# Sort the df by that index
df.sort_index(inplace=True)

# Convert dates to num for matplotlib
df['mpldate'] = df['transactTime'].map(mdates.date2num)

# Delete the old transactTime column
del df['transactTime']

df = df[start_datetime:end_datetime]

############################################################
"""
Get some bitcoin price data
"""
finex = BFX()

if start_datetime == None:
    start_datetime = pd.to_datetime(df.index.values[0]).to_pydatetime()

now = datetime.now().replace(hour=0, minute=0, second=0, microsecond=0)

if (end_datetime == None) or (end_datetime > now):
    end_datetime = now

logger.info('Querying candles between: ' + str(start_datetime) + ' and ' +
            str(end_datetime))

candles = finex.api_request_candles('1D', 'BTCUSD', start_datetime,
                                    end_datetime)
Beispiel #2
0
df.set_index(df['transactTime'], inplace=True)

# Sort the df by that index
df.sort_index(inplace=True)

# Convert dates to num for matplotlib
df['mpldate'] = df['transactTime'].map(mdates.date2num)

# Delete the old transactTime column
del df['transactTime']

############################################################
""" 
Get some bitcoin price data 
"""
finex = BFX()

start_datetime = pd.to_datetime(df.index.values[0]).to_pydatetime()
end_datetime = datetime.now().replace(hour=0,
                                      minute=0,
                                      second=0,
                                      microsecond=0)

candles_json = finex.api_request_candles('1D', start_datetime)
last_returned_from_api = datetime.utcfromtimestamp(
    candles_json[len(candles_json) - 1][0] / 1000.0)

while last_returned_from_api < end_datetime:

    # New api start date = the last returned date + 1 period
    new_api_start_date = last_returned_from_api + datetime_timedelta(