Beispiel #1
0
def configure(sim):
    """use this function to configure the given simulation"""
    # customize settings
    sim.settings.deltaTime = timedelta(days=1)
    sim.settings.simStartTime = datetime(2011, 1, 1, 12, 0, 0, 0)
    sim.settings.t0 = 0  #startTime
    sim.settings.tf = 180  #endTime

    # load agents personalities for i, ii, and iii
    agent1 = agent(sim.environment)
    agent1.state.setPersonality(agent_i.personality())

    agent2 = agent(sim.environment)
    agent2.state.setPersonality(agent_ii.personality())

    agent3 = agent(sim.environment)
    agent3.state.setPersonality(agent_iii.personality())

    #add disturbances
    agent3.state.eta_PA.setFunction(getEta, agent3.inputs.xi_PA,
                                    agent3.state.personality,
                                    agent3.state.zeta_PA)
    agent3.state.eta_EB.setFunction(getEta, agent3.inputs.xi_EB,
                                    agent3.state.personality,
                                    agent3.state.zeta_EB)

    # customize the CSEL input functions (exogeneous flow vars)
    def eatingAttitude(t):
        beforeChange = 7
        afterChange = 10
        changeT = 10
        allOthers = 1
        return stepOne(t, allOthers, 'behavioralBelief', changeT, beforeChange,
                       afterChange)

    agent1.inputs.attitudeChange_EB.setFunction(
        eatingAttitude)  #overwrite the default function
    agent2.inputs.attitudeChange_EB.setFunction(
        eatingAttitude)  #overwrite the default function
    agent3.inputs.attitudeChange_EB.setFunction(
        eatingAttitude)  #overwrite the default function

    def exerciseAttitude(t):
        # stepOne(data,t,value,steppedName,stepTime,beforeStep,afterStep):
        beforeChange = 1
        afterChange = 3
        changeT = 30
        allOthers = 1
        return stepOne(t, allOthers, 'behavioralBelief', changeT, beforeChange,
                       afterChange)

    agent1.inputs.attitudeChange_PA.setFunction(
        exerciseAttitude)  #overwrite the default function
    agent2.inputs.attitudeChange_PA.setFunction(
        exerciseAttitude)  #overwrite the default function
    agent3.inputs.attitudeChange_PA.setFunction(
        exerciseAttitude)  #overwrite the default function
Beispiel #2
0
def configure(sim):
	sim.settings = settings()
	sim.environment = environment()
	agent(sim.environment)
Beispiel #3
0
settings.simStartTime = datetime(2011, 1, 1, 12, 0, 0, 0)

print '* simulation start time (sim-time): ' + str(settings.simStartTime)
print '*     size of time step, deltaTime: ' + str(settings.deltaTime)

t0 = 0   #startTime
tf = 180 #endTime

# === === === === === === AGENT SETUP === === === === === ===
from behaviorSim.environment.environment import environment
envmt = environment()	# load default environment

# load agents personalities for i, ii, and iii
from behaviorSim.PECSagent.agent import agent
from behaviorSim.PECSagent.state.CSEL import agent_i, agent_ii, agent_iii
agent1 = agent(envmt)
agent1.state.setPersonality(agent_i.personality())

agent2 = agent(envmt)
agent2.state.setPersonality(agent_ii.personality())

agent3 = agent(envmt)
agent3.state.setPersonality(agent_iii.personality())
#add disturbances
from behaviorSim.PECSagent.state.CSEL.model_ddeint_firstOrder_withDisturbances import getEta
# print 'args='+str(agent3.state.eta_PA.args)
#def getEta(data,t,xi_PA,agent,zeta_PA):
agent3.state.eta_PA.setFunction(getEta,agent3.inputs.xi_PA,agent3.state.personality,agent3.state.zeta_PA)
agent3.state.eta_EB.setFunction(getEta,agent3.inputs.xi_EB,agent3.state.personality,agent3.state.zeta_EB)

# customize the CSEL input functions (exogeneous flow vars)
Beispiel #4
0
t = 5  #time of interest in simulation timesteps (set in settings)

#setup log file for this script
import logging
from behaviorSim.__util.setupLog import setupLog
setupLog()

# === === === === === === AGENT SETUP === === === === === ===
from behaviorSim.environment.environment import environment
envmt = environment()  #load default environment

from behaviorSim.PECSagent.agent import agent
myAgent = agent(envmt)  #load default agent
#TODO: customize the agent
#TODO: defaultAgent.tag = 'my very first agent'

# you can not reference the agent using 'myAgent' or 'envmt.agent[0]'

# add agent to environment

print ' === === === === === === SETTINGS === === === === === ==='
# load settings of the simulation (just FYI here)
from behaviorSim.PECSagent.settings import settings
print '* simulation start time (sim-time): ' + str(settings.simStartTime)
print '*     size of time step, deltaTime: ' + str(settings.deltaTime)

print ' === === === === === === DATA === === === === === ==='
print envmt.agents[0].inputs(0)
print envmt.agents[0].state(0)
print envmt.agents[0].motive(0)
print envmt.agents[0].behavior(0)
Beispiel #5
0
settings.simStartTime = datetime(2011, 1, 1, 12, 0, 0, 0)

print '* simulation start time (sim-time): ' + str(settings.simStartTime)
print '*     size of time step, deltaTime: ' + str(settings.deltaTime)

t0 = 0  #startTime
tf = 180  #endTime

# === === === === === === AGENT SETUP === === === === === ===
from behaviorSim.environment.environment import environment
envmt = environment()  # load default environment

# load agents personalities for i, ii, and iii
from behaviorSim.PECSagent.agent import agent
from behaviorSim.PECSagent.state.CSEL import agent_i, agent_ii, agent_iii
agent1 = agent(envmt)
agent1.state.setPersonality(agent_i.personality())

agent2 = agent(envmt)
agent2.state.setPersonality(agent_ii.personality())

agent3 = agent(envmt)
agent3.state.setPersonality(agent_iii.personality())
#add disturbances
from behaviorSim.PECSagent.state.CSEL.model_ddeint_firstOrder_withDisturbances import getEta
# print 'args='+str(agent3.state.eta_PA.args)
#def getEta(data,t,xi_PA,agent,zeta_PA):
agent3.state.eta_PA.setFunction(getEta, agent3.inputs.xi_PA,
                                agent3.state.personality, agent3.state.zeta_PA)
agent3.state.eta_EB.setFunction(getEta, agent3.inputs.xi_EB,
                                agent3.state.personality, agent3.state.zeta_EB)
Beispiel #6
0
from behaviorSim.environment.environment import environment
envmt = environment()	#load default environment

from behaviorSim.PECSagent.agent import agent
agent1 = agent(envmt)	#load default agent

t = 3

# === how the raw data is handled (don't do this) ===

# attempted direct access shows data in memory (don't do this)
print '   initTime: ' + str(agent1.inputs.initTime.data)
# note that it is empty, something likke _inputs__initTime[t] here would cause out-of-bounds exception

# function call ensures that value is present and up-to-date (this is what you should be using)
print 'initTime(t): '  + str(agent1.inputs.initTime(t))

# and updates the raw data (as shown) (do not do this)
print '   initTime: ' + str(agent1.inputs.initTime.data)
Beispiel #7
0
 def setupAgent(self, sim):
     print 'setting up default agent...'
     sim.environment.addAgent(agent(sim.environment))  #add a default agent
     print 'done'
def configure(sim):

	# set up the question(s)
	#TODO: question should include prospect of outcomes, ... MORE
	class questionIterator(object):
		'''
		This class returns the current question being posed.
		'''
		def __init__(self):
			self.currentQuestionN = 0
			self.currentQuestion  = None

			self.questions = [[2500,.33,2400,.66,0,.01],
			                  [2500,.33,0   ,.67],
			                  [4000,.8 ,3000],
			                 ]

		def __call__(self,t,agent):
			# update question if agent has competed last question
			if agent.behavior.choice(t) != None:
				self.currentQuestionN += 1
				self.currentQuestion = self.getQuestion()
			return self.currentQuestion

		def getQuestion(self):
			n = self.currentQuestionN
			if n<1:
				raise ValueError('question # cannot be negative')
			elif n == 1:
				self.currentQuestion = []
			elif n == 2:
				self.currentQuestion = []
			else:
				raise ValueError('question #'+str(n)+' not found')
			return self.currentQuestion

	currentQuestionProspect = API.getConstruct('currentQuestionProspect'
		,questionIterator)
	# this should be None when there is no prospect question posed,
	# if there is a question it is a list



	API.addFeature(environment,time,)

	#sim.environment.???
	API.addEvent(environment,time, gamblePrompt)

	# create rational agent
	rationalAgent = agent(sim.environment)

	class event:
		if time == timeTrigger:
			triggerEvent(environment)

	prospect = API.getConstruct('prospect'
		,getProspectFromEnvironment
		,environment.currentQuestionProspect)
	API.addConstruct(rationalAgent.context,prospect)





	def expectation(prospect):
		'''
		returns expectation value for given set of probabilities
		t = time
		prospect = list of outcome and probability pairs (x_1,p_1,x_2,p_2...x_n,p_n)
		'''
		sum = 0
		for i in range(int(len(prospect)/2)):
			sum += prospect[i*2]*prospect[i*2+1]

		return sum

#TODO:	def utilityOfAssets(assetPosition)
#TODO: 	def assetIntegration(prospect,assetPosition):
#TODO:	def riskAversionAssetUtility(assetPosition):
#			''' this is a concave function of assetPosition '''

	expectation = API.getConstruct('expectation'
		,calculateExpectationValue
		,rationalAgent.context.prospect)

	API.addConstruct(rationalAgent.state,expectationValue)


	# create a classically risk-averted agent
	riskAvertedAgent = copy.deepcopy(rationalAgent)


	# create a more realistic human agent by extending the rational agent
	prospectTheoryAgent = copy.deepcopy(rationalAgent)
Beispiel #9
0
def getDefaultAgent(envmt):
    from behaviorSim.PECSagent.agent import agent
    return agent(envmt)
Beispiel #10
0
t = 5	#time of interest in simulation timesteps (set in settings)

#setup log file for this script
import logging
from behaviorSim.__util.setupLog import setupLog
setupLog()

# === === === === === === AGENT SETUP === === === === === ===
from behaviorSim.environment.environment import environment
envmt = environment()	#load default environment

from behaviorSim.PECSagent.agent import agent
myAgent = agent(envmt)	#load default agent
#TODO: customize the agent
#TODO: defaultAgent.tag = 'my very first agent'

# you can not reference the agent using 'myAgent' or 'envmt.agent[0]'

# add agent to environment 



print ' === === === === === === SETTINGS === === === === === ==='
# load settings of the simulation (just FYI here)
from behaviorSim.PECSagent.settings import settings
print '* simulation start time (sim-time): ' + str(settings.simStartTime)
print '*     size of time step, deltaTime: ' + str(settings.deltaTime)

print ' === === === === === === DATA === === === === === ==='
print envmt.agents[0].inputs(0)
Beispiel #11
0
def configure(sim):

    # set up the question(s)
    #TODO: question should include prospect of outcomes, ... MORE
    class questionIterator(object):
        '''
		This class returns the current question being posed.
		'''
        def __init__(self):
            self.currentQuestionN = 0
            self.currentQuestion = None

            self.questions = [
                [2500, .33, 2400, .66, 0, .01],
                [2500, .33, 0, .67],
                [4000, .8, 3000],
            ]

        def __call__(self, t, agent):
            # update question if agent has competed last question
            if agent.behavior.choice(t) != None:
                self.currentQuestionN += 1
                self.currentQuestion = self.getQuestion()
            return self.currentQuestion

        def getQuestion(self):
            n = self.currentQuestionN
            if n < 1:
                raise ValueError('question # cannot be negative')
            elif n == 1:
                self.currentQuestion = []
            elif n == 2:
                self.currentQuestion = []
            else:
                raise ValueError('question #' + str(n) + ' not found')
            return self.currentQuestion

    currentQuestionProspect = API.getConstruct('currentQuestionProspect',
                                               questionIterator)
    # this should be None when there is no prospect question posed,
    # if there is a question it is a list

    API.addFeature(
        environment,
        time,
    )

    #sim.environment.???
    API.addEvent(environment, time, gamblePrompt)

    # create rational agent
    rationalAgent = agent(sim.environment)

    class event:
        if time == timeTrigger:
            triggerEvent(environment)

    prospect = API.getConstruct('prospect', getProspectFromEnvironment,
                                environment.currentQuestionProspect)
    API.addConstruct(rationalAgent.context, prospect)

    def expectation(prospect):
        '''
		returns expectation value for given set of probabilities
		t = time
		prospect = list of outcome and probability pairs (x_1,p_1,x_2,p_2...x_n,p_n)
		'''
        sum = 0
        for i in range(int(len(prospect) / 2)):
            sum += prospect[i * 2] * prospect[i * 2 + 1]

        return sum

#TODO:	def utilityOfAssets(assetPosition)
#TODO: 	def assetIntegration(prospect,assetPosition):
#TODO:	def riskAversionAssetUtility(assetPosition):
#			''' this is a concave function of assetPosition '''

    expectation = API.getConstruct('expectation', calculateExpectationValue,
                                   rationalAgent.context.prospect)

    API.addConstruct(rationalAgent.state, expectationValue)

    # create a classically risk-averted agent
    riskAvertedAgent = copy.deepcopy(rationalAgent)

    # create a more realistic human agent by extending the rational agent
    prospectTheoryAgent = copy.deepcopy(rationalAgent)
Beispiel #12
0
	def setupAgent(self,sim):
		print 'setting up default agent...'
		sim.environment.addAgent(agent(sim.environment))	#add a default agent
		print 'done'
Beispiel #13
0
def getDefaultAgent(envmt):
	from behaviorSim.PECSagent.agent import agent
	return agent(envmt)
Beispiel #14
0
import pylab

# === === === === === === AGENT SETUP === === === === === ===
from behaviorSim.environment.environment import environment
envmt = environment()	#load default environment

from behaviorSim.PECSagent.agent import agent
agent1 = agent(envmt)	#load default agent

# === === === === === === PLOTS === === === === === ===
from behaviorSim.PECSplotter.plot import plotAll, plotInputs, plotState 	#load the plotter

print 'plot using plotAll? (y/n)'
choice = raw_input()
while choice != 'n' and choice != 'y':
	print choice + '? please enter y or n.'
	choice = raw_input()
if choice == 'y':
	plotAll(agent1,0,10)
	# and show the plots:
	pylab.show()	

print 'plot using individual plotters? (y/n)'
choice = raw_input()
while choice != 'n' and choice != 'y':
	print choice + '? please enter y or n.'
	choice = raw_input()
if choice == 'y':
	#using the built-in plotters:
	plotInputs(agent1,0,10)	#plot inputs t={0->10}
	plotState(agent1,0,10)