Beispiel #1
0
    def predict(self, x_test, y_test):
        y_predict = np.zeros_like(y_test)  # shape = (n_sample, n_unit)
        corrs = []  # list of pearson correlations for each unit
        max_corr = 0
        max_corr_unit = 0

        for i in range(self.n_unit):
            true_features = y_test[:, i]
            model = self.models[i]
            unit_status = 'valid' if model != 0 else 'invalid*****'
            # print(f'start predicting on unit {i} ({unit_status})')

            # feature prediction
            if unit_status != 'valid':  # SLR failed in this unit
                prediction = np.zeros(true_features.shape)
            else:
                x_test_subset = x_test[:, self.subset_indices[i]]
                x_test_subset = add_bias(x_test_subset, axis=1)
                prediction = model.predict(x_test_subset)
                mu, std = self.normal_terms[i]
                prediction = prediction * std + mu  # de-normalize

            corr, p_value = stats.pearsonr(prediction, true_features)
            corr = 0 if np.isnan(corr) else corr
            if corr > max_corr:
                max_corr = corr
                max_corr_unit = i
            corrs.append(corr)

            y_predict[:, i] = prediction

        return y_predict, corrs, max_corr_unit
Beispiel #2
0
    def test_add_bias_invalidaxis(self):
        '''Exception test of bdpy.ml.regress.add_bias
           (invalid input in 'axis')'''
        x = np.array([[100, 110, 120],
                      [200, 210, 220]])

        self.assertRaises(ValueError, lambda: ml.add_bias(x, axis=-1))
Beispiel #3
0
    def test_add_bias_axiszero(self):
        '''Test of bdpy.ml.regress.add_bias (axis=0)'''
        x = np.array([[100, 110, 120], [200, 210, 220]])

        exp_y = np.array([[100, 110, 120], [200, 210, 220], [1, 1, 1]])

        test_y = ml.add_bias(x, axis=0)

        np.testing.assert_array_equal(test_y, exp_y)
Beispiel #4
0
    def fit(self, x_train, y_train):
        self.x_train = x_train
        self.y_train = y_train
        self.n_unit = y_train.shape[1]

        # normalize mri data x (along each voxel)
        mu = np.mean(self.x_train, axis=0)
        std = np.std(self.x_train, axis=0, ddof=1)
        std[std == 0] = 1
        self.x_train = (self.x_train - mu) / std

        # for each feature unit train a sparse linear regression
        for i in range(self.n_unit):
            feature_unit = self.y_train[:, i]
            print(f'start training on unit {i}')

            # normalize image features y (along each unit)
            # this must be done separately because we need to de-normalize later
            mu = np.mean(feature_unit, axis=0)
            std = np.std(feature_unit, axis=0, ddof=1)
            std = 1 if std == 0 else std
            feature_unit = (feature_unit - mu) / std
            self.normal_terms.append((mu, std))

            # voxel selection, select the top `n_voxel` voxels with highest correlations
            # corr = corrcoef(feature_unit, x_train, var='col')
            corr = corr2_coeff(feature_unit.reshape((-1, 1)).T, x_train.T).ravel()
            corr[np.isnan(corr)] = 0  # mark np.nan values as 0 contribution
            x_train_subset, subset_index = select_top(x_train, np.abs(corr), self.n_voxel, axis=1, verbose=False)

            # add bias terms
            x_train_subset = add_bias(x_train_subset, axis=1)

            # set up the model
            model = SparseLinearRegression(n_iter=self.n_iter, prune_mode=1)
            # model = LinearRegression()

            # train model parameters
            try:
                model.fit(x_train_subset, feature_unit)
                self.models.append(model)
                self.subset_indices.append(subset_index)
            except:
                self.models.append(0)
                self.subset_indices.append(0)
Beispiel #5
0
def predict_feature_unit(analysis):
    '''Run feature prediction for each unit

    Parameters
    ----------
    analysis : dict
        Analysis parameters. This contains the following items:
            - subject
            - roi
            - num_voxel
            - feature
            - unit
            - num_test_category
            - ardreg_num_itr

    Returns
    -------
    dict
        Results dictionary. This contains the following items:
            - subject
            - roi
            - feature
            - unit
            - predict_percept
            - predict_imagery
            - predict_percept_ave
            - predict_imagery_ave
    '''

    ## Set analysis parameters -------------
    num_voxel = analysis['num_voxel']
    unit = analysis['unit']
    nitr = analysis['ardreg_num_itr']

    print 'Unit %d' % unit

    ## Get data ----------------------------

    ## Get brain data for training, test (perception), and test (imagery)
    ind_tr = data_type == 1
    ind_te_p = data_type == 2
    ind_te_i = data_type == 3

    data_train = data[ind_tr, :]
    data_test_percept = data[ind_te_p, :]
    data_test_imagery = data[ind_te_i, :]

    label_train = data_label[ind_tr]
    label_test_percept = data_label[ind_te_p]
    label_test_imagery = data_label[ind_te_i]

    ## Get image features for training
    ind_feat_tr = feature_type == 1
    feature_train = feature[ind_feat_tr, unit - 1]
    feature_label_train = feature_label[ind_feat_tr]

    ## Match training features to labels
    feature_train = bdpy.get_refdata(feature_train, feature_label_train,
                                     label_train)

    ## Preprocessing -----------------------

    ## Normalize data
    data_train_mean = np.mean(data_train, axis=0)
    data_train_std = np.std(data_train, axis=0, ddof=1)

    data_train_norm = (data_train - data_train_mean) / data_train_std
    data_test_percept_norm = (data_test_percept -
                              data_train_mean) / data_train_std
    data_test_imagery_norm = (data_test_imagery -
                              data_train_mean) / data_train_std

    feature_train_mean = np.mean(feature_train, axis=0)
    feature_train_std = np.std(feature_train, axis=0, ddof=1)

    if feature_train_std == 0:
        feature_train_norm = feature_train - feature_train_mean
    else:
        feature_train_norm = (feature_train -
                              feature_train_mean) / feature_train_std

    ## Voxel selection based on correlation
    corr = corrcoef(feature_train_norm, data_train_norm, var='col')

    data_train_norm, select_ind = select_top(data_train_norm,
                                             np.abs(corr),
                                             num_voxel,
                                             axis=1,
                                             verbose=False)

    data_test_percept_norm = data_test_percept_norm[:, select_ind]
    data_test_imagery_norm = data_test_imagery_norm[:, select_ind]

    ## Add bias term
    data_train_norm = add_bias(data_train_norm, axis=1)
    data_test_percept_norm = add_bias(data_test_percept_norm, axis=1)
    data_test_imagery_norm = add_bias(data_test_imagery_norm, axis=1)

    ## Decoding ----------------------------

    if feature_train_std == 0:
        predict_percept_norm = np.zeros(data_test_percept.shape[0],
                                        feature_train_norm[1])
        predict_imagery_norm = np.zeros(data_test_imagery.shape[0],
                                        feature_train_norm[1])

    else:
        try:
            model = SparseLinearRegression(n_iter=nitr, prune_mode=1)

            ## Model training
            #import pdb; pdb.set_trace()
            model.fit(data_train_norm, feature_train_norm)
        except:
            model = SparseLinearRegression(n_iter=75, prune_mode=1)

            ## Model training
            # import pdb; pdb.set_trace()
            model.fit(data_train_norm, feature_train_norm)

        ## Image feature preiction (percept & imagery)
        predict_percept_norm = model.predict(data_test_percept_norm)
        predict_imagery_norm = model.predict(data_test_imagery_norm)

    # De-normalize predicted features
    predict_percept = predict_percept_norm * feature_train_std + feature_train_mean
    predict_imagery = predict_imagery_norm * feature_train_std + feature_train_mean

    ## Average prediction results for each test category
    # [Note]
    # Image IDs (labels) is '<category_id>.<image_id>'
    # (e.g., '123456.7891011' is 'image 7891011 in category 123456').
    # Thus, the integer part of `label` represents the category ID.
    cat_te_p = np.floor(label_test_percept)
    cat_te_i = np.floor(label_test_imagery)

    category_test_percept = sorted(set(cat_te_p))
    category_test_imagery = sorted(set(cat_te_i))

    predict_percept_ave = [
        np.mean(predict_percept[cat_te_p == i]) for i in category_test_percept
    ]
    predict_imagery_ave = [
        np.mean(predict_imagery[cat_te_i == i]) for i in category_test_imagery
    ]

    #import pdb; pdb.set_trace()

    ## Return results
    return {
        'subject': analysis['subject'],
        'roi': analysis['roi'],
        'feature': analysis['feature'],
        'unit': unit,
        'predict_percept': predict_percept,
        'predict_imagery': predict_imagery,
        'predict_percept_catave': predict_percept_ave,
        'predict_imagery_catave': predict_imagery_ave,
        'category_test_percept': category_test_percept,
        'category_test_imagery': category_test_imagery
    }
Beispiel #6
0
def feature_prediction(x_train,
                       y_train,
                       x_test,
                       y_test,
                       n_voxel=500,
                       n_iter=200):
    '''Run feature prediction

    Parameters
    ----------
    x_train, y_train : array_like [shape = (n_sample, n_voxel)]
        Brain data and image features for training
    x_test, y_test : array_like [shape = (n_sample, n_unit)]
        Brain data and image features for test
    n_voxel : int
        The number of voxels
    n_iter : int
        The number of iterations

    Returns
    -------
    predicted_label : array_like [shape = (n_sample, n_unit)]
        Predicted features
    ture_label : array_like [shape = (n_sample, n_unit)]
        True features in test data
    '''

    n_unit = y_train.shape[1]

    # Normalize brian data (x)
    norm_mean_x = np.mean(x_train, axis=0)
    norm_scale_x = np.std(x_train, axis=0, ddof=1)

    x_train = (x_train - norm_mean_x) / norm_scale_x
    x_test = (x_test - norm_mean_x) / norm_scale_x

    # Feature prediction for each unit
    print('Running feature prediction')

    y_true_list = []
    y_pred_list = []

    for i in range(n_unit):

        print('Unit %03d' % (i + 1))
        start_time = time()

        # Get unit features
        y_train_unit = y_train[:, i]
        y_test_unit = y_test[:, i]

        # Normalize image features for training (y_train_unit)
        norm_mean_y = np.mean(y_train_unit, axis=0)
        std_y = np.std(y_train_unit, axis=0, ddof=1)
        norm_scale_y = 1 if std_y == 0 else std_y

        y_train_unit = (y_train_unit - norm_mean_y) / norm_scale_y

        # Voxel selection
        corr = corrcoef(y_train_unit, x_train, var='col')

        x_train_unit, voxel_index = select_top(x_train,
                                               np.abs(corr),
                                               n_voxel,
                                               axis=1,
                                               verbose=False)
        x_test_unit = x_test[:, voxel_index]

        # Add bias terms
        x_train_unit = add_bias(x_train_unit, axis=1)
        x_test_unit = add_bias(x_test_unit, axis=1)

        # Setup regression
        # For quick demo, use linaer regression
        model = LinearRegression()
        #model = SparseLinearRegression(n_iter=n_iter, prune_mode=1)

        # Training and test
        try:
            model.fit(x_train_unit, y_train_unit)  # Training
            y_pred = model.predict(x_test_unit)  # Test
        except:
            # When SLiR failed, returns zero-filled array as predicted features
            y_pred = np.zeros(y_test_unit.shape)

        # Denormalize predicted features
        y_pred = y_pred * norm_scale_y + norm_mean_y

        y_true_list.append(y_test_unit)
        y_pred_list.append(y_pred)

        print('Time: %.3f sec' % (time() - start_time))

    # Create numpy arrays for return values
    y_predicted = np.vstack(y_pred_list).T
    y_true = np.vstack(y_true_list).T

    return y_predicted, y_true