def main(): from sklearn.linear_model import Lasso # Load data X_train, X_test, y_train, y_test = bench.load_data(params) # Create our regression object regr = Lasso(fit_intercept=params.fit_intercept, alpha=params.alpha, tol=params.tol, max_iter=params.maxiter, copy_X=False) # Time fit fit_time, _ = bench.measure_function_time(regr.fit, X_train, y_train, params=params) # Time predict predict_time, yp = bench.measure_function_time(regr.predict, X_train, params=params) train_rmse = bench.rmse_score(y_train, yp) train_r2 = bench.r2_score(y_train, yp) yp = regr.predict(X_test) test_rmse = bench.rmse_score(y_test, yp) test_r2 = bench.r2_score(y_test, yp) bench.print_output( library='sklearn', algorithm='lasso', stages=['training', 'prediction'], params=params, functions=['Lasso.fit', 'Lasso.predict'], times=[fit_time, predict_time], metric_type=['rmse', 'r2_score', 'iter'], metrics=[ [train_rmse, test_rmse], [train_r2, test_r2], [int(regr.n_iter_), int(regr.n_iter_)], ], data=[X_train, X_test], alg_instance=regr, )
def main(): from sklearn.neighbors import KNeighborsClassifier # Load generated data X_train, X_test, y_train, y_test = bench.load_data(params) params.n_classes = len(np.unique(y_train)) # Create classification object knn_clsf = KNeighborsClassifier(n_neighbors=params.n_neighbors, weights=params.weights, algorithm=params.method, metric=params.metric, n_jobs=params.n_jobs) # Measure time and accuracy on fitting train_time, _ = bench.measure_function_time(knn_clsf.fit, X_train, y_train, params=params) if params.task == 'classification': y_pred = knn_clsf.predict(X_train) train_acc = 100 * accuracy_score(y_pred, y_train) # Measure time and accuracy on prediction if params.task == 'classification': predict_time, yp = bench.measure_function_time(knn_clsf.predict, X_test, params=params) test_acc = 100 * accuracy_score(yp, y_test) else: predict_time, _ = bench.measure_function_time(knn_clsf.kneighbors, X_test, params=params) if params.task == 'classification': bench.print_output(library='sklearn', algorithm=knn_clsf._fit_method + '_knn_classification', stages=['training', 'prediction'], params=params, functions=['knn_clsf.fit', 'knn_clsf.predict'], times=[train_time, predict_time], accuracies=[train_acc, test_acc], accuracy_type='accuracy[%]', data=[X_train, X_test], alg_instance=knn_clsf) else: bench.print_output(library='sklearn', algorithm=knn_clsf._fit_method + '_knn_search', stages=['training', 'search'], params=params, functions=['knn_clsf.fit', 'knn_clsf.kneighbors'], times=[train_time, predict_time], accuracies=[], accuracy_type=None, data=[X_train, X_test], alg_instance=knn_clsf)
def main(): from sklearn.linear_model import ElasticNet # Load data X_train, X_test, y_train, y_test = bench.load_data(params) # Create our regression object regr = ElasticNet(fit_intercept=params.fit_intercept, l1_ratio=params.l1_ratio, alpha=params.alpha, tol=params.tol, max_iter=params.maxiter, copy_X=False) # Time fit fit_time, _ = bench.measure_function_time(regr.fit, X_train, y_train, params=params) # Time predict predict_time, y_pred = bench.measure_function_time(regr.predict, X_train, params=params) train_rmse = bench.rmse_score(y_train, y_pred) train_r2 = bench.r2_score(y_train, y_pred) y_pred = regr.predict(X_test) test_rmse = bench.rmse_score(y_test, y_pred) test_r2 = bench.r2_score(y_test, y_pred) bench.print_output( library='sklearn', algorithm='elastic-net', stages=['training', 'prediction'], params=params, functions=['ElasticNet.fit', 'ElasticNet.predict'], times=[fit_time, predict_time], metric_type=['rmse', 'r2_score'], metrics=[[train_rmse, test_rmse], [train_r2, test_r2]], data=[X_train, X_train], alg_instance=regr, )
def main(): from sklearn.ensemble import RandomForestRegressor # Load and convert data X_train, X_test, y_train, y_test = bench.load_data(params) # Create our random forest regressor regr = RandomForestRegressor(criterion=params.criterion, n_estimators=params.num_trees, max_depth=params.max_depth, max_features=params.max_features, min_samples_split=params.min_samples_split, max_leaf_nodes=params.max_leaf_nodes, min_impurity_decrease=params.min_impurity_decrease, bootstrap=params.bootstrap, random_state=params.seed, n_jobs=params.n_jobs) fit_time, _ = bench.measure_function_time(regr.fit, X_train, y_train, params=params) y_pred = regr.predict(X_train) train_rmse = bench.rmse_score(y_train, y_pred) train_r2 = bench.r2_score(y_train, y_pred) predict_time, y_pred = bench.measure_function_time( regr.predict, X_test, params=params) test_rmse = bench.rmse_score(y_test, y_pred) test_r2 = bench.r2_score(y_test, y_pred) bench.print_output( library='sklearn', algorithm='df_regr', stages=['training', 'prediction'], params=params, functions=['df_regr.fit', 'df_regr.predict'], times=[fit_time, predict_time], metric_type=['rmse', 'r2_score'], metrics=[[train_rmse, test_rmse], [train_r2, test_r2]], data=[X_train, X_test], alg_instance=regr, )
def main(): from sklearn.linear_model import LinearRegression # Load data X_train, X_test, y_train, y_test = bench.load_data( params, generated_data=['X_train', 'y_train']) # Create our regression object regr = LinearRegression(fit_intercept=params.fit_intercept, n_jobs=params.n_jobs, copy_X=False) # Time fit fit_time, _ = bench.measure_function_time(regr.fit, X_train, y_train, params=params) # Time predict predict_time, yp = bench.measure_function_time(regr.predict, X_test, params=params) test_rmse = bench.rmse_score(y_test, yp) test_r2 = bench.r2_score(y_test, yp) yp = regr.predict(X_train) train_rmse = bench.rmse_score(y_train, yp) train_r2 = bench.r2_score(y_train, yp) bench.print_output( library='sklearn', algorithm='lin_reg', stages=['training', 'prediction'], params=params, functions=['Linear.fit', 'Linear.predict'], times=[fit_time, predict_time], metric_type=['rmse', 'r2_score'], metrics=[[train_rmse, test_rmse], [train_r2, test_r2]], data=[X_train, X_test], alg_instance=regr, )
def main(): from sklearn.linear_model import Ridge # Load data X_train, X_test, y_train, y_test = bench.load_data( params, generated_data=['X_train', 'y_train']) # Create our regression object regr = Ridge(fit_intercept=params.fit_intercept, alpha=params.alpha, solver=params.solver) # Time fit fit_time, _ = bench.measure_function_time(regr.fit, X_train, y_train, params=params) # Time predict predict_time, yp = bench.measure_function_time(regr.predict, X_test, params=params) test_rmse = bench.rmse_score(yp, y_test) yp = regr.predict(X_train) train_rmse = bench.rmse_score(yp, y_train) bench.print_output(library='sklearn', algorithm='ridge_regression', stages=['training', 'prediction'], params=params, functions=['Ridge.fit', 'Ridge.predict'], times=[fit_time, predict_time], accuracy_type='rmse', accuracies=[train_rmse, test_rmse], data=[X_train, X_test], alg_instance=regr)
def main(): from sklearn.model_selection import train_test_split # Load generated data X, y, _, _ = bench.load_data(params) data_args: Iterable if params.include_y: data_args = (X, y) else: data_args = (X, ) tts_params = { 'train_size': params.train_size, 'test_size': params.test_size, 'shuffle': not params.do_not_shuffle, 'random_state': params.seed } if params.rng is not None: tts_params['rng'] = params.rng time, _ = bench.measure_function_time(train_test_split, *data_args, params=params, **tts_params) bench.print_output(library='sklearn', algorithm='train_test_split', stages=['training'], params=params, functions=['train_test_split'], times=[time], accuracies=[None], accuracy_type=None, data=[X], alg_params=tts_params)
def main(): from sklearn.metrics.pairwise import pairwise_distances # Load data X, _, _, _ = bench.load_data(params, generated_data=['X_train'], add_dtype=True) time, _ = bench.measure_function_time(pairwise_distances, X, metric=params.metric, n_jobs=params.n_jobs, params=params) bench.print_output(library='sklearn', algorithm='distances', stages=['computation'], params=params, functions=[params.metric.capitalize()], times=[time], metric_type=None, metrics=[None], data=[X], alg_params={'metric': params.metric})
def main(): from sklearn.cluster import KMeans from sklearn.metrics.cluster import davies_bouldin_score # Load and convert generated data X_train, X_test, _, _ = bench.load_data(params) X_init: Any if params.filei == 'k-means++': X_init = 'k-means++' # Load initial centroids from specified path elif params.filei is not None: X_init = {k: v.astype(params.dtype) for k, v in np.load(params.filei).items()} if isinstance(X_init, np.ndarray): params.n_clusters = X_init.shape[0] # or choose random centroids from training data else: np.random.seed(params.seed) centroids_idx = np.random.randint(low=0, high=X_train.shape[0], size=params.n_clusters) if hasattr(X_train, "iloc"): X_init = X_train.iloc[centroids_idx].values else: X_init = X_train[centroids_idx] def fit_kmeans(X, X_init): alg = KMeans(n_clusters=params.n_clusters, tol=params.tol, max_iter=params.maxiter, init=X_init, n_init=params.n_init, algorithm=params.algorithm, random_state=params.random_state) alg.fit(X) return alg # Time fit fit_time, kmeans = bench.measure_function_time(fit_kmeans, X_train, X_init, params=params) train_predict = kmeans.predict(X_train) acc_train = davies_bouldin_score(X_train, train_predict) # Time predict predict_time, test_predict = bench.measure_function_time( kmeans.predict, X_test, params=params) acc_test = davies_bouldin_score(X_test, test_predict) bench.print_output( library='sklearn', algorithm='kmeans', stages=['training', 'prediction'], params=params, functions=['KMeans.fit', 'KMeans.predict'], times=[fit_time, predict_time], metric_type=['davies_bouldin_score', 'inertia', 'iter'], metrics=[ [acc_train, acc_test], [kmeans.inertia_, kmeans.inertia_], [kmeans.n_iter_, kmeans.n_iter_] ], data=[X_train, X_test], alg_instance=kmeans, )
parser.add_argument('--max-depth', type=int, default=0, help='Upper bound on depth of constructed trees') parser.add_argument('--min-samples-split', type=bench.float_or_int, default=2, help='Minimum samples number for node splitting') parser.add_argument('--max-leaf-nodes', type=int, default=None, help='Maximum leaf nodes per tree') parser.add_argument('--min-impurity-decrease', type=float, default=0., help='Needed impurity decrease for node splitting') parser.add_argument('--no-bootstrap', dest='bootstrap', default=True, action='store_false', help="Don't control bootstraping") params = bench.parse_args(parser, prefix='daal4py') # Load data X_train, X_test, y_train, y_test = bench.load_data( params, add_dtype=True, label_2d=True) params.n_classes = len(np.unique(y_train)) if isinstance(params.max_features, float): params.max_features = int(X_train.shape[1] * params.max_features) # Time fit and predict fit_time, res = bench.measure_function_time( df_clsf_fit, X_train, y_train, params.n_classes, n_trees=params.num_trees, n_features_per_node=params.max_features, max_depth=params.max_depth, min_impurity=params.min_impurity_decrease, bootstrap=params.bootstrap, seed=params.seed,
type=float, default=0., help='Absolute threshold') parser.add_argument('--maxiter', type=int, default=100, help='Maximum number of iterations') parser.add_argument('--samples-per-batch', type=int, default=32768, help='Maximum number of iterations') parser.add_argument('--n-clusters', type=int, help='Number of clusters') params = bench.parse_args(parser, prefix='cuml', loop_types=('fit', 'predict')) # Load and convert generated data X_train, X_test, _, _ = bench.load_data(params) X_init: Any if params.filei == 'k-means++': X_init = 'k-means++' # Load initial centroids from specified path elif params.filei is not None: X_init = { k: v.astype(params.dtype) for k, v in np.load(params.filei).items() } if isinstance(X_init, np.ndarray): params.n_clusters = X_init.shape[0] # or choose random centroids from training data else: np.random.seed(params.seed)
def main(): from sklearn.svm import SVC X_train, X_test, y_train, y_test = bench.load_data(params) if params.gamma is None: params.gamma = 1.0 / X_train.shape[1] cache_size_bytes = bench.get_optimal_cache_size( X_train.shape[0], max_cache=params.max_cache_size) params.cache_size_mb = cache_size_bytes / 1024**2 params.n_classes = len(np.unique(y_train)) clf = SVC(C=params.C, kernel=params.kernel, cache_size=params.cache_size_mb, tol=params.tol, gamma=params.gamma, probability=params.probability, random_state=43) fit_time, _ = bench.measure_function_time(clf.fit, X_train, y_train, params=params) params.sv_len = clf.support_.shape[0] if params.probability: state_predict = 'predict_proba' accuracy_type = 'log_loss' def metric_call(x, y): return bench.log_loss(x, y) clf_predict = clf.predict_proba else: state_predict = 'predict' accuracy_type = 'accuracy[%]' def metric_call(x, y): return bench.accuracy_score(x, y) clf_predict = clf.predict predict_train_time, y_pred = bench.measure_function_time(clf_predict, X_train, params=params) train_acc = metric_call(y_train, y_pred) predict_test_time, y_pred = bench.measure_function_time(clf_predict, X_test, params=params) test_acc = metric_call(y_test, y_pred) bench.print_output(library='sklearn', algorithm='svc', stages=['training', state_predict], params=params, functions=['SVM.fit', f'SVM.{state_predict}'], times=[fit_time, predict_train_time], accuracy_type=accuracy_type, accuracies=[train_acc, test_acc], data=[X_train, X_train], alg_instance=clf)
dest='alpha', type=float, default=1.0, help='Regularization parameter') parser.add_argument('--maxiter', type=int, default=1000, help='Maximum iterations for the iterative solver') parser.add_argument('--tol', type=float, default=0.0, help='Tolerance for solver.') params = parse_args(parser) # Load data X_train, X_test, y_train, y_test = load_data(params) # Create our regression object regr = Lasso(fit_intercept=params.fit_intercept, alpha=params.alpha, tol=params.tol, max_iter=params.maxiter, copy_X=False) columns = ('batch', 'arch', 'prefix', 'function', 'threads', 'dtype', 'size', 'time') # Time fit fit_time, _ = measure_function_time(regr.fit, X_train, y_train, params=params) # Time predict
type=int, default=None, help='Number of components to find') parser.add_argument('--whiten', action='store_true', default=False, help='Perform whitening') parser.add_argument('--write-results', action='store_true', default=False, help='Write results to disk for verification') params = parse_args(parser, size=(10000, 1000)) # Load data X_train, X_test, _, _ = load_data(params, generated_data=['X_train'], add_dtype=True) if params.n_components is None: p, n = X_train.shape params.n_components = min((n, (2 + min((n, p))) // 3)) # Define how to do our scikit-learn PCA using DAAL... def pca_fit_daal(X, n_components, method): if n_components < 1: n_components = min(X.shape) fptype = getFPType(X)
help='Upper bound on features used at each split') parser.add_argument('--max-depth', type=int, default=None, help='Upper bound on depth of constructed trees') parser.add_argument('--min-samples-split', type=bench.float_or_int, default=2, help='Minimum samples number for node splitting') parser.add_argument('--max-leaf-nodes', type=int, default=-1, help='Maximum leaf nodes per tree') parser.add_argument('--min-impurity-decrease', type=float, default=0., help='Needed impurity decrease for node splitting') parser.add_argument('--no-bootstrap', dest='bootstrap', default=True, action='store_false', help="Don't control bootstraping") params = bench.parse_args(parser) # Load and convert data X_train, X_test, y_train, y_test = bench.load_data(params, int_label=True) if params.criterion == 'gini': params.criterion = 0 else: params.criterion = 1 if params.split_algorithm == 'hist': params.split_algorithm = 0 else: params.split_algorithm = 1 params.n_classes = y_train[y_train.columns[0]].nunique() clf: Any
default=True, action='store_false', help="Don't fit intercept (assume data already centered)") parser.add_argument('--solver', default='auto', help='Solver used for training') parser.add_argument('--alpha', type=float, default=1.0, help='Regularization strength') params = bench.parse_args(parser) from sklearn.linear_model import Ridge # Load data X_train, X_test, y_train, y_test = bench.load_data( params, generated_data=['X_train', 'y_train']) # Create our regression object regr = Ridge(fit_intercept=params.fit_intercept, alpha=params.alpha, solver=params.solver) # Time fit fit_time, _ = bench.measure_function_time(regr.fit, X_train, y_train, params=params) # Time predict predict_time, yp = bench.measure_function_time(regr.predict, X_test,
help='Do not perform data shuffle before splitting') parser.add_argument('--include-y', default=False, action='store_true', help='Include label (Y) in splitting') parser.add_argument('--rng', default=None, choices=('MT19937', 'SFMT19937', 'MT2203', 'R250', 'WH', 'MCG31', 'MCG59', 'MRG32K3A', 'PHILOX4X32X10', 'NONDETERM', None), help='Random numbers generator for shuffling ' '(only for IDP scikit-learn)') params = parse_args(parser) # Load generated data X, y, _, _ = load_data(params) if params.include_y: data_args = (X, y) else: data_args = (X, ) tts_params = { 'train_size': params.train_size, 'test_size': params.test_size, 'shuffle': not params.do_not_shuffle, 'random_state': params.seed } if params.rng is not None: tts_params['rng'] = params.rng
def main(): parser = argparse.ArgumentParser(description='daal4py SVC benchmark with ' 'linear kernel') parser.add_argument('-C', dest='C', type=float, default=1.0, help='SVM regularization parameter') parser.add_argument('--kernel', choices=('linear', 'rbf'), default='linear', help='SVM kernel function') parser.add_argument('--gamma', type=float, default=None, help='Parameter for kernel="rbf"') parser.add_argument('--maxiter', type=int, default=100000, help='Maximum iterations for the iterative solver. ') parser.add_argument('--max-cache-size', type=int, default=8, help='Maximum cache size, in gigabytes, for SVM.') parser.add_argument('--tau', type=float, default=1e-12, help='Tau parameter for working set selection scheme') parser.add_argument('--tol', type=float, default=1e-3, help='Tolerance') parser.add_argument('--no-shrinking', action='store_false', default=True, dest='shrinking', help="Don't use shrinking heuristic") params = parse_args(parser, prefix='daal4py') # Load data X_train, X_test, y_train, y_test = load_data(params, add_dtype=True, label_2d=True) if params.gamma is None: params.gamma = 1 / X_train.shape[1] cache_size_bytes = get_optimal_cache_size(X_train.shape[0], max_cache=params.max_cache_size) params.cache_size_mb = cache_size_bytes / 2**20 params.cache_size_bytes = cache_size_bytes params.n_classes = np.unique(y_train).size columns = ('batch', 'arch', 'prefix', 'function', 'threads', 'dtype', 'size', 'kernel', 'cache_size_mb', 'C', 'sv_len', 'n_classes', 'accuracy', 'time') # Time fit and predict fit_time, res = measure_function_time(test_fit, X_train, y_train, params, params=params) res, support, indices, n_support = res params.sv_len = support.shape[0] yp = test_predict(X_train, res, params) train_acc = 100 * accuracy_score(yp, y_train) predict_time, yp = measure_function_time(test_predict, X_test, res, params, params=params) test_acc = 100 * accuracy_score(yp, y_train) print_output(library='daal4py', algorithm='svc', stages=['training', 'prediction'], columns=columns, params=params, functions=['SVM.fit', 'SVM.predict'], times=[fit_time, predict_time], accuracy_type='accuracy[%]', accuracies=[train_acc, test_acc], data=[X_train, X_test])
def main(): from sklearn.svm import SVC X_train, X_test, y_train, y_test = bench.load_data(params) y_train = np.asfortranarray(y_train).ravel() if params.gamma is None: params.gamma = 1.0 / X_train.shape[1] cache_size_bytes = bench.get_optimal_cache_size( X_train.shape[0], max_cache=params.max_cache_size) params.cache_size_mb = cache_size_bytes / 1024**2 params.n_classes = len(np.unique(y_train)) clf = SVC(C=params.C, kernel=params.kernel, cache_size=params.cache_size_mb, tol=params.tol, gamma=params.gamma, probability=params.probability, random_state=43, degree=params.degree) fit_time, _ = bench.measure_function_time(clf.fit, X_train, y_train, params=params) params.sv_len = clf.support_.shape[0] if params.probability: state_predict = 'predict_proba' clf_predict = clf.predict_proba train_acc = None test_acc = None predict_train_time, y_pred = bench.measure_function_time(clf_predict, X_train, params=params) train_log_loss = bench.log_loss(y_train, y_pred) train_roc_auc = bench.roc_auc_score(y_train, y_pred) _, y_pred = bench.measure_function_time(clf_predict, X_test, params=params) test_log_loss = bench.log_loss(y_test, y_pred) test_roc_auc = bench.roc_auc_score(y_test, y_pred) else: state_predict = 'prediction' clf_predict = clf.predict train_log_loss = None test_log_loss = None train_roc_auc = None test_roc_auc = None predict_train_time, y_pred = bench.measure_function_time(clf_predict, X_train, params=params) train_acc = bench.accuracy_score(y_train, y_pred) _, y_pred = bench.measure_function_time(clf_predict, X_test, params=params) test_acc = bench.accuracy_score(y_test, y_pred) bench.print_output( library='sklearn', algorithm='SVC', stages=['training', state_predict], params=params, functions=['SVM.fit', f'SVM.{state_predict}'], times=[fit_time, predict_train_time], metric_type=['accuracy', 'log_loss', 'roc_auc', 'n_sv'], metrics=[ [train_acc, test_acc], [train_log_loss, test_log_loss], [train_roc_auc, test_roc_auc], [int(clf.n_support_.sum()), int(clf.n_support_.sum())], ], data=[X_train, X_train], alg_instance=clf, )
type=str, default='full', choices=['auto', 'full', 'jacobi'], help='SVD solver to use') parser.add_argument('--n-components', type=int, default=None, help='Number of components to find') parser.add_argument('--whiten', action='store_true', default=False, help='Perform whitening') params = bench.parse_args(parser) # Load random data X_train, X_test, _, _ = bench.load_data(params, generated_data=['X_train']) if params.n_components is None: p, n = X_train.shape params.n_components = min((n, (2 + min((n, p))) // 3)) # Create our PCA object pca = PCA(svd_solver=params.svd_solver, whiten=params.whiten, n_components=params.n_components) # Time fit fit_time, _ = bench.measure_function_time(pca.fit, X_train, params=params) # Time transform transform_time, _ = bench.measure_function_time(pca.transform,
def compute_distances(pairwise_distances, X): algorithm = pairwise_distances(fptype=getFPType(X)) return algorithm.compute(X) parser = argparse.ArgumentParser(description='daal4py pairwise distances ' 'benchmark') parser.add_argument('--metric', default='cosine', choices=['cosine', 'correlation'], help='Metric to test for pairwise distances') params = bench.parse_args(parser) # Load data X, _, _, _ = bench.load_data(params, generated_data=['X_train'], add_dtype=True) pairwise_distances = cosine_distance if params.metric == 'cosine' else correlation_distance time, _ = bench.measure_function_time(compute_distances, pairwise_distances, X, params=params) bench.print_output(library='daal4py', algorithm='distances', stages=['computation'], params=params, functions=[params.metric.capitalize()], times=[time],
parser.add_argument('-e', '--eps', '--epsilon', type=float, default=10., help='Radius of neighborhood of a point') parser.add_argument('-m', '--min-samples', default=5, type=int, help='The minimum number of samples required in a ' 'neighborhood to consider a point a core point') params = bench.parse_args(parser, prefix='daal4py') # Load generated data X, _, _, _ = bench.load_data(params, add_dtype=True) # Define functions to time def test_dbscan(X): algorithm = dbscan(fptype=getFPType(X), epsilon=params.eps, minObservations=params.min_samples, resultsToCompute='computeCoreIndices') return algorithm.compute(X) # Time clustering time, result = bench.measure_function_time(test_dbscan, X, params=params) params.n_clusters = int(result.nClusters[0, 0])
parser.add_argument('--min-impurity-decrease', type=float, default=0., help='Needed impurity decrease for node splitting') parser.add_argument('--no-bootstrap', dest='bootstrap', default=True, action='store_false', help="Don't control bootstraping") params = bench.parse_args(parser) from sklearn.ensemble import RandomForestClassifier # Load and convert data X_train, X_test, y_train, y_test = bench.load_data(params) # Create our random forest classifier clf = RandomForestClassifier( criterion=params.criterion, n_estimators=params.num_trees, max_depth=params.max_depth, max_features=params.max_features, min_samples_split=params.min_samples_split, max_leaf_nodes=params.max_leaf_nodes, min_impurity_decrease=params.min_impurity_decrease, bootstrap=params.bootstrap, random_state=params.seed, n_jobs=params.n_jobs) params.n_classes = len(np.unique(y_train))
type=str, help='Initial clusters') parser.add_argument('-t', '--tol', default=0., type=float, help='Absolute threshold') parser.add_argument('--maxiter', type=int, default=100, help='Maximum number of iterations') parser.add_argument('--n-clusters', type=int, help='Number of clusters') params = bench.parse_args(parser, prefix='daal4py') # Load generated data X_train, X_test, _, _ = bench.load_data(params, add_dtype=True) # Load initial centroids from specified path if params.filei is not None: X_init = np.load(params.filei).astype(params.dtype) params.n_clusters = X_init.shape[0] # or choose random centroids from training data else: np.random.seed(params.seed) centroids_idx = np.random.randint(0, X_train.shape[0], size=params.n_clusters) if hasattr(X_train, "iloc"): X_init = X_train.iloc[centroids_idx].values else: X_init = X_train[centroids_idx]
'benchmark') parser.add_argument('--no-fit-intercept', dest='fit_intercept', default=True, action='store_false', help="Don't fit intercept (assume data already centered)") parser.add_argument('--alpha', type=float, default=1.0, help='Regularization strength') params = bench.parse_args(parser, prefix='daal4py') # Generate random data X_train, X_test, y_train, y_test = bench.load_data( params, generated_data=['X_train', 'y_train'], add_dtype=True, label_2d=True if params.file_X_train is not None else False) # Create our regression objects def test_fit(X, y): regr_train = ridge_regression_training(fptype=getFPType(X), ridgeParameters=np.array( [[params.alpha]]), interceptFlag=params.fit_intercept) return regr_train.compute(X, y) def test_predict(Xp, model): regr_predict = ridge_regression_prediction(fptype=getFPType(Xp))
# SPDX-License-Identifier: MIT import argparse from bench import measure_function_time, parse_args, load_data, print_output from sklearn.cluster import DBSCAN parser = argparse.ArgumentParser(description='scikit-learn DBSCAN benchmark') parser.add_argument('-e', '--eps', '--epsilon', type=float, default=10., help='Radius of neighborhood of a point') parser.add_argument('-m', '--min-samples', default=5, type=int, help='The minimum number of samples required in a ' 'neighborhood to consider a point a core point') params = parse_args(parser, n_jobs_supported=True) # Load generated data X, _, _, _ = load_data(params, add_dtype=True) # Create our clustering object dbscan = DBSCAN(eps=params.eps, n_jobs=params.n_jobs, min_samples=params.min_samples, metric='euclidean', algorithm='auto') # N.B. algorithm='auto' will select DAAL's brute force method when running # daal4py-patched scikit-learn, and probably 'kdtree' when running unpatched # scikit-learn. columns = ('batch', 'arch', 'prefix', 'function', 'threads', 'dtype', 'size', 'n_clusters', 'time') # Time fit time, _ = measure_function_time(dbscan.fit, X, params=params)
type=float, default=0., help='Absolute threshold') parser.add_argument('--maxiter', type=int, default=100, help='Maximum number of iterations') parser.add_argument('--samples-per-batch', type=int, default=32768, help='Maximum number of iterations') parser.add_argument('--n-clusters', type=int, help='Number of clusters') params = parse_args(parser, prefix='cuml', loop_types=('fit', 'predict')) # Load and convert generated data X_train, X_test, _, _ = load_data(params) if params.filei == 'k-means++': X_init = 'k-means++' # Load initial centroids from specified path elif params.filei is not None: X_init = np.load(params.filei).astype(params.dtype) params.n_clusters = X_init.shape[0] # or choose random centroids from training data else: np.random.seed(params.seed) centroids_idx = np.random.randint(0, X_train.shape[0], size=params.n_clusters) if hasattr(X_train, "iloc"): X_init = X_train.iloc[centroids_idx].to_pandas().values
parser.add_argument('-e', '--eps', '--epsilon', type=float, default=10., help='Radius of neighborhood of a point') parser.add_argument('-m', '--min-samples', default=5, type=int, help='The minimum number of samples required in a ' 'neighborhood to consider a point a core point') params = bench.parse_args(parser) # Load generated data X, _, _, _ = bench.load_data(params) # Create our clustering object dbscan = DBSCAN(eps=params.eps, min_samples=params.min_samples) # Time fit time, _ = bench.measure_function_time(dbscan.fit, X, params=params) labels = dbscan.labels_ X_host = bench.convert_to_numpy(X) labels_host = bench.convert_to_numpy(labels) acc = davies_bouldin_score(X_host, labels_host) params.n_clusters = len(set(labels_host)) - (1 if -1 in labels_host else 0) bench.print_output(library='cuml',