_X, inv_cov_X_X, grad_cov_X_X = gp_common.get_kernel_inverse(
        X_train, hyps, str_cov, is_fixed_noise=is_fixed_noise, debug=debug)

    time_end = time.time()

    if debug:
        logger.debug('hyps optimized: {}'.format(
            utils_logger.get_str_hyps(hyps)))
    if debug:
        logger.debug(
            'time consumed to construct gpr: {:.4f} sec.'.format(time_end -
                                                                 time_start))
    return cov_X_X, inv_cov_X_X, hyps