Beispiel #1
0
    def DescribeDeployment(self, request, context=None):
        try:
            request.namespace = request.namespace or self.default_namespace
            deployment_pb = self.deployment_store.get(
                request.deployment_name, request.namespace
            )

            if deployment_pb:
                operator = get_deployment_operator(deployment_pb)

                response = operator.describe(deployment_pb, self)

                if response.status.status_code == status_pb2.Status.OK:
                    with self.deployment_store.update_deployment(
                        request.deployment_name, request.namespace
                    ) as deployment:
                        deployment.state = ProtoMessageToDict(response.state)

                return response
            else:
                return DescribeDeploymentResponse(
                    status=Status.NOT_FOUND(
                        'Deployment "{}" in namespace "{}" not found'.format(
                            request.deployment_name, request.namespace
                        )
                    )
                )
        except BentoMLException as e:
            logger.error("INTERNAL ERROR: %s", e)
            return DescribeDeploymentResponse(Status.INTERNAL(str(e)))
Beispiel #2
0
    def describe(self, deployment_pb):
        try:
            deployment_spec = deployment_pb.spec
            sagemaker_config = deployment_spec.sagemaker_operator_config
            sagemaker_client = boto3.client('sagemaker', sagemaker_config.region)
            _, _, sagemaker_endpoint_name = _get_sagemaker_resource_names(deployment_pb)

            try:
                endpoint_status_response = sagemaker_client.describe_endpoint(
                    EndpointName=sagemaker_endpoint_name
                )
            except ClientError as e:
                raise _aws_client_error_to_bentoml_exception(
                    e,
                    f"Failed to fetch current status of sagemaker endpoint "
                    f"'{sagemaker_endpoint_name}'",
                )

            logger.debug("AWS describe endpoint response: %s", endpoint_status_response)
            endpoint_status = endpoint_status_response["EndpointStatus"]

            service_state = ENDPOINT_STATUS_TO_STATE[endpoint_status]

            deployment_state = DeploymentState(
                state=service_state,
                info_json=json.dumps(endpoint_status_response, default=str),
            )
            deployment_state.timestamp.GetCurrentTime()

            return DescribeDeploymentResponse(
                state=deployment_state, status=Status.OK()
            )
        except BentoMLException as error:
            return DescribeDeploymentResponse(status=error.status_proto)
Beispiel #3
0
    def describe(self, deployment_pb, repo=None):
        deployment_spec = deployment_pb.spec
        sagemaker_config = deployment_spec.sagemaker_operator_config
        if sagemaker_config is None:
            raise BentoMLDeploymentException(
                'Sagemaker configuration is missing.')
        sagemaker_client = boto3.client('sagemaker', sagemaker_config.region)
        endpoint_name = generate_aws_compatible_string(
            deployment_pb.namespace + '-' + deployment_spec.bento_name)
        try:
            endpoint_status_response = sagemaker_client.describe_endpoint(
                EndpointName=endpoint_name)
        except ClientError as e:
            status = _parse_aws_client_exception_or_raise(e)
            status.error_message = (
                'Failed to describe SageMaker deployment: %s',
                status.error_message,
            )
            return DescribeDeploymentResponse(status=status)

        logger.debug("AWS describe endpoint response: %s",
                     endpoint_status_response)
        endpoint_status = endpoint_status_response["EndpointStatus"]

        service_state = ENDPOINT_STATUS_TO_STATE[endpoint_status]

        deployment_state = DeploymentState(
            state=service_state,
            info_json=json.dumps(endpoint_status_response, default=str),
        )

        return DescribeDeploymentResponse(state=deployment_state,
                                          status=Status.OK())
Beispiel #4
0
    def describe(self, deployment_pb, yatai_service=None):
        try:
            deployment_spec = deployment_pb.spec
            aws_config = deployment_spec.aws_lambda_operator_config
            info_json = {'endpoints': []}

            bento_pb = yatai_service.GetBento(
                GetBentoRequest(
                    bento_name=deployment_spec.bento_name,
                    bento_version=deployment_spec.bento_version,
                )
            )
            bento_service_metadata = bento_pb.bento.bento_service_metadata
            api_names = (
                [aws_config.api_name]
                if aws_config.api_name
                else [api.name for api in bento_service_metadata.apis]
            )

            try:
                cloud_formation_stack_result = boto3.client(
                    'cloudformation'
                ).describe_stacks(
                    StackName='{name}-{ns}'.format(
                        ns=deployment_pb.namespace, name=deployment_pb.name
                    )
                )
                outputs = cloud_formation_stack_result.get('Stacks')[0]['Outputs']
            except Exception as error:
                state = DeploymentState(
                    state=DeploymentState.ERROR, error_message=str(error)
                )
                state.timestamp.GetCurrentTime()
                return DescribeDeploymentResponse(
                    status=Status.INTERNAL(str(error)), state=state
                )

            base_url = ''
            for output in outputs:
                if output['OutputKey'] == 'ServiceEndpoint':
                    base_url = output['OutputValue']
                    break
            if base_url:
                info_json['endpoints'] = [
                    base_url + '/' + api_name for api_name in api_names
                ]
            state = DeploymentState(
                state=DeploymentState.RUNNING, info_json=json.dumps(info_json)
            )
            state.timestamp.GetCurrentTime()
            return DescribeDeploymentResponse(status=Status.OK(), state=state)
        except BentoMLException as error:
            return DescribeDeploymentResponse(status=exception_to_return_status(error))
Beispiel #5
0
    def describe(self, deployment_pb, repo=None):
        deployment_spec = deployment_pb.spec
        aws_config = deployment_spec.aws_lambda_operator_config

        bento_path = repo.get(deployment_spec.bento_name,
                              deployment_spec.bento_version)
        bento_config = load_bentoml_config(bento_path)
        with TemporaryServerlessConfig(
                archive_path=bento_path,
                deployment_name=deployment_pb.name,
                region=aws_config.region,
                stage=deployment_pb.namespace,
                provider_name='aws',
                functions=generate_aws_handler_functions_config(
                    bento_config['apis']),
        ) as tempdir:
            try:
                response = call_serverless_command(["serverless", "info"],
                                                   tempdir)
                info_json = parse_serverless_info_response_to_json_string(
                    response)
                state = DeploymentState(state=DeploymentState.RUNNING,
                                        info_json=info_json)
            except BentoMLException as e:
                state = DeploymentState(state=DeploymentState.ERROR,
                                        error_message=str(e))

        return DescribeDeploymentResponse(status=Status.OK(), state=state)
Beispiel #6
0
def create_yatai_service_mock():
    yatai_service_mock = Mock()
    yatai_service_mock.ApplyDeployment.return_value = ApplyDeploymentResponse()
    yatai_service_mock.DeleteDeployment.return_value = DeleteDeploymentResponse()
    yatai_service_mock.DescribeDeployment.return_value = DescribeDeploymentResponse()
    yatai_service_mock.GetDeployment.return_value = GetDeploymentResponse(
        status=Status.NOT_FOUND()
    )
    yatai_service_mock.ListDeployments.return_value = ListDeploymentsResponse()
    return yatai_service_mock
Beispiel #7
0
    def describe(self, deployment_pb, yatai_service=None):
        try:
            deployment_spec = deployment_pb.spec
            gcp_config = deployment_spec.gcp_function_operator_config

            bento_pb = yatai_service.GetBento(
                GetBentoRequest(
                    bento_name=deployment_spec.bento_name,
                    bento_version=deployment_spec.bento_version,
                ))
            bento_service_metadata = bento_pb.bento.bento_service_metadata
            api_names = ([gcp_config.api_name] if gcp_config.api_name else
                         [api.name for api in bento_service_metadata.apis])
            with TempDirectory() as serverless_project_dir:
                generate_gcp_function_serverless_config(
                    deployment_pb.name,
                    api_names,
                    serverless_project_dir,
                    gcp_config.region,
                    # BentoML namespace is mapping to serverless stage.
                    stage=deployment_pb.namespace,
                )
                try:
                    response = call_serverless_command(["info"],
                                                       serverless_project_dir)
                    info_json = parse_serverless_info_response_to_json_string(
                        response)
                    state = DeploymentState(state=DeploymentState.RUNNING,
                                            info_json=info_json)
                    state.timestamp.GetCurrentTime()
                except BentoMLException as e:
                    state = DeploymentState(state=DeploymentState.ERROR,
                                            error_message=str(e))
                    state.timestamp.GetCurrentTime()

            return DescribeDeploymentResponse(status=Status.OK(), state=state)
        except BentoMLException as error:
            return DescribeDeploymentResponse(
                status=exception_to_return_status(error))
Beispiel #8
0
    def describe(self, deployment_pb):
        try:
            deployment_spec = deployment_pb.spec
            lambda_deployment_config = deployment_spec.aws_lambda_operator_config
            lambda_deployment_config.region = (lambda_deployment_config.region
                                               or get_default_aws_region())
            if not lambda_deployment_config.region:
                raise InvalidArgument('AWS region is missing')

            bento_pb = self.yatai_service.GetBento(
                GetBentoRequest(
                    bento_name=deployment_spec.bento_name,
                    bento_version=deployment_spec.bento_version,
                ))
            bento_service_metadata = bento_pb.bento.bento_service_metadata
            api_names = ([lambda_deployment_config.api_name]
                         if lambda_deployment_config.api_name else
                         [api.name for api in bento_service_metadata.apis])

            try:
                cf_client = boto3.client('cloudformation',
                                         lambda_deployment_config.region)
                cloud_formation_stack_result = cf_client.describe_stacks(
                    StackName='{ns}-{name}'.format(ns=deployment_pb.namespace,
                                                   name=deployment_pb.name))
                stack_result = cloud_formation_stack_result.get('Stacks')[0]
                # https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/\
                # using-cfn-describing-stacks.html
                success_status = ['CREATE_COMPLETE', 'UPDATE_COMPLETE']
                if stack_result['StackStatus'] in success_status:
                    if stack_result.get('Outputs'):
                        outputs = stack_result['Outputs']
                    else:
                        return DescribeDeploymentResponse(
                            status=Status.ABORTED(
                                '"Outputs" field is not present'),
                            state=DeploymentState(
                                state=DeploymentState.ERROR,
                                error_message='"Outputs" field is not present',
                            ),
                        )
                elif stack_result[
                        'StackStatus'] in FAILED_CLOUDFORMATION_STACK_STATUS:
                    state = DeploymentState(state=DeploymentState.FAILED)
                    state.timestamp.GetCurrentTime()
                    return DescribeDeploymentResponse(status=Status.OK(),
                                                      state=state)
                else:
                    state = DeploymentState(state=DeploymentState.PENDING)
                    state.timestamp.GetCurrentTime()
                    return DescribeDeploymentResponse(status=Status.OK(),
                                                      state=state)
            except Exception as error:  # pylint: disable=broad-except
                state = DeploymentState(state=DeploymentState.ERROR,
                                        error_message=str(error))
                state.timestamp.GetCurrentTime()
                return DescribeDeploymentResponse(status=Status.INTERNAL(
                    str(error)),
                                                  state=state)
            outputs = {o['OutputKey']: o['OutputValue'] for o in outputs}
            info_json = {}

            if 'EndpointUrl' in outputs:
                info_json['endpoints'] = [
                    outputs['EndpointUrl'] + '/' + api_name
                    for api_name in api_names
                ]
            if 'S3Bucket' in outputs:
                info_json['s3_bucket'] = outputs['S3Bucket']

            state = DeploymentState(state=DeploymentState.RUNNING,
                                    info_json=json.dumps(info_json))
            state.timestamp.GetCurrentTime()
            return DescribeDeploymentResponse(status=Status.OK(), state=state)
        except BentoMLException as error:
            return DescribeDeploymentResponse(status=error.status_proto)