Beispiel #1
0
    def check_message_to_parent(self, plates_child, plates_message,
                                plates_mask, plates_parent, dims=(2,)):

        # Dummy message
        msg = np.random.randn(*(plates_message+dims))
        # Mask with every other True and every other False
        mask = np.mod(np.arange(np.prod(plates_mask)).reshape(plates_mask),
                      2) == 0

        # Set up the dummy model
        class Dummy(Node):
            def _get_message_and_mask_to_parent(self, index):
                return ([msg], mask)
        parent = Dummy(dims=[dims], plates=plates_parent)
        child = Dummy(parent, dims=[dims], plates=plates_child)

        m = child._message_to_parent(0)[0] * np.ones(plates_parent+dims)

        # Brute-force computation of the message without too much checking
        m_true = msg * utils.squeeze(mask[...,np.newaxis]) * np.ones(plates_child+dims)
        for ind in range(len(plates_child)):
            axis = -ind - 2
            if ind >= len(plates_parent):
                m_true = np.sum(m_true, axis=axis, keepdims=False)
            elif plates_parent[-ind-1] == 1:
                m_true = np.sum(m_true, axis=axis, keepdims=True)

        testing.assert_allclose(m, m_true,
                                err_msg="Incorrect message.")
Beispiel #2
0
    def check_message_to_parent(self,
                                plates_child,
                                plates_message,
                                plates_mask,
                                plates_parent,
                                dims=(2, )):

        # Dummy message
        msg = np.random.randn(*(plates_message + dims))
        # Mask with every other True and every other False
        mask = np.mod(np.arange(np.prod(plates_mask)).reshape(plates_mask),
                      2) == 0

        # Set up the dummy model
        class Dummy(Node):
            _moments = Moments()

            def __init__(self, *args, **kwargs):
                self._parent_moments = len(args) * (Moments(), )
                super().__init__(*args, **kwargs)

            def _get_message_and_mask_to_parent(self, index):
                return ([msg], mask)

        parent = Dummy(dims=[dims], plates=plates_parent)
        child = Dummy(parent, dims=[dims], plates=plates_child)

        m = child._message_to_parent(0)[0] * np.ones(plates_parent + dims)

        # Brute-force computation of the message without too much checking
        m_true = msg * utils.squeeze(
            mask[..., np.newaxis]) * np.ones(plates_child + dims)
        for ind in range(len(plates_child)):
            axis = -ind - 2
            if ind >= len(plates_parent):
                m_true = np.sum(m_true, axis=axis, keepdims=False)
            elif plates_parent[-ind - 1] == 1:
                m_true = np.sum(m_true, axis=axis, keepdims=True)

        testing.assert_allclose(m, m_true, err_msg="Incorrect message.")
Beispiel #3
0
    def _message_to_parent(self, index):

        # Compute the message, check plates, apply mask and sum over some plates
        if index >= len(self.parents):
            raise ValueError("Parent index larger than the number of parents")

        # Compute the message and mask
        (m, mask) = self._get_message_and_mask_to_parent(index)
        mask = utils.squeeze(mask)

        # Plates in the mask
        plates_mask = np.shape(mask)

        # The parent we're sending the message to
        parent = self.parents[index]

        # Compact the message to a proper shape
        for i in range(len(m)):

            # Empty messages are given as None. We can ignore those.
            if m[i] is not None:

                # Plates in the message
                shape_m = np.shape(m[i])
                dim_parent = len(parent.dims[i])
                if dim_parent > 0:
                    plates_m = shape_m[:-dim_parent]
                else:
                    plates_m = shape_m

                # Compute the multiplier (multiply by the number of plates for
                # which the message, the mask and the parent have single
                # plates).  Such a plate is meant to be broadcasted but because
                # the parent has singular plate axis, it won't broadcast (and
                # sum over it), so we need to multiply it.
                plates_self = self._plates_to_parent(index)
                try:
                    r = self._plate_multiplier(plates_self, 
                                               plates_m,
                                               plates_mask,
                                               parent.plates)
                except ValueError:
                    raise ValueError("The plates of the message, the mask and "
                                     "parent[%d] node (%s) are not a "
                                     "broadcastable subset of the plates of "
                                     "this node (%s).  The message has shape "
                                     "%s, meaning plates %s. The mask has "
                                     "plates %s. This node has plates %s with "
                                     "respect to the parent[%d], which has "
                                     "plates %s."
                                     % (index,
                                        parent.name,
                                        self.name,
                                        np.shape(m[i]), 
                                        plates_m, 
                                        plates_mask,
                                        plates_self,
                                        index, 
                                        parent.plates))

                # Add variable axes to the mask
                shape_mask = np.shape(mask) + (1,) * len(parent.dims[i])
                mask_i = np.reshape(mask, shape_mask)

                # Sum over plates that are not in the message nor in the parent
                shape_parent = parent.get_shape(i)
                shape_msg = utils.broadcasted_shape(shape_m, shape_parent)
                axes_mask = utils.axes_to_collapse(shape_mask, shape_msg)
                mask_i = np.sum(mask_i, axis=axes_mask, keepdims=True)

                # Compute the masked message and sum over the plates that the
                # parent does not have.
                axes_msg = utils.axes_to_collapse(shape_msg, shape_parent)
                m[i] = utils.sum_multiply(mask_i, m[i], r, 
                                          axis=axes_msg, 
                                          keepdims=True)

                # Remove leading singular plates if the parent does not have
                # those plate axes.
                m[i] = utils.squeeze_to_dim(m[i], len(shape_parent))

        return m
Beispiel #4
0
    def _message_to_parent(self, index):

        # Compute the message, check plates, apply mask and sum over some plates
        if index >= len(self.parents):
            raise ValueError("Parent index larger than the number of parents")

        # Compute the message and mask
        (m, mask) = self._get_message_and_mask_to_parent(index)
        mask = utils.squeeze(mask)

        # Plates in the mask
        plates_mask = np.shape(mask)

        # The parent we're sending the message to
        parent = self.parents[index]

        # Compact the message to a proper shape
        for i in range(len(m)):

            # Empty messages are given as None. We can ignore those.
            if m[i] is not None:

                # Plates in the message
                shape_m = np.shape(m[i])
                dim_parent = len(parent.dims[i])
                if dim_parent > 0:
                    plates_m = shape_m[:-dim_parent]
                else:
                    plates_m = shape_m

                # Compute the multiplier (multiply by the number of plates for
                # which the message, the mask and the parent have single
                # plates).  Such a plate is meant to be broadcasted but because
                # the parent has singular plate axis, it won't broadcast (and
                # sum over it), so we need to multiply it.
                plates_self = self._plates_to_parent(index)
                try:
                    r = self._plate_multiplier(plates_self, 
                                               plates_m,
                                               plates_mask,
                                               parent.plates)
                except ValueError:
                    raise ValueError("The plates of the message, the mask and "
                                     "parent[%d] node (%s) are not a "
                                     "broadcastable subset of the plates of "
                                     "this node (%s).  The message has shape "
                                     "%s, meaning plates %s. The mask has "
                                     "plates %s. This node has plates %s with "
                                     "respect to the parent[%d], which has "
                                     "plates %s."
                                     % (index,
                                        parent.name,
                                        self.name,
                                        np.shape(m[i]), 
                                        plates_m, 
                                        plates_mask,
                                        plates_self,
                                        index, 
                                        parent.plates))

                # Add variable axes to the mask
                shape_mask = np.shape(mask) + (1,) * len(parent.dims[i])
                mask_i = np.reshape(mask, shape_mask)

                # Sum over plates that are not in the message nor in the parent
                shape_parent = parent.get_shape(i)
                shape_msg = utils.broadcasted_shape(shape_m, shape_parent)
                axes_mask = utils.axes_to_collapse(shape_mask, shape_msg)
                mask_i = np.sum(mask_i, axis=axes_mask, keepdims=True)

                # Compute the masked message and sum over the plates that the
                # parent does not have.
                axes_msg = utils.axes_to_collapse(shape_msg, shape_parent)
                m[i] = utils.sum_multiply(mask_i, m[i], r, 
                                          axis=axes_msg, 
                                          keepdims=True)

                # Remove leading singular plates if the parent does not have
                # those plate axes.
                m[i] = utils.squeeze_to_dim(m[i], len(shape_parent))

        return m