def main(clock_type): FORMAT = '%(asctime)-15s %(message)s' logging.basicConfig(format=FORMAT, level=logging.DEBUG) if _SCRPDIR == "": logging.error("Could not find script directory") return True if clock_type.upper() not in _PARSE_CLOCK_MAP: logging.error("Supplied clock type \"%s\" has no parsing method", clock_type) return True logging.info("Compiling and adb pushing timing exec") compile_and_push(clock_type.upper()) logging.info("Running with clock_type: %s", clock_type) for cont_level in _CONTENTION_LEVELS: logging.info("Running with contention_level: %s", cont_level) try: benchmark.Benchmark(clock_type, cont_level) parse.Parse(_PARSE_CLOCK_MAP[clock_type.upper()], join(_SCRPDIR, "logs", clock_type, cont_level)) except BenchmarkException as err: logging.error("ERROR: BenchmarkException caught: %s", err) return False except ParseException as err: logging.error("ERROR: ParseException caught: %s", err) return False return True
def testCreateTestsSingle(self): b = benchmark.Benchmark([mocks.MockNameServer(mocks.GOOD_IP)], test_count=1) results = b.CreateTests(('A mail.google.com', )) self.assertEquals(results, [['A', 'mail.google.com']]) # Oops, this isn't a real tuple. self.assertRaises(AssertionError, b.CreateTests, 'google.com')
def _main(args: Args) -> int: if args.no_warnings: warnings.filterwarnings("ignore") test = benchmark.Benchmark(bucket=args.bucket) test.run() return 0
def testCreateTestsChunkRecords(self): b = benchmark.Benchmark([mocks.MockNameServer(mocks.GOOD_IP)], test_count=100) results = b.CreateTests(('A mail.google.com', 'CNAME test.live.com'), select_mode='chunk') self.assertEquals( results, [['A', 'mail.google.com'], ['CNAME', 'test.live.com']])
def testCreateTestsWeighted(self): b = benchmark.Benchmark([mocks.MockNameServer(mocks.GOOD_IP)], test_count=1000) results = b.CreateTests(('google.com', 'live.com')) self.assertEquals(len(results), 1000) self.assertTrue(('A', 'www.google.com.') in results) caches = [x for x in results if 'cache' in x[1]] self.assertTrue(len(caches) > 0 and len(caches) < 50)
def main(): image_path = input('>> Caminho para a imagem com extensão: ') image = img_process.ImageProcess(image_path) huffman_obj = huffman.Huffman(image.img_array) save_data.SaveData('results/', image.img_array, huffman_obj.hist, huffman_obj.codes) bench = benchmark.Benchmark(image, image.img_array, huffman_obj.codes) print('\nRESULTADOS PODEM SER VISUALIZADOS EM "/results"')
def testDigestion(self): ns_list = (mocks.MockNameServer(mocks.GOOD_IP), mocks.MockNameServer(mocks.PERFECT_IP), mocks.MockNameServer(mocks.BROKEN_IP), mocks.MockNameServer(mocks.SLOW_IP)) b = benchmark.Benchmark(ns_list) good = ns_list[0].FakeAnswer(None) bad = ns_list[0].FakeAnswer(None, no_answer=True) b.results = { ns_list[0]: [[('www.google.com.', 'A', 2.90, bad), ('google.com.', 'A', 9.80, good), ('www.google.com.', 'A', 9.90, good)], [('www.google.com.', 'A', 9.90, bad), ('google.com.', 'A', 9.90, good), ('www.google.com.', 'A', 9.80, good)]], ns_list[1]: [[('www.google.com.', 'A', 3.40, good), ('google.com.', 'A', 3.40, good), ('www.google.com.', 'A', 3.60, good)], [('www.google.com.', 'A', 3.30, good), ('google.com.', 'A', 3.30, good), ('www.google.com.', 'A', 3.40, good)]], ns_list[2]: [[('www.google.com.', 'A', 60, None), ('google.com.', 'A', 60, None), ('www.google.com.', 'A', 60, None)], [('www.google.com.', 'A', 60, None), ('google.com.', 'A', 60, None), ('www.google.com.', 'A', 60, None)]], ns_list[3]: [[('www.google.com.', 'A', 26.25, good), ('google.com.', 'A', 26.30, good), ('www.google.com.', 'A', 26.10, good)], [('www.google.com.', 'A', 26.40, good), ('google.com.', 'A', 12.40, bad), ('www.google.com.', 'A', 26.80, good)]] } expected = [] averages = dict([(x[0].ip, x[1]) for x in b.ComputeAverages()]) self.assertEquals(averages[mocks.GOOD_IP], 8.7000000000000011) self.assertEquals(averages[mocks.PERFECT_IP], 3.4000000000000004) self.assertEquals(averages[mocks.BROKEN_IP], 60) self.assertEquals(averages[mocks.SLOW_IP], 24.041666666666664) expected = [('127.127.127.127', 3.2999999999999998), ('127.0.0.1', 9.80), ('9.9.9.9', 26.10), ('192.168.0.1', 60)] fastest = [(x[0].ip, x[1]) for x in b.FastestNameServerResult()] self.assertEquals(fastest, expected) expected = [ (None, '####', 3.2999999999999998), (None, '##########', 9.8000000000000007), (None, '###########################', 26.100000000000001), (None, '############################################################', 60) ] self.assertEquals(b._LowestLatencyAsciiChart(), expected)
def testFastest(self): ns_list = (mocks.MockNameServer('X', name='X'), mocks.MockNameServer('O', name='O'), mocks.MockNameServer('U', name='U')) b = benchmark.Benchmark(ns_list) good = ns_list[0].FakeAnswer(None) b.results = { ns_list[0]: [[('www.microsoft.com.', 'A', 3.0879974365234375, good), ('www.youku.com.', 'A', 2.2590160369873047, good), ('www.orkut.co.in.', 'A', 25.511980056762695, good), ('cache-9.ku6.com.', 'A', 1013.6392116546631, good), ('wsj.com.', 'A', 2.3639202117919922, good), ('www.imagevenue.com.', 'A', 2.6688575744628906, good), ('www.travian.ae.', 'A', 2.5160312652587891, good), ('www.fotolog.net.', 'A', 2.6750564575195312, good), ('www.torrentz.com.', 'A', 2.7811527252197266, good), ('www.wer-kennt-wen.de.', 'A', 2.7070045471191406, good)]], ns_list[1]: [[('www.microsoft.com.', 'A', 82.499980926513672, good), ('www.youku.com.', 'A', 81.991195678710938, good), ('www.orkut.co.in.', 'A', 82.377910614013672, good), ('cache-9.ku6.com.', 'A', 1141.1499977111816, good), ('wsj.com.', 'A', 84.334135055541992, good), ('www.imagevenue.com.', 'A', 84.282875061035156, good), ('www.travian.ae.', 'A', 84.036111831665039, good), ('www.fotolog.net.', 'A', 84.750175476074219, good), ('www.torrentz.com.', 'A', 84.517002105712891, good), ('www.wer-kennt-wen.de.', 'A', 83.980083465576172, good)]], ns_list[2]: [[('www.microsoft.com.', 'A', 12.507915496826172, good), ('www.youku.com.', 'A', 357.06806182861328, good), ('www.orkut.co.in.', 'A', 46.499967575073242, good), ('cache-9.ku6.com.', 'A', 697.60799407958984, good), ('wsj.com.', 'A', 87.159872055053711, good), ('www.imagevenue.com.', 'A', 11.99793815612793, good), ('www.travian.ae.', 'A', 11.492013931274414, good), ('www.fotolog.net.', 'A', 12.087106704711914, good), ('www.torrentz.com.', 'A', 12.598991394042969, good), ('www.wer-kennt-wen.de.', 'A', 11.770963668823242, good)]] } expected = [('G', 2.2590160369873047), ('U', 11.492013931274414), ('O', 81.991195678710938)] fastest = [(x[0].ip, x[1]) for x in b.FastestNameServerResult()] self.assertEquals(fastest, expected) expected = [ ('X', '##', 2.2590160369873047), ('U', '########', 11.492013931274414), ('O', '#####################################################', 81.991195678710938) ] self.assertEquals(b._LowestLatencyAsciiChart(), expected)
def PrepareBenchmark(self): """Setup the benchmark object with the appropriate dataset.""" if len(self.nameservers) == 1: thread_count = 1 else: thread_count = self.options.benchmark_thread_count self.bmark = benchmark.Benchmark(self.nameservers, query_count=self.options.query_count, run_count=self.options.run_count, thread_count=thread_count, status_callback=self.UpdateStatus)
def main(): # GPU utilization CONFIG_PATH = "/project/datasets-API/benchmark-package/config/mnist.toml" NUM_RUNS = 1 PATH_TO_CHROME_TRACES = "/project/datasets-API/benchmark-package/chrome-traces/test.json" benchmark = bm.Benchmark('data_API', 'LowResFrameClassifier', CONFIG_PATH) tot_acc, tot_time = 0, 0 for i in range(NUM_RUNS): tot_time += benchmark.run('training', 500, profile=False)[0] # tot_acc += benchmark.run('validation', 1000, profile=False)[1] print("RESULTS: Train time=", tot_time / NUM_RUNS, ", Validation accuracy=", tot_acc / NUM_RUNS * 100)
def testRun(self): ns_list = (mocks.MockNameServer(mocks.GOOD_IP), mocks.MockNameServer(mocks.PERFECT_IP), mocks.MockNameServer(mocks.BROKEN_IP), mocks.MockNameServer(mocks.SLOW_IP)) b = benchmark.Benchmark(ns_list, test_count=3, run_count=2) self.assertRaises(AssertionError, b.Run) b.CreateTests(['A www.google.com']) self.assertEquals(b.test_data, [['A', 'www.google.com'], ['A', 'www.google.com'], ['A', 'www.google.com']]) b.Run() ips_tested = sorted([x.ip for x in b.results]) expected = ['127.0.0.1', '127.127.127.127', '192.168.0.1', '9.9.9.9'] self.assertEquals(ips_tested, expected) self.assertEquals(len(b.results[ns_list[0]]), 2) self.assertEquals(len(b.results[ns_list[0]][0]), 3)
def main(): perfs = libraries.instantiate_libraries() perfs_ab_sorted = sorted(perfs, key=lambda l: l.name) bnch = benchmark.Benchmark(perfs_ab_sorted) results = [] for title, config in JSONS.items(): with config["path"].open('rt', encoding='utf-8') as f: cur_jsn = f.read() cur_jsn = six.ensure_str(cur_jsn) # this is needed for python 2 result = bnch.run(cur_jsn, config.get("times")) results.append((title, result)) chart_data = charts.from_results( results, urls=[config['url'] for config in JSONS.values()]) with open('results.json', 'w') as f: json.dump(chart_data, f)
def testNormalRun(self): ns_list = (mocks.MockNameServer(mocks.GOOD_IP), mocks.MockNameServer(mocks.PERFECT_IP), mocks.MockNameServer(mocks.BROKEN_IP), mocks.MockNameServer(mocks.SLOW_IP)) b = benchmark.Benchmark(ns_list, test_count=3, run_count=2) b.CreateTests(['google.com', 'live.com']) b.Run() expected = ['127.0.0.1', '127.127.127.127', '192.168.0.1', '9.9.9.9'] averages = dict([(x[0].ip, x[1]) for x in b.ComputeAverages()]) self.assertEquals(len(averages), 4) self.assertTrue(averages[mocks.GOOD_IP] >= 8) self.assertTrue(averages[mocks.PERFECT_IP] <= 5) self.assertTrue(averages[mocks.BROKEN_IP] >= 59) self.assertTrue(averages[mocks.SLOW_IP] >= 20) self.assertEquals(b.BestOverallNameServer(), ns_list[1]) self.assertEquals(b.NearestNameServers(count=2), [ns_list[1], ns_list[0]])
#!/usr/bin/env python from __future__ import absolute_import, division, print_function # ---------------------------- # Imports for other modules -- # ---------------------------- from lsst.qserv.admin import commons import benchmark if __name__ == '__main__': testdata_dir = '/datapool/tmp/loader_test/test' out_dir = '/datapool/tmp/loader_tmp/test' config = commons.read_user_config() bench = benchmark.Benchmark(testdata_dir, out_dir) bench.run()
def testEmptyRun(self): ns_list = (mocks.MockNameServer(mocks.GOOD_IP), ) b = benchmark.Benchmark(ns_list, test_count=3, run_count=2) self.assertRaises(AssertionError, b.Run)
os.path.join(cwd, '..', '..', '..', 'utils', 'benchmarks', 'tensorflow')) import benchmark logging.basicConfig( level=logging.getLevelName("DEBUG"), format='%(asctime)s %(name)s %(levelname)s %(message)s', datefmt='%Y-%m-%d %H:%M:%S') layer_dict = {} utils = {"train": False} module = benchmark.Benchmark( partial(graph_builder, layer_dict), inputs, initializer, add_args, iteration_report, partial(initializer_sess, layer_dict, utils), ) # Make the sparse FC layer and insert into the layer dictionary # for use by the builder functions: options = benchmark.parse_opts(module, False) np.random.seed(options.np_seed) layer_dict['fc_gen'] = lambda: make_random_sparse_fc_layer(options) if options.train: utils["train"] = True fc = layer_dict['fc_gen']() print(
import benchmark game_list = benchmark.Benchmark().get_game() list(game_list)
firstDB = None for group in groups: if os.path.exists("chunkMap.txt"): os.system("rm chunkMap.txt") if len(group["DBs"]) == 0: continue firstDB = group["DBs"][0]["name"] firstTable = group["DBs"][0]["tables"][0] first = True for db in group["DBs"]: data_dir = db["dir"] dbName = db["name"] temp_dir = os.path.join(data_dir, "temp") config = commons.read_user_config() bench = benchmark.Benchmark(data_dir, temp_dir, dbName) bench.run() # change css here if not first: cmd = "mysql -D qservCssData --port=%s --socket %s --user=%s --password=%s " % ( config['mysqld']['port'], config['mysqld']['socket'], config['mysqld']['user'], config['mysqld']['pass']) # Change all other tables oldKey = "/DBS/%s/.packed.json" % dbName newKey = "/DBS/%s/.packed.json" % firstDB dbcmd = '-e "UPDATE qservCssData.kvData css1, qservCssData.kvData css2 SET css1.kvVal=css2.kvVal WHERE css1.kvKey=\'%s\' AND css2.kvVal=\'%s\';"' % ( oldKey, newKey) print(cmd + dbcmd) os.system(cmd + dbcmd) first = False
import benchmark import numpy as np #Instancio la clase benchmark bench = benchmark.Benchmark() #Coges todas las funciones como una lista funciones = bench.getFunciones() #El tamaño del array puede ser el que quieras print(funciones[0](np.zeros(10))) print(funciones[5](np.zeros(30))) #Devuelve el número de funciones print(bench.getNumFunciones()) #Devuelve el límite inferior print(bench.getLimInf()) #Devuelve el límite superior print(bench.getLimSup()) #Devuelve el valor que da la funciones 2 y 7 en el óptimo print(bench.getFuncMinValor(2)) print(bench.getFuncMinValor(7)) #Devuelve un diccionario con el límite superior e inferior del dominio y con el valor que da la función 5 en el óptimo. print(bench.getInfo(5)) #Coge la función 3 y evalúa en [0,...,0] f3 = bench.getFuncion(3)
# val = random() # line[index] = val # break # return line if __name__ == "__main__": trainpath, testpath, outputname, noise, bags, c, stop_criterion = main( sys.argv[1:]) if not os.path.exists("results/"): os.makedirs("results/") with open("results/{}.csv".format(outputname), "w") as f: f.write( "c,stop criterion,bags,noise,classifier,accuracy,precision,recall,f1 score,learnT,testT \n" ) f.close() x_train, y_train, x_test, y_test = preprocessor(trainpath, testpath, noise, labels=[0, 1]) ben = benchmark.Benchmark(x_train, y_train, x_test, y_test) ben.run_benchmark(outputname, noise, bags, c, stop_criterion) # to override the noise in parameter of the script and run the benchmark on different noise percentages # noises = [0.1, 0.15, 0.2, 0.25, 0.5] # cs = range(4, 12, 1) # for k in cs: # for n in noises: # x_train, y_train, x_test, y_test = preprocessor2(trainpath, testpath, n, labels=[0, 1]) # ben = benchmark.Benchmark(x_train, y_train, x_test, y_test) # ben.run_benchmark(outputname, n, bags, c, stop_criterion)
def benchmark(self, use_default=True, df_benchmark_stats_electricity=None, df_benchmark_stats_fossil_fuel=None): """ This function add Benchmark instances for the current Building instance :return: """ print("Start benchamrking") if use_default: df_sample_bench_stats_e = constants.Constants.df_sample_benchmark_stats_e df_sample_bench_stats_f = constants.Constants.df_sample_benchmark_stats_f else: df_sample_bench_stats_e = df_benchmark_stats_electricity df_sample_bench_stats_f = df_benchmark_stats_fossil_fuel if (hasattr(self, "im_electricity") and hasattr(self.im_electricity, "coeffs")): # Electricity self.benchmark_HSL_e = benchmark.Benchmark('beta_hdd', self.im_electricity.coeffs['hsl'], df_bench_stats=df_sample_bench_stats_e, valid=self.im_electricity.coeff_validation['hsl']) self.benchmark_HCP_e = benchmark.Benchmark('beta_beth', self.im_electricity.coeffs['hcp'], df_bench_stats=df_sample_bench_stats_e, valid=self.im_electricity.coeff_validation['hcp']) self.benchmark_BASE_e = benchmark.Benchmark('beta_base', self.im_electricity.coeffs['base'], df_bench_stats=df_sample_bench_stats_e, valid=self.im_electricity.coeff_validation['base']) self.benchmark_CCP_e = benchmark.Benchmark('beta_betc', self.im_electricity.coeffs['ccp'], df_bench_stats=df_sample_bench_stats_e, valid=self.im_electricity.coeff_validation['ccp']) self.benchmark_CSL_e = benchmark.Benchmark('beta_cdd', self.im_electricity.coeffs['csl'], df_bench_stats=df_sample_bench_stats_e, valid=self.im_electricity.coeff_validation['csl']) self.benchmark_HSL_e.benchmark(plot=False) self.benchmark_HCP_e.benchmark(plot=False) self.benchmark_BASE_e.benchmark(plot=False) self.benchmark_CCP_e.benchmark(plot=False) self.benchmark_CSL_e.benchmark(plot=False) else: self.benchmark_HSL_e = None self.benchmark_HCP_e = None self.benchmark_BASE_e = None self.benchmark_CCP_e = None self.benchmark_CSL_e = None if (hasattr(self, "im_fossil_fuel") and hasattr(self.im_fossil_fuel, "coeffs")): # Need to add default fossil fuel in the constants module !!! # Default benchmark stats will be used is no specific benchmark stats are provided # Fossil fuel self.benchmark_HSL_f = benchmark.Benchmark('beta_hdd', self.im_fossil_fuel.coeffs['hsl'], df_bench_stats=df_sample_bench_stats_f, valid=self.im_fossil_fuel.coeff_validation['hsl']) self.benchmark_HCP_f = benchmark.Benchmark('beta_beth', self.im_fossil_fuel.coeffs['hcp'], df_bench_stats=df_sample_bench_stats_f, valid=self.im_fossil_fuel.coeff_validation['hcp']) self.benchmark_BASE_f = benchmark.Benchmark('beta_base', self.im_fossil_fuel.coeffs['base'], df_bench_stats=df_sample_bench_stats_f, valid=self.im_fossil_fuel.coeff_validation['base']) self.benchmark_CCP_f = benchmark.Benchmark('beta_betc', self.im_fossil_fuel.coeffs['ccp'], df_bench_stats=df_sample_bench_stats_f, valid=self.im_fossil_fuel.coeff_validation['ccp']) self.benchmark_CSL_f = benchmark.Benchmark('beta_cdd', self.im_fossil_fuel.coeffs['csl'], df_bench_stats=df_sample_bench_stats_f, valid=self.im_fossil_fuel.coeff_validation['csl']) self.benchmark_HSL_f.benchmark(plot=False) self.benchmark_HCP_f.benchmark(plot=False) self.benchmark_BASE_f.benchmark(plot=False) self.benchmark_CCP_f.benchmark(plot=False) self.benchmark_CSL_f.benchmark(plot=False) else: self.benchmark_HSL_f = None self.benchmark_HCP_f = None self.benchmark_BASE_f = None self.benchmark_CCP_f = None self.benchmark_CSL_f = None # Plot benchmark html sections self.benchmarking_bar_hsl_e_html = benchmark.Benchmark.generate_benchmark_bar_html(self.benchmark_HSL_e) self.benchmarking_bar_hcp_e_html = benchmark.Benchmark.generate_benchmark_bar_html(self.benchmark_HCP_e) self.benchmarking_bar_base_e_html = benchmark.Benchmark.generate_benchmark_bar_html(self.benchmark_BASE_e) self.benchmarking_bar_ccp_e_html = benchmark.Benchmark.generate_benchmark_bar_html(self.benchmark_CCP_e) self.benchmarking_bar_csl_e_html = benchmark.Benchmark.generate_benchmark_bar_html(self.benchmark_CSL_e) self.benchmarking_bar_hsl_f_html = benchmark.Benchmark.generate_benchmark_bar_html(self.benchmark_HSL_f) self.benchmarking_bar_hcp_f_html = benchmark.Benchmark.generate_benchmark_bar_html(self.benchmark_HCP_f) self.benchmarking_bar_base_f_html = benchmark.Benchmark.generate_benchmark_bar_html(self.benchmark_BASE_f) self.benchmarking_bar_ccp_f_html = benchmark.Benchmark.generate_benchmark_bar_html(self.benchmark_CCP_f) self.benchmarking_bar_csl_f_html = benchmark.Benchmark.generate_benchmark_bar_html(self.benchmark_CSL_f)
import six import werkzeug from flask import Flask, request, jsonify from flask_cors import CORS from werkzeug.utils import secure_filename import benchmark import libraries from web import charts app = Flask(__name__, static_folder=None) app.config['MAX_CONTENT_LENGTH'] = 1024 * 1024 * 2 CORS(app) # todo: fix to receive only from https://jsonperf.com BNCH = benchmark.Benchmark( sorted(libraries.instantiate_libraries(), key=lambda l: l.name)) def allowed_file(filename): return '.' in filename and \ filename.rsplit('.', 1)[1].lower() in ['json', 'txt'] @app.route("/python3", methods=["POST"]) @app.route("/python2", methods=["POST"]) def test(): user_file = request.files.get( 'file') # type: werkzeug.datastructures.FileStorage if not user_file or user_file.filename == '': return 'file is missing', 400
if t_type == "and_title": and_id = "%s#%d" % (docid, i) omim_title[and_id] = t TITLES.write("%s\t%s\t#%s\t%s\n" % (and_id, t_type, i, t)) matches = m.tag_text(and_id, t, t_type) for te in matches: MATCHES.write("%s\t%s\t%s\n" % (and_id, t, te)) i += 1 #m.tag_text(docid, text, "text") TITLES.close() MATCHES.close() raw_mapping = m.get_mapping() precision, recall, f1 = benchmark.Benchmark( b, "omim_benchmark.tsv").get_performance(raw_mapping) sys.stderr.write("Precision: %s Recall: %s F1: %s\n" % (precision, recall, f1)) #sys.exit() for docid in raw_mapping.iterkeys(): data = raw_mapping[docid] if (data.score == None): print "%s\t%s\t%s\t%s" % (docid, data.entity, "|".join( data.synonyms), omim_title[docid]) else: print "%f\t%s\t%s\t%s\t%s" % (data.score, docid, data.entity, "|".join(data.synonyms), omim_title[docid])
if __name__ == '__main__': # Add benchmark module to path cwd = os.path.dirname(os.path.abspath(inspect.stack()[0][1])) os.sys.path.insert( 1, os.path.join(cwd, '..', '..', '..', 'utils', 'benchmarks', 'tensorflow')) import benchmark # noqa: E402 logging.basicConfig( level=logging.getLevelName("DEBUG"), format='%(asctime)s %(name)s %(levelname)s %(message)s', datefmt='%Y-%m-%d %H:%M:%S') module = benchmark.Benchmark(graph_builder, inputs, tf.global_variables_initializer, add_args, iteration_report) opts = benchmark.parse_opts(module, False) np.random.seed(opts.random_seed) if opts.shards > 1: raise NotImplementedError( "--shards option has not been implemented with this example") if opts.replicas > 1: raise NotImplementedError( "--replicas option has not been implemented with this example") print( f" Dynamic Sparse Transformer Feed-forward Layer {'Train' if opts.train else 'Inference'} Synthetic benchmark.\n" f" Batch size {opts.batch_size}.\n"
import benchmark import config_hnsw as hnsw algo_field_names = ("M", "efConstruction") algo_field_types = ("INTEGER", "INTEGER") case_field_names = ("efSearch", ) case_field_types = ("INTEGER", ) bench = benchmark.Benchmark(algo_field_names, algo_field_types, \ case_field_names, case_field_types) for M in hnsw.Ms: for efConstruction in hnsw.efConstructions: algo_fields = (M, efConstruction) key = "HNSW%d-%d" % algo_fields parameters = "efConstruction=%d" % efConstruction case_fields = [] for efSearch in hnsw.efSearchs: case_fields.append((efSearch, )) bench.run(key, parameters, algo_fields, case_fields)
help="Layer hidden size") parser.set_defaults(batches_per_step=1000, steps=5, shards=2) return parser def iteration_report(opts, time): return "{:5f} items/sec".format(opts.batch_size * opts.batches_per_step / time) if __name__ == '__main__': sys.path.insert(1, '../../../utils/benchmarks/popart') import benchmark module = benchmark.Benchmark( graph_builder, add_args, iteration_report ) opts = benchmark.parse_opts(module) opts.train = opts.mode == "train" # Log Benchmark Message print("Popart Multi-IPU {} Synthetic benchmark.\n" " Batch size {}.\n" " Batches per Step {}.\n" " Steps {}.\n" " {} IPUs." .format( {"infer": "Inference", "eval": "Evaluation", "train": "Training"}[opts.mode],
ArrayRenderer independent of display """ import time import numpy as np from punyty.vector import Vector3 from punyty.objects import Cube from punyty.renderers import ArrayRenderer from punyty.scene import Scene import benchmark if __name__ == '__main__': width = 800 height = 800 target_array = np.zeros((height, width, 3)) scene = Scene() cube = Cube() scene.add_object(cube) renderer = ArrayRenderer(target_array=target_array) bench = benchmark.Benchmark(renderer) while True: t = time.time() renderer.render(scene) cube.rotate(Vector3(time.time(), 0, 0)) fps = bench.update(t) if fps: print(fps)
def iteration_report(opts, time): return "{:5f} items/sec".format(opts.batch_size * opts.batches_per_step * opts.replicas / time) if __name__ == '__main__': # Add benchmark module to path cwd = os.path.dirname(os.path.abspath(inspect.stack()[0][1])) sys.path.insert(1, os.path.join(cwd, '..', '..', '..', 'utils', 'benchmarks', 'tensorflow')) import benchmark module = benchmark.Benchmark( graph_builder, inputs, initializer, add_args, iteration_report ) options = benchmark.parse_opts(module, False) if options.shards > 1: raise NotImplementedError( "--shards option has not been implemented with this example") # Log Benchmark Message print("Multi-layer LSTM with a dense final layer, {} Benchmark.\n" " Batch size {}.\n" " Batches per Step {}.\n" " Steps {}.\n"
from examples import search import benchmark as bm import cProfile as profile from functools import wraps def test_func(): for i in range(100): x = i**3 if __name__ == '__main__': benchmark = bm.Benchmark() benchmark.set_funcs(search.search1, search.search2, search.search3) benchmark.set_inputs(search.search_inputs, search.search_inputs2) benchmark.compare(10) code = compile(test_func, '<string>', 'exec') profile.run(code)