Beispiel #1
0
def test_network_distribution():

    T1 = np.array([[0, 0.5, 0.5], [0, 1, 0], [0, 0, 1]])
    Z2 = np.array([[1, 0], [1, 0], [0, 1]])
    pomdp1 = POMDP([T1], [Z2],
                   input_names=['u1'],
                   state_name='x1',
                   output_name='z1')

    T21 = np.array([[0, 1, 0], [0, 1, 0], [0, 0, 1]])
    T22 = np.array([[0, 0, 1], [0, 1, 0], [0, 0, 1]])
    pomdp2 = POMDP([T21, T22], [np.eye(3)],
                   input_names=['u2'],
                   state_name='x2',
                   output_name='z2')

    network = POMDPNetwork([pomdp1, pomdp2])
    network.add_connection(['z1'], 'u2', lambda z1: {z1})

    # distribution over u1 x1 x2
    D_ux = sparse.COO([[0], [0], [0]], [1], shape=(1, 3, 3))

    D_xz = propagate_network_distribution(network, D_ux)

    D_xz_r = sparse.COO([[1, 2], [1, 2], [0, 1], [1, 2]], [0.5, 0.5],
                        shape=(3, 3, 2, 3))

    np.testing.assert_equal(D_xz.todense(), D_xz_r.todense())
Beispiel #2
0
def plan_mission(prob):

    rob_abstr = Grid(prob['xmin'],
                     prob['xmax'],
                     prob['discretization'],
                     name_prefix='c')
    env_list = [
        environment_belief_model(info[1], name)
        for (name, info) in prob['regs'].items()
    ]

    # Construct rob-env network
    rob_env_network = POMDPNetwork([rob_abstr.pomdp] + env_list)
    for item in prob['regs'].items():
        rob_env_network.add_connection(['c_x'], '{}_u'.format(item[0]),
                                       get_rob_env_conn(item))

    # solve rob LTL problem
    predicates = get_predicates(prob['regs'])
    rob_ltlpol = solve_ltl_cosafe(rob_env_network,
                                  prob['formula'],
                                  predicates,
                                  horizon=prob['cas_T'],
                                  delta=prob['step_margin'],
                                  verbose=False)

    return CassiePolicy(rob_ltlpol, rob_abstr)
Beispiel #3
0
def plan_exploration(prob, rob_policy):

    rob_abstr = rob_policy.abstraction
    rob_ltlpol = rob_policy.ltlpol

    informed_samples = [r.chebXc for r, _, _ in prob['regs'].values()
                        ] + [prob['uav_x0'], prob['uav_xT']]
    uav_prm = PRM(prob['xmin'],
                  prob['xmax'],
                  num_nodes=40,
                  min_dist=2,
                  max_dist=5,
                  informed_samples=informed_samples,
                  name_prefix='u')

    env_list = [
        environment_belief_model(info[1], name)
        for (name, info) in prob['regs'].items()
    ]

    # Construct uav-env network
    uav_env_network = POMDPNetwork([uav_prm.mdp] + env_list)
    for item in prob['regs'].items():
        uav_env_network.add_connection(['u_x'], '{}_u'.format(item[0]),
                                       get_uav_env_conn(item))

    # solve uav exploration problem
    idx = np.logical_or(
        rob_ltlpol.val[0][rob_abstr.x_to_s(prob['cas_x0']), ...,
                          rob_ltlpol.dfsa_init] > prob['accept_margin'],
        rob_ltlpol.val[0][rob_abstr.x_to_s(prob['cas_x0']), ...,
                          rob_ltlpol.dfsa_init] < prob['reject_margin'])

    target = np.zeros(uav_env_network.N)
    target[uav_prm.x_to_s(prob['uav_xT'])][idx] = 1

    costs = uav_prm.costs.reshape(uav_prm.costs.shape + (1, ) *
                                  (1 + len(uav_env_network.N) - 2))

    val_uav, pol_uav = solve_ssp(uav_env_network,
                                 costs,
                                 target,
                                 M=500,
                                 verbose=False)

    return UAVPolicy(pol_uav, val_uav, uav_prm)
Beispiel #4
0
def test_evaluate_Q():

    T1 = np.array([[0, 0.5, 0.5], [0, 1, 0], [0, 0, 1]])
    Z2 = np.array([[1, 0], [1, 0], [0, 1]])
    pomdp1 = POMDP([T1], [Z2],
                   input_names=['u1'],
                   state_name='x1',
                   output_name='z1')

    T21 = np.array([[0, 1, 0], [0, 1, 0], [0, 0, 1]])
    T22 = np.array([[0, 0, 1], [0, 1, 0], [0, 0, 1]])
    pomdp2 = POMDP([T21, T22], [np.eye(3)],
                   input_names=['u2'],
                   state_name='x2',
                   output_name='z2')

    network = POMDPNetwork([pomdp1, pomdp2])
    network.add_connection(['z1'], 'u2', lambda z1: {z1})

    V = np.array([[0, 0, 0], [0, 0, 0], [0, 0, 1]])

    np.testing.assert_almost_equal(evaluate_Q(network, (0, ), (0, 0), V), 0.5)
Beispiel #5
0
def test_evolve():
  '''test non-deterministic connection'''
  T0 = np.array([[0, 1, 0], [0, 0, 1], [0, 0, 1]])
  T1 = np.array([[1, 0, 0], [1, 0, 0], [0, 1, 0]])

  mdp1 = POMDP([T0, T1], input_names=['u1'], state_name='x1')
  mdp2 = POMDP([T0, T1], input_names=['u2'], state_name='x2')

  network = POMDPNetwork()
  network.add_pomdp(mdp1)

  sp, _ = network.evolve([0], (0,))
  np.testing.assert_equal(sp, [1])

  network.add_pomdp(mdp2)

  sp, _ = network.evolve([1,1], (0,1))
  np.testing.assert_equal(sp, [2, 0])

  network.add_connection(['x1'], 'u2', lambda x1: set([0, 1]))

  n0 = 0
  n2 = 0
  for i in range(1000):
    sp, _ = network.evolve([1,1], (0,))

    np.testing.assert_equal(sp[0], 2)

    if sp[1] == 0:
      n0 += 1

    if sp[1] == 2:
      n2 += 1

  np.testing.assert_equal(n0 + n2, 1000)

  np.testing.assert_array_less(abs(n0 -n2), 100)