Beispiel #1
0
def beamsearch_hamcycle(pred, W, beam_size=2):
    N = W.size(-1)
    batch_size = W.size(0)
    BS = BeamSearch(beam_size, batch_size, N)
    trans_probs = pred.gather(1, BS.get_current_state())
    for step in range(N-1):
        BS.advance(trans_probs, step + 1)
        trans_probs = pred.gather(1, BS.get_current_state())
    ends = torch.zeros(batch_size, 1).type(dtype_l)
    # extract paths
    Paths = BS.get_hyp(ends)
    # Compute cost of path
    Costs = compute_cost_path(Paths, W)
    return Costs, Paths
Beispiel #2
0
    def _beam_search_decoding(self, imgs, beam_size):
        B = imgs.size(0)
        # use batch_size*beam_size as new Batch
        imgs = tile(imgs, beam_size, dim=0)
        enc_outs, hiddens = self.model.encode(imgs)
        dec_states, O_t = self.model.init_decoder(enc_outs, hiddens)

        new_B = imgs.size(0)
        # first decoding step's input
        tgt = torch.ones(new_B, 1).long() * START_TOKEN
        beam = BeamSearch(beam_size, B)
        for t in range(self.max_len):
            tgt = beam.current_predictions.unsqueeze(1)
            dec_states, O_t, probs = self.step_decoding(
                dec_states, O_t, enc_outs, tgt)
            log_probs = torch.log(probs)

            beam.advance(log_probs)
            any_beam_is_finished = beam.is_finished.any()
            if any_beam_is_finished:
                beam.update_finished()
                if beam.done:
                    break

            select_indices = beam.current_origin
            if any_beam_is_finished:
                # Reorder states
                h, c = dec_states
                h = h.index_select(0, select_indices)
                c = c.index_select(0, select_indices)
                dec_states = (h, c)
                O_t = O_t.index_select(0, select_indices)
        # get results
        formulas_idx = torch.stack([hyps[1] for hyps in beam.hypotheses],
                                   dim=0)
        results = self._idx2formulas(formulas_idx)
        return results