Beispiel #1
0
    def fit(self, output_column, input_columns=None):
        print "linear regression fit started"
        if output_column not in self._dataframe_helper.get_numeric_columns():
            raise BIException('Output column: %s is not a measure column' %
                              (output_column, ))

        if input_columns == None:
            input_columns = list(
                set(self._dataframe_helper.get_numeric_columns()) -
                {output_column})

        nColsToUse = self._analysisDict[self._analysisName]["noOfColumnsToUse"]
        if nColsToUse != None:
            input_columns = input_columns[:nColsToUse]
        if len(
                set(input_columns) -
                set(self._dataframe_helper.get_numeric_columns())) != 0:
            raise BIException(
                'At least one of the input columns %r is not a measure column'
                % (input_columns, ))

        all_measures = input_columns + [output_column]
        print all_measures
        measureDf = self._data_frame.select(all_measures)
        lr = LR(maxIter=LinearRegression.MAX_ITERATIONS,
                regParam=LinearRegression.REGULARIZATION_PARAM,
                elasticNetParam=1.0,
                labelCol=LinearRegression.LABEL_COLUMN_NAME,
                featuresCol=LinearRegression.FEATURES_COLUMN_NAME)

        st = time.time()
        pipeline = MLUtils.create_pyspark_ml_pipeline(input_columns, [],
                                                      output_column)
        pipelineModel = pipeline.fit(measureDf)
        training_df = pipelineModel.transform(measureDf)
        training_df = training_df.withColumn("label",
                                             training_df[output_column])
        print "time taken to create training_df", time.time() - st
        # st = time.time()
        # training_df.cache()
        # print "caching in ",time.time()-st
        st = time.time()
        lr_model = lr.fit(training_df)
        lr_summary = lr_model.evaluate(training_df)
        print "lr model summary", time.time() - st
        sample_data_dict = {}
        for input_col in input_columns:
            sample_data_dict[input_col] = None

        coefficients = [
            float(val) if val != None else None
            for val in lr_model.coefficients.values
        ]
        try:
            p_values = [
                float(val) if val != None else None
                for val in lr_model.summary.pValues
            ]
        except:
            p_values = [None] * len(coefficients)
        # print p_values
        # print coefficients
        regression_result = RegressionResult(output_column,
                                             list(set(input_columns)))
        regression_result.set_params(intercept=float(lr_model.intercept),\
                                     coefficients=coefficients,\
                                     p_values = p_values,\
                                     rmse=float(lr_summary.rootMeanSquaredError), \
                                     r2=float(lr_summary.r2),\
                                     sample_data_dict=sample_data_dict)

        self._completionStatus = self._dataframe_context.get_completion_status(
        )
        self._completionStatus += self._scriptWeightDict[
            self._analysisName]["script"]
        progressMessage = CommonUtils.create_progress_message_object(self._analysisName,\
                                    "regressionTrainingEnd",\
                                    "info",\
                                    self._scriptStages["regressionTrainingEnd"]["summary"],\
                                    self._completionStatus,\
                                    self._completionStatus)
        if self._ignoreRegressionElasticityMessages != True:
            CommonUtils.save_progress_message(
                self._messageURL,
                progressMessage,
                ignore=self._ignoreRegressionElasticityMessages)
            self._dataframe_context.update_completion_status(
                self._completionStatus)

        return regression_result
    def Train(self):
        st_global = time.time()

        CommonUtils.create_update_and_save_progress_message(self._dataframe_context,self._scriptWeightDict,self._scriptStages,self._slug,"initialization","info",display=True,emptyBin=False,customMsg=None,weightKey="total")

        appType = self._dataframe_context.get_app_type()
        algosToRun = self._dataframe_context.get_algorithms_to_run()
        algoSetting = filter(lambda x:x.get_algorithm_slug()==self._slug,algosToRun)[0]
        categorical_columns = self._dataframe_helper.get_string_columns()
        uid_col = self._dataframe_context.get_uid_column()
        if self._metaParser.check_column_isin_ignored_suggestion(uid_col):
            categorical_columns = list(set(categorical_columns) - {uid_col})
        allDateCols = self._dataframe_context.get_date_columns()
        categorical_columns = list(set(categorical_columns)-set(allDateCols))
        print categorical_columns
        result_column = self._dataframe_context.get_result_column()
        numerical_columns = self._dataframe_helper.get_numeric_columns()
        numerical_columns = [x for x in numerical_columns if x != result_column]

        model_path = self._dataframe_context.get_model_path()
        if model_path.startswith("file"):
            model_path = model_path[7:]
        validationDict = self._dataframe_context.get_validation_dict()
        print "model_path",model_path
        pipeline_filepath = "file://"+str(model_path)+"/"+str(self._slug)+"/pipeline/"
        model_filepath = "file://"+str(model_path)+"/"+str(self._slug)+"/model"
        pmml_filepath = "file://"+str(model_path)+"/"+str(self._slug)+"/modelPmml"

        df = self._data_frame
        if self._mlEnv == "spark":
            pipeline = MLUtils.create_pyspark_ml_pipeline(numerical_columns,categorical_columns,result_column,algoType="regression")

            pipelineModel = pipeline.fit(df)
            indexed = pipelineModel.transform(df)
            featureMapping = sorted((attr["idx"], attr["name"]) for attr in (chain(*indexed.schema["features"].metadata["ml_attr"]["attrs"].values())))

            # print indexed.select([result_column,"features"]).show(5)
            MLUtils.save_pipeline_or_model(pipelineModel,pipeline_filepath)
            # OriginalTargetconverter = IndexToString(inputCol="label", outputCol="originalTargetColumn")
            dtreer = DecisionTreeRegressor(labelCol=result_column, featuresCol='features',predictionCol="prediction")
            if validationDict["name"] == "kFold":
                defaultSplit = GLOBALSETTINGS.DEFAULT_VALIDATION_OBJECT["value"]
                numFold = int(validationDict["value"])
                if numFold == 0:
                    numFold = 3
                trainingData,validationData = indexed.randomSplit([defaultSplit,1-defaultSplit], seed=12345)
                paramGrid = ParamGridBuilder()\
                    .addGrid(dtreer.regParam, [0.1, 0.01]) \
                    .addGrid(dtreer.fitIntercept, [False, True])\
                    .addGrid(dtreer.elasticNetParam, [0.0, 0.5, 1.0])\
                    .build()
                crossval = CrossValidator(estimator=dtreer,
                              estimatorParamMaps=paramGrid,
                              evaluator=RegressionEvaluator(predictionCol="prediction", labelCol=result_column),
                              numFolds=numFold)
                st = time.time()
                cvModel = crossval.fit(indexed)
                trainingTime = time.time()-st
                print "cvModel training takes",trainingTime
                bestModel = cvModel.bestModel
            elif validationDict["name"] == "trainAndtest":
                trainingData,validationData = indexed.randomSplit([float(validationDict["value"]),1-float(validationDict["value"])], seed=12345)
                st = time.time()
                fit = dtreer.fit(trainingData)
                trainingTime = time.time()-st
                print "time to train",trainingTime
                bestModel = fit

            featureImportance = bestModel.featureImportances
            print featureImportance,type(featureImportance)
            # print featureImportance[0],len(featureImportance[1],len(featureImportance[2]))
            print len(featureMapping)
            featuresArray = [(name, featureImportance[idx]) for idx, name in featureMapping]
            print featuresArray
            MLUtils.save_pipeline_or_model(bestModel,model_filepath)
            transformed = bestModel.transform(validationData)
            transformed = transformed.withColumn(result_column,transformed[result_column].cast(DoubleType()))
            transformed = transformed.select([result_column,"prediction",transformed[result_column]-transformed["prediction"]])
            transformed = transformed.withColumnRenamed(transformed.columns[-1],"difference")
            transformed = transformed.select([result_column,"prediction","difference",FN.abs(transformed["difference"])*100/transformed[result_column]])
            transformed = transformed.withColumnRenamed(transformed.columns[-1],"mape")
            sampleData = None
            nrows = transformed.count()
            if nrows > 100:
                sampleData = transformed.sample(False, float(100)/nrows, seed=420)
            else:
                sampleData = transformed
            print sampleData.show()
            evaluator = RegressionEvaluator(predictionCol="prediction",labelCol=result_column)
            metrics = {}
            metrics["r2"] = evaluator.evaluate(transformed,{evaluator.metricName: "r2"})
            metrics["rmse"] = evaluator.evaluate(transformed,{evaluator.metricName: "rmse"})
            metrics["mse"] = evaluator.evaluate(transformed,{evaluator.metricName: "mse"})
            metrics["mae"] = evaluator.evaluate(transformed,{evaluator.metricName: "mae"})
            runtime = round((time.time() - st_global),2)
            # print transformed.count()
            mapeDf = transformed.select("mape")
            # print mapeDf.show()
            mapeStats = MLUtils.get_mape_stats(mapeDf,"mape")
            mapeStatsArr = mapeStats.items()
            mapeStatsArr = sorted(mapeStatsArr,key=lambda x:int(x[0]))
            # print mapeStatsArr
            quantileDf = transformed.select("prediction")
            # print quantileDf.show()
            quantileSummaryDict = MLUtils.get_quantile_summary(quantileDf,"prediction")
            quantileSummaryArr = quantileSummaryDict.items()
            quantileSummaryArr = sorted(quantileSummaryArr,key=lambda x:int(x[0]))
            # print quantileSummaryArr
            self._model_summary.set_model_type("regression")
            self._model_summary.set_algorithm_name("dtree Regression")
            self._model_summary.set_algorithm_display_name("Decision Tree Regression")
            self._model_summary.set_slug(self._slug)
            self._model_summary.set_training_time(runtime)
            self._model_summary.set_training_time(trainingTime)
            self._model_summary.set_target_variable(result_column)
            self._model_summary.set_validation_method(validationDict["displayName"])
            self._model_summary.set_model_evaluation_metrics(metrics)
            self._model_summary.set_model_params(bestEstimator.get_params())
            self._model_summary.set_quantile_summary(quantileSummaryArr)
            self._model_summary.set_mape_stats(mapeStatsArr)
            self._model_summary.set_sample_data(sampleData.toPandas().to_dict())
            self._model_summary.set_feature_importance(featureImportance)
            # print CommonUtils.convert_python_object_to_json(self._model_summary)
        elif self._mlEnv == "sklearn":
            model_filepath = model_path+"/"+self._slug+"/model.pkl"
            x_train,x_test,y_train,y_test = self._dataframe_helper.get_train_test_data()
            x_train = MLUtils.create_dummy_columns(x_train,[x for x in categorical_columns if x != result_column])
            x_test = MLUtils.create_dummy_columns(x_test,[x for x in categorical_columns if x != result_column])
            x_test = MLUtils.fill_missing_columns(x_test,x_train.columns,result_column)

            st = time.time()
            est = DecisionTreeRegressor()

            CommonUtils.create_update_and_save_progress_message(self._dataframe_context,self._scriptWeightDict,self._scriptStages,self._slug,"training","info",display=True,emptyBin=False,customMsg=None,weightKey="total")

            if algoSetting.is_hyperparameter_tuning_enabled():
                hyperParamInitParam = algoSetting.get_hyperparameter_params()
                evaluationMetricDict = {"name":hyperParamInitParam["evaluationMetric"]}
                evaluationMetricDict["displayName"] = GLOBALSETTINGS.SKLEARN_EVAL_METRIC_NAME_DISPLAY_MAP[evaluationMetricDict["name"]]
                hyperParamAlgoName = algoSetting.get_hyperparameter_algo_name()
                params_grid = algoSetting.get_params_dict_hyperparameter()
                params_grid = {k:v for k,v in params_grid.items() if k in est.get_params()}
                print params_grid
                if hyperParamAlgoName == "gridsearchcv":
                    estGrid = GridSearchCV(est,params_grid)
                    gridParams = estGrid.get_params()
                    hyperParamInitParam = {k:v for k,v in hyperParamInitParam.items() if k in gridParams}
                    estGrid.set_params(**hyperParamInitParam)
                    estGrid.fit(x_train,y_train)
                    bestEstimator = estGrid.best_estimator_
                    modelFilepath = "/".join(model_filepath.split("/")[:-1])
                    sklearnHyperParameterResultObj = SklearnGridSearchResult(estGrid.cv_results_,est,x_train,x_test,y_train,y_test,appType,modelFilepath,evaluationMetricDict=evaluationMetricDict)
                    resultArray = sklearnHyperParameterResultObj.train_and_save_models()
                    self._result_setter.set_hyper_parameter_results(self._slug,resultArray)
                    self._result_setter.set_metadata_parallel_coordinates(self._slug,{"ignoreList":sklearnHyperParameterResultObj.get_ignore_list(),"hideColumns":sklearnHyperParameterResultObj.get_hide_columns(),"metricColName":sklearnHyperParameterResultObj.get_comparison_metric_colname(),"columnOrder":sklearnHyperParameterResultObj.get_keep_columns()})

                elif hyperParamAlgoName == "randomsearchcv":
                    estRand = RandomizedSearchCV(est,params_grid)
                    estRand.set_params(**hyperParamInitParam)
                    bestEstimator = None
            else:
                evaluationMetricDict = {"name":GLOBALSETTINGS.REGRESSION_MODEL_EVALUATION_METRIC}
                evaluationMetricDict["displayName"] = GLOBALSETTINGS.SKLEARN_EVAL_METRIC_NAME_DISPLAY_MAP[evaluationMetricDict["name"]]
                algoParams = algoSetting.get_params_dict()
                algoParams = {k:v for k,v in algoParams.items() if k in est.get_params().keys()}
                est.set_params(**algoParams)
                self._result_setter.set_hyper_parameter_results(self._slug,None)
                if validationDict["name"] == "kFold":
                    defaultSplit = GLOBALSETTINGS.DEFAULT_VALIDATION_OBJECT["value"]
                    numFold = int(validationDict["value"])
                    if numFold == 0:
                        numFold = 3
                    kFoldClass = SkleanrKFoldResult(numFold,est,x_train,x_test,y_train,y_test,appType,evaluationMetricDict=evaluationMetricDict)
                    kFoldClass.train_and_save_result()
                    kFoldOutput = kFoldClass.get_kfold_result()
                    bestEstimator = kFoldClass.get_best_estimator()
                elif validationDict["name"] == "trainAndtest":
                    est.fit(x_train, y_train)
                    bestEstimator = est
            trainingTime = time.time()-st
            y_score = bestEstimator.predict(x_test)
            try:
                y_prob = bestEstimator.predict_proba(x_test)
            except:
                y_prob = [0]*len(y_score)
            featureImportance={}

            objs = {"trained_model":bestEstimator,"actual":y_test,"predicted":y_score,"probability":y_prob,"feature_importance":featureImportance,"featureList":list(x_train.columns),"labelMapping":{}}
            featureImportance = objs["trained_model"].feature_importances_
            featuresArray = [(col_name, featureImportance[idx]) for idx, col_name in enumerate(x_train.columns)]

            if not algoSetting.is_hyperparameter_tuning_enabled():
                modelName = "M"+"0"*(GLOBALSETTINGS.MODEL_NAME_MAX_LENGTH-1)+"1"
                modelFilepathArr = model_filepath.split("/")[:-1]
                modelFilepathArr.append(modelName+".pkl")
                joblib.dump(objs["trained_model"],"/".join(modelFilepathArr))
            metrics = {}
            metrics["r2"] = r2_score(y_test, y_score)
            metrics["mse"] = mean_squared_error(y_test, y_score)
            metrics["mae"] = mean_absolute_error(y_test, y_score)
            metrics["rmse"] = sqrt(metrics["mse"])
            transformed = pd.DataFrame({"prediction":y_score,result_column:y_test})
            transformed["difference"] = transformed[result_column] - transformed["prediction"]
            transformed["mape"] = np.abs(transformed["difference"])*100/transformed[result_column]

            sampleData = None
            nrows = transformed.shape[0]
            if nrows > 100:
                sampleData = transformed.sample(n=100,random_state=420)
            else:
                sampleData = transformed
            print sampleData.head()

            mapeCountArr = pd.cut(transformed["mape"],GLOBALSETTINGS.MAPEBINS).value_counts().to_dict().items()
            mapeStatsArr = [(str(idx),dictObj) for idx,dictObj in enumerate(sorted([{"count":x[1],"splitRange":(x[0].left,x[0].right)} for x in mapeCountArr],key = lambda x:x["splitRange"][0]))]

            predictionColSummary = transformed["prediction"].describe().to_dict()
            quantileBins = [predictionColSummary["min"],predictionColSummary["25%"],predictionColSummary["50%"],predictionColSummary["75%"],predictionColSummary["max"]]
            print quantileBins
            quantileBins = sorted(list(set(quantileBins)))
            transformed["quantileBinId"] = pd.cut(transformed["prediction"],quantileBins)
            quantileDf = transformed.groupby("quantileBinId").agg({"prediction":[np.sum,np.mean,np.size]}).reset_index()
            quantileDf.columns = ["prediction","sum","mean","count"]
            print quantileDf
            quantileArr = quantileDf.T.to_dict().items()
            quantileSummaryArr = [(obj[0],{"splitRange":(obj[1]["prediction"].left,obj[1]["prediction"].right),"count":obj[1]["count"],"mean":obj[1]["mean"],"sum":obj[1]["sum"]}) for obj in quantileArr]
            print quantileSummaryArr
            runtime = round((time.time() - st_global),2)

            self._model_summary.set_model_type("regression")
            self._model_summary.set_algorithm_name("DTREE Regression")
            self._model_summary.set_algorithm_display_name("Decision Tree Regression")
            self._model_summary.set_slug(self._slug)
            self._model_summary.set_training_time(runtime)
            self._model_summary.set_training_time(trainingTime)
            self._model_summary.set_target_variable(result_column)
            self._model_summary.set_validation_method(validationDict["displayName"])
            self._model_summary.set_model_evaluation_metrics(metrics)
            self._model_summary.set_model_params(bestEstimator.get_params())
            self._model_summary.set_quantile_summary(quantileSummaryArr)
            self._model_summary.set_mape_stats(mapeStatsArr)
            self._model_summary.set_sample_data(sampleData.to_dict())
            self._model_summary.set_feature_importance(featuresArray)
            self._model_summary.set_feature_list(list(x_train.columns))


            try:
                pmml_filepath = str(model_path)+"/"+str(self._slug)+"/traindeModel.pmml"
                modelPmmlPipeline = PMMLPipeline([
                  ("pretrained-estimator", objs["trained_model"])
                ])
                modelPmmlPipeline.target_field = result_column
                modelPmmlPipeline.active_fields = np.array([col for col in x_train.columns if col != result_column])
                sklearn2pmml(modelPmmlPipeline, pmml_filepath, with_repr = True)
                pmmlfile = open(pmml_filepath,"r")
                pmmlText = pmmlfile.read()
                pmmlfile.close()
                self._result_setter.update_pmml_object({self._slug:pmmlText})
            except:
                pass
        if not algoSetting.is_hyperparameter_tuning_enabled():
            modelDropDownObj = {
                        "name":self._model_summary.get_algorithm_name(),
                        "evaluationMetricValue":self._model_summary.get_model_accuracy(),
                        "evaluationMetricName":"r2",
                        "slug":self._model_summary.get_slug(),
                        "Model Id":modelName
                        }

            modelSummaryJson = {
                "dropdown":modelDropDownObj,
                "levelcount":self._model_summary.get_level_counts(),
                "modelFeatureList":self._model_summary.get_feature_list(),
                "levelMapping":self._model_summary.get_level_map_dict(),
                "slug":self._model_summary.get_slug(),
                "name":self._model_summary.get_algorithm_name()
            }
        else:
            modelDropDownObj = {
                        "name":self._model_summary.get_algorithm_name(),
                        "evaluationMetricValue":resultArray[0]["R-Squared"],
                        "evaluationMetricName":"r2",
                        "slug":self._model_summary.get_slug(),
                        "Model Id":resultArray[0]["Model Id"]
                        }
            modelSummaryJson = {
                "dropdown":modelDropDownObj,
                "levelcount":self._model_summary.get_level_counts(),
                "modelFeatureList":self._model_summary.get_feature_list(),
                "levelMapping":self._model_summary.get_level_map_dict(),
                "slug":self._model_summary.get_slug(),
                "name":self._model_summary.get_algorithm_name()
            }

        dtreerCards = [json.loads(CommonUtils.convert_python_object_to_json(cardObj)) for cardObj in MLUtils.create_model_summary_cards(self._model_summary)]

        for card in dtreerCards:
            self._prediction_narrative.add_a_card(card)
        self._result_setter.set_model_summary({"dtreeregression":json.loads(CommonUtils.convert_python_object_to_json(self._model_summary))})
        self._result_setter.set_dtree_regression_model_summart(modelSummaryJson)
        self._result_setter.set_dtreer_cards(dtreerCards)

        CommonUtils.create_update_and_save_progress_message(self._dataframe_context,self._scriptWeightDict,self._scriptStages,self._slug,"completion","info",display=True,emptyBin=False,customMsg=None,weightKey="total")
    def Train(self):
        st_global = time.time()
        algosToRun = self._dataframe_context.get_algorithms_to_run()
        algoSetting = filter(lambda x:x["algorithmSlug"]==GLOBALSETTINGS.MODEL_SLUG_MAPPING["generalizedlinearregression"],algosToRun)[0]
        categorical_columns = self._dataframe_helper.get_string_columns()
        uid_col = self._dataframe_context.get_uid_column()
        if self._metaParser.check_column_isin_ignored_suggestion(uid_col):
            categorical_columns = list(set(categorical_columns) - {uid_col})
        allDateCols = self._dataframe_context.get_date_columns()
        categorical_columns = list(set(categorical_columns)-set(allDateCols))
        print categorical_columns
        result_column = self._dataframe_context.get_result_column()
        numerical_columns = self._dataframe_helper.get_numeric_columns()
        numerical_columns = [x for x in numerical_columns if x != result_column]

        model_path = self._dataframe_context.get_model_path()
        if model_path.startswith("file"):
            model_path = model_path[7:]
        validationDict = self._dataframe_context.get_validation_dict()
        print "model_path",model_path
        pipeline_filepath = "file://"+str(model_path)+"/"+str(self._slug)+"/pipeline/"
        model_filepath = "file://"+str(model_path)+"/"+str(self._slug)+"/model"
        pmml_filepath = "file://"+str(model_path)+"/"+str(self._slug)+"/modelPmml"

        df = self._data_frame
        pipeline = MLUtils.create_pyspark_ml_pipeline(numerical_columns,categorical_columns,result_column,algoType="regression")

        pipelineModel = pipeline.fit(df)
        indexed = pipelineModel.transform(df)
        featureMapping = sorted((attr["idx"], attr["name"]) for attr in (chain(*indexed.schema["features"].metadata["ml_attr"]["attrs"].values())))

        # print indexed.select([result_column,"features"]).show(5)
        MLUtils.save_pipeline_or_model(pipelineModel,pipeline_filepath)
        glinr = GeneralizedLinearRegression(labelCol=result_column, featuresCol='features',predictionCol="prediction")
        if validationDict["name"] == "kFold":
            defaultSplit = GLOBALSETTINGS.DEFAULT_VALIDATION_OBJECT["value"]
            numFold = int(validationDict["value"])
            if numFold == 0:
                numFold = 3
            trainingData,validationData = indexed.randomSplit([defaultSplit,1-defaultSplit], seed=12345)
            paramGrid = ParamGridBuilder()\
                .addGrid(glinr.regParam, [0.1, 0.01]) \
                .addGrid(glinr.fitIntercept, [False, True])\
                .build()
            crossval = CrossValidator(estimator=glinr,
                          estimatorParamMaps=paramGrid,
                          evaluator=RegressionEvaluator(predictionCol="prediction", labelCol=result_column),
                          numFolds=numFold)
            st = time.time()
            cvModel = crossval.fit(indexed)
            trainingTime = time.time()-st
            print "cvModel training takes",trainingTime
            bestModel = cvModel.bestModel
        elif validationDict["name"] == "trainAndtest":
            trainingData,validationData = indexed.randomSplit([float(validationDict["value"]),1-float(validationDict["value"])], seed=12345)
            st = time.time()
            fit = glinr.fit(trainingData)
            trainingTime = time.time()-st
            print "time to train",trainingTime
            bestModel = fit
        print bestModel.explainParams()
        print bestModel.extractParamMap()
        print bestModel.params
        print 'Best Param (regParam): ', bestModel._java_obj.getRegParam()
        print 'Best Param (MaxIter): ', bestModel._java_obj.getMaxIter()

        # modelPmmlPipeline = PMMLPipeline([
        #   ("pretrained-estimator", objs["trained_model"])
        # ])
        # try:
        #     modelPmmlPipeline.target_field = result_column
        #     modelPmmlPipeline.active_fields = np.array([col for col in x_train.columns if col != result_column])
        #     sklearn2pmml(modelPmmlPipeline, pmml_filepath, with_repr = True)
        #     pmmlfile = open(pmml_filepath,"r")
        #     pmmlText = pmmlfile.read()
        #     pmmlfile.close()
        #     self._result_setter.update_pmml_object({self._slug:pmmlText})
        # except:
        #     pass

        coefficientsArray = [(name, bestModel.coefficients[idx]) for idx, name in featureMapping]
        MLUtils.save_pipeline_or_model(bestModel,model_filepath)
        transformed = bestModel.transform(validationData)
        transformed = transformed.withColumn(result_column,transformed[result_column].cast(DoubleType()))
        transformed = transformed.select([result_column,"prediction",transformed[result_column]-transformed["prediction"]])
        transformed = transformed.withColumnRenamed(transformed.columns[-1],"difference")
        transformed = transformed.select([result_column,"prediction","difference",FN.abs(transformed["difference"])*100/transformed[result_column]])
        transformed = transformed.withColumnRenamed(transformed.columns[-1],"mape")
        sampleData = None
        nrows = transformed.count()
        if nrows > 100:
            sampleData = transformed.sample(False, float(100)/nrows, seed=420)
        else:
            sampleData = transformed
        print sampleData.show()
        evaluator = RegressionEvaluator(predictionCol="prediction",labelCol=result_column)
        metrics = {}
        metrics["r2"] = evaluator.evaluate(transformed,{evaluator.metricName: "r2"})
        metrics["rmse"] = evaluator.evaluate(transformed,{evaluator.metricName: "rmse"})
        metrics["mse"] = evaluator.evaluate(transformed,{evaluator.metricName: "mse"})
        metrics["mae"] = evaluator.evaluate(transformed,{evaluator.metricName: "mae"})
        runtime = round((time.time() - st_global),2)
        # print transformed.count()
        mapeDf = transformed.select("mape")
        # print mapeDf.show()
        mapeStats = MLUtils.get_mape_stats(mapeDf,"mape")
        mapeStatsArr = mapeStats.items()
        mapeStatsArr = sorted(mapeStatsArr,key=lambda x:int(x[0]))
        # print mapeStatsArr
        quantileDf = transformed.select("prediction")
        # print quantileDf.show()
        quantileSummaryDict = MLUtils.get_quantile_summary(quantileDf,"prediction")
        quantileSummaryArr = quantileSummaryDict.items()
        quantileSummaryArr = sorted(quantileSummaryArr,key=lambda x:int(x[0]))
        # print quantileSummaryArr
        self._model_summary.set_model_type("regression")
        self._model_summary.set_algorithm_name("Generalized Linear Regression")
        self._model_summary.set_algorithm_display_name("Generalized Linear Regression")
        self._model_summary.set_slug(self._slug)
        self._model_summary.set_training_time(runtime)
        self._model_summary.set_training_time(trainingTime)
        self._model_summary.set_target_variable(result_column)
        self._model_summary.set_validation_method(validationDict["displayName"])
        self._model_summary.set_model_evaluation_metrics(metrics)
        self._model_summary.set_model_params(bestEstimator.get_params())
        self._model_summary.set_quantile_summary(quantileSummaryArr)
        self._model_summary.set_mape_stats(mapeStatsArr)
        self._model_summary.set_sample_data(sampleData.toPandas().to_dict())
        self._model_summary.set_coefficinets_array(coefficientsArray)
        self._model_summary.set_feature_list(list(x_train.columns))

        # print CommonUtils.convert_python_object_to_json(self._model_summary)
        modelSummaryJson = {
            "dropdown":{
                        "name":self._model_summary.get_algorithm_name(),
                        "accuracy":CommonUtils.round_sig(self._model_summary.get_model_evaluation_metrics()["r2"]),
                        "slug":self._model_summary.get_slug()
                        },
            "levelcount":self._model_summary.get_level_counts(),
            "modelFeatureList":self._model_summary.get_feature_list(),
            "levelMapping":self._model_summary.get_level_map_dict()
        }

        glinrCards = [json.loads(CommonUtils.convert_python_object_to_json(cardObj)) for cardObj in MLUtils.create_model_summary_cards(self._model_summary)]

        for card in glinrCards:
            self._prediction_narrative.add_a_card(card)
        self._result_setter.set_model_summary({"generalizedlinearregression":json.loads(CommonUtils.convert_python_object_to_json(self._model_summary))})
        self._result_setter.set_generalized_linear_regression_model_summary(modelSummaryJson)
        self._result_setter.set_glinr_cards(glinrCards)
    def Train(self):
        st_global = time.time()

        CommonUtils.create_update_and_save_progress_message(
            self._dataframe_context,
            self._scriptWeightDict,
            self._scriptStages,
            self._slug,
            "initialization",
            "info",
            display=True,
            emptyBin=False,
            customMsg=None,
            weightKey="total")

        algosToRun = self._dataframe_context.get_algorithms_to_run()
        algoSetting = [
            x for x in algosToRun if x.get_algorithm_slug() == self._slug
        ][0]
        categorical_columns = self._dataframe_helper.get_string_columns()
        uid_col = self._dataframe_context.get_uid_column()

        if self._metaParser.check_column_isin_ignored_suggestion(uid_col):
            categorical_columns = list(set(categorical_columns) - {uid_col})

        allDateCols = self._dataframe_context.get_date_columns()
        categorical_columns = list(set(categorical_columns) - set(allDateCols))
        numerical_columns = self._dataframe_helper.get_numeric_columns()
        result_column = self._dataframe_context.get_result_column()
        categorical_columns = [
            x for x in categorical_columns if x != result_column
        ]

        appType = self._dataframe_context.get_app_type()

        model_path = self._dataframe_context.get_model_path()
        if model_path.startswith("file"):
            model_path = model_path[7:]
        validationDict = self._dataframe_context.get_validation_dict()
        print("model_path", model_path)
        pipeline_filepath = "file://" + str(model_path) + "/" + str(
            self._slug) + "/pipeline/"
        model_filepath = "file://" + str(model_path) + "/" + str(
            self._slug) + "/model"
        pmml_filepath = "file://" + str(model_path) + "/" + str(
            self._slug) + "/modelPmml"

        df = self._data_frame
        levels = df.select(result_column).distinct().count()

        appType = self._dataframe_context.get_app_type()

        model_filepath = model_path + "/" + self._slug + "/model"
        pmml_filepath = str(model_path) + "/" + str(
            self._slug) + "/traindeModel.pmml"

        CommonUtils.create_update_and_save_progress_message(
            self._dataframe_context,
            self._scriptWeightDict,
            self._scriptStages,
            self._slug,
            "training",
            "info",
            display=True,
            emptyBin=False,
            customMsg=None,
            weightKey="total")

        st = time.time()
        pipeline = MLUtils.create_pyspark_ml_pipeline(numerical_columns,
                                                      categorical_columns,
                                                      result_column)

        trainingData, validationData = MLUtils.get_training_and_validation_data(
            df, result_column, 0.8)  # indexed

        labelIndexer = StringIndexer(inputCol=result_column, outputCol="label")
        # OriginalTargetconverter = IndexToString(inputCol="label", outputCol="originalTargetColumn")

        # Label Mapping and Inverse
        labelIdx = labelIndexer.fit(trainingData)
        labelMapping = {k: v for k, v in enumerate(labelIdx.labels)}
        inverseLabelMapping = {
            v: float(k)
            for k, v in enumerate(labelIdx.labels)
        }
        if self._dataframe_context.get_trainerMode() == "autoML":
            automl_enable = True
        else:
            automl_enable = False
        clf = NaiveBayes()
        if not algoSetting.is_hyperparameter_tuning_enabled():
            algoParams = algoSetting.get_params_dict()
        else:
            algoParams = algoSetting.get_params_dict_hyperparameter()
        print("=" * 100)
        print(algoParams)
        print("=" * 100)
        clfParams = [prm.name for prm in clf.params]
        algoParams = {
            getattr(clf, k): v if isinstance(v, list) else [v]
            for k, v in algoParams.items() if k in clfParams
        }
        #print("="*100)
        #print("ALGOPARAMS - ",algoParams)
        #print("="*100)

        paramGrid = ParamGridBuilder()
        # if not algoSetting.is_hyperparameter_tuning_enabled():
        #     for k,v in algoParams.items():
        #         if v == [None] * len(v):
        #             continue
        #         if k.name == 'thresholds':
        #             paramGrid = paramGrid.addGrid(k,v[0])
        #         else:
        #             paramGrid = paramGrid.addGrid(k,v)
        #     paramGrid = paramGrid.build()

        # if not algoSetting.is_hyperparameter_tuning_enabled():
        for k, v in algoParams.items():
            print(k, v)
            if v == [None] * len(v):
                continue
            paramGrid = paramGrid.addGrid(k, v)
        paramGrid = paramGrid.build()
        # else:
        #     for k,v in algoParams.items():
        #         print k.name, v
        #         if v[0] == [None] * len(v[0]):
        #             continue
        #         paramGrid = paramGrid.addGrid(k,v[0])
        #     paramGrid = paramGrid.build()

        #print("="*143)
        #print("PARAMGRID - ", paramGrid)
        #print("="*143)

        if len(paramGrid) > 1:
            hyperParamInitParam = algoSetting.get_hyperparameter_params()
            evaluationMetricDict = {
                "name": hyperParamInitParam["evaluationMetric"]
            }
            evaluationMetricDict[
                "displayName"] = GLOBALSETTINGS.SKLEARN_EVAL_METRIC_NAME_DISPLAY_MAP[
                    evaluationMetricDict["name"]]
        else:
            evaluationMetricDict = {
                "name": GLOBALSETTINGS.CLASSIFICATION_MODEL_EVALUATION_METRIC
            }
            evaluationMetricDict[
                "displayName"] = GLOBALSETTINGS.SKLEARN_EVAL_METRIC_NAME_DISPLAY_MAP[
                    evaluationMetricDict["name"]]

        self._result_setter.set_hyper_parameter_results(self._slug, None)

        if validationDict["name"] == "kFold":
            numFold = int(validationDict["value"])
            estimator = Pipeline(stages=[pipeline, labelIndexer, clf])
            if algoSetting.is_hyperparameter_tuning_enabled():
                modelFilepath = "/".join(model_filepath.split("/")[:-1])
                pySparkHyperParameterResultObj = PySparkGridSearchResult(
                    estimator, paramGrid, appType, modelFilepath, levels,
                    evaluationMetricDict, trainingData, validationData,
                    numFold, self._targetLevel, labelMapping,
                    inverseLabelMapping, df)
                resultArray = pySparkHyperParameterResultObj.train_and_save_classification_models(
                )
                self._result_setter.set_hyper_parameter_results(
                    self._slug, resultArray)
                self._result_setter.set_metadata_parallel_coordinates(
                    self._slug, {
                        "ignoreList":
                        pySparkHyperParameterResultObj.get_ignore_list(),
                        "hideColumns":
                        pySparkHyperParameterResultObj.get_hide_columns(),
                        "metricColName":
                        pySparkHyperParameterResultObj.
                        get_comparison_metric_colname(),
                        "columnOrder":
                        pySparkHyperParameterResultObj.get_keep_columns()
                    })

                bestModel = pySparkHyperParameterResultObj.getBestModel()
                prediction = pySparkHyperParameterResultObj.getBestPrediction()

            else:
                if automl_enable:
                    paramGrid = (ParamGridBuilder().addGrid(
                        clf.smoothing, [1.0, 0.2]).build())
                crossval = CrossValidator(
                    estimator=estimator,
                    estimatorParamMaps=paramGrid,
                    evaluator=BinaryClassificationEvaluator()
                    if levels == 2 else MulticlassClassificationEvaluator(),
                    numFolds=3 if numFold is None else
                    numFold)  # use 3+ folds in practice
                cvnb = crossval.fit(trainingData)
                prediction = cvnb.transform(validationData)
                bestModel = cvnb.bestModel

        else:
            train_test_ratio = float(
                self._dataframe_context.get_train_test_split())
            estimator = Pipeline(stages=[pipeline, labelIndexer, clf])
            if algoSetting.is_hyperparameter_tuning_enabled():
                modelFilepath = "/".join(model_filepath.split("/")[:-1])
                pySparkHyperParameterResultObj = PySparkTrainTestResult(
                    estimator, paramGrid, appType, modelFilepath, levels,
                    evaluationMetricDict, trainingData, validationData,
                    train_test_ratio, self._targetLevel, labelMapping,
                    inverseLabelMapping, df)
                resultArray = pySparkHyperParameterResultObj.train_and_save_classification_models(
                )
                self._result_setter.set_hyper_parameter_results(
                    self._slug, resultArray)
                self._result_setter.set_metadata_parallel_coordinates(
                    self._slug, {
                        "ignoreList":
                        pySparkHyperParameterResultObj.get_ignore_list(),
                        "hideColumns":
                        pySparkHyperParameterResultObj.get_hide_columns(),
                        "metricColName":
                        pySparkHyperParameterResultObj.
                        get_comparison_metric_colname(),
                        "columnOrder":
                        pySparkHyperParameterResultObj.get_keep_columns()
                    })

                bestModel = pySparkHyperParameterResultObj.getBestModel()
                prediction = pySparkHyperParameterResultObj.getBestPrediction()

            else:
                tvs = TrainValidationSplit(
                    estimator=estimator,
                    estimatorParamMaps=paramGrid,
                    evaluator=BinaryClassificationEvaluator()
                    if levels == 2 else MulticlassClassificationEvaluator(),
                    trainRatio=train_test_ratio)

                tvspnb = tvs.fit(trainingData)
                prediction = tvspnb.transform(validationData)
                bestModel = tvspnb.bestModel

        modelmanagement_ = {
            param[0].name: param[1]
            for param in bestModel.stages[2].extractParamMap().items()
        }

        MLUtils.save_pipeline_or_model(bestModel, model_filepath)
        predsAndLabels = prediction.select(['prediction',
                                            'label']).rdd.map(tuple)
        # label_classes = prediction.select("label").distinct().collect()
        # label_classes = prediction.agg((F.collect_set('label').alias('label'))).first().asDict()['label']
        #results = transformed.select(["prediction","label"])
        # if len(label_classes) > 2:
        #     metrics = MulticlassMetrics(predsAndLabels) # accuracy of the model
        # else:
        #     metrics = BinaryClassificationMetrics(predsAndLabels)
        posLabel = inverseLabelMapping[self._targetLevel]
        metrics = MulticlassMetrics(predsAndLabels)

        trainingTime = time.time() - st

        f1_score = metrics.fMeasure(inverseLabelMapping[self._targetLevel],
                                    1.0)
        precision = metrics.precision(inverseLabelMapping[self._targetLevel])
        recall = metrics.recall(inverseLabelMapping[self._targetLevel])
        accuracy = metrics.accuracy

        print(f1_score, precision, recall, accuracy)

        #gain chart implementation
        def cal_prob_eval(x):
            if len(x) == 1:
                if x == posLabel:
                    return (float(x[1]))
                else:
                    return (float(1 - x[1]))
            else:
                return (float(x[int(posLabel)]))

        column_name = 'probability'

        def y_prob_for_eval_udf():
            return udf(lambda x: cal_prob_eval(x))

        prediction = prediction.withColumn(
            "y_prob_for_eval",
            y_prob_for_eval_udf()(col(column_name)))

        try:
            pys_df = prediction.select(
                ['y_prob_for_eval', 'prediction', 'label'])
            gain_lift_ks_obj = GainLiftKS(pys_df, 'y_prob_for_eval',
                                          'prediction', 'label', posLabel,
                                          self._spark)
            gain_lift_KS_dataframe = gain_lift_ks_obj.Run().toPandas()
        except:
            try:
                temp_df = pys_df.toPandas()
                gain_lift_ks_obj = GainLiftKS(temp_df, 'y_prob_for_eval',
                                              'prediction', 'label', posLabel,
                                              self._spark)
                gain_lift_KS_dataframe = gain_lift_ks_obj.Rank_Ordering()
            except:
                print("gain chant failed")
                gain_lift_KS_dataframe = None

        #feature_importance = MLUtils.calculate_sparkml_feature_importance(df, bestModel.stages[-1], categorical_columns, numerical_columns)
        act_list = prediction.select('label').collect()
        actual = [int(row.label) for row in act_list]

        pred_list = prediction.select('prediction').collect()
        predicted = [int(row.prediction) for row in pred_list]
        prob_list = prediction.select('probability').collect()
        probability = [list(row.probability) for row in prob_list]
        # objs = {"trained_model":bestModel,"actual":prediction.select('label'),"predicted":prediction.select('prediction'),
        # "probability":prediction.select('probability'),"feature_importance":None,
        # "featureList":list(categorical_columns) + list(numerical_columns),"labelMapping":labelMapping}
        objs = {
            "trained_model": bestModel,
            "actual": actual,
            "predicted": predicted,
            "probability": probability,
            "feature_importance": None,
            "featureList": list(categorical_columns) + list(numerical_columns),
            "labelMapping": labelMapping
        }

        conf_mat_ar = metrics.confusionMatrix().toArray()
        print(conf_mat_ar)
        confusion_matrix = {}
        for i in range(len(conf_mat_ar)):
            confusion_matrix[labelMapping[i]] = {}
            for j, val in enumerate(conf_mat_ar[i]):
                confusion_matrix[labelMapping[i]][labelMapping[j]] = val
        print(confusion_matrix)  # accuracy of the model
        '''ROC CURVE IMPLEMENTATION'''
        y_prob = probability
        y_score = predicted
        y_test = actual
        logLoss = log_loss(y_test, y_prob)
        if levels <= 2:
            positive_label_probs = []
            for val in y_prob:
                positive_label_probs.append(val[int(posLabel)])
            roc_auc = roc_auc_score(y_test, y_score)

            roc_data_dict = {
                "y_score": y_score,
                "y_test": y_test,
                "positive_label_probs": positive_label_probs,
                "y_prob": y_prob,
                "positive_label": posLabel
            }
            roc_dataframe = pd.DataFrame({
                "y_score":
                y_score,
                "y_test":
                y_test,
                "positive_label_probs":
                positive_label_probs
            })
            #roc_dataframe.to_csv("binary_roc_data.csv")
            fpr, tpr, thresholds = roc_curve(y_test,
                                             positive_label_probs,
                                             pos_label=posLabel)
            roc_df = pd.DataFrame({
                "FPR": fpr,
                "TPR": tpr,
                "thresholds": thresholds
            })
            roc_df["tpr-fpr"] = roc_df["TPR"] - roc_df["FPR"]

            optimal_index = np.argmax(np.array(roc_df["tpr-fpr"]))
            fpr_optimal_index = roc_df.loc[roc_df.index[optimal_index], "FPR"]
            tpr_optimal_index = roc_df.loc[roc_df.index[optimal_index], "TPR"]

            rounded_roc_df = roc_df.round({'FPR': 2, 'TPR': 4})

            unique_fpr = rounded_roc_df["FPR"].unique()

            final_roc_df = rounded_roc_df.groupby("FPR",
                                                  as_index=False)[["TPR"
                                                                   ]].mean()
            endgame_roc_df = final_roc_df.round({'FPR': 2, 'TPR': 3})
        elif levels > 2:
            positive_label_probs = []
            for val in y_prob:
                positive_label_probs.append(val[int(posLabel)])

            y_test_roc_multi = []
            for val in y_test:
                if val != posLabel:
                    val = posLabel + 1
                    y_test_roc_multi.append(val)
                else:
                    y_test_roc_multi.append(val)

            y_score_roc_multi = []
            for val in y_score:
                if val != posLabel:
                    val = posLabel + 1
                    y_score_roc_multi.append(val)
                else:
                    y_score_roc_multi.append(val)

            roc_auc = roc_auc_score(y_test_roc_multi, y_score_roc_multi)

            fpr, tpr, thresholds = roc_curve(y_test_roc_multi,
                                             positive_label_probs,
                                             pos_label=posLabel)
            roc_df = pd.DataFrame({
                "FPR": fpr,
                "TPR": tpr,
                "thresholds": thresholds
            })
            roc_df["tpr-fpr"] = roc_df["TPR"] - roc_df["FPR"]

            optimal_index = np.argmax(np.array(roc_df["tpr-fpr"]))
            fpr_optimal_index = roc_df.loc[roc_df.index[optimal_index], "FPR"]
            tpr_optimal_index = roc_df.loc[roc_df.index[optimal_index], "TPR"]

            rounded_roc_df = roc_df.round({'FPR': 2, 'TPR': 4})
            unique_fpr = rounded_roc_df["FPR"].unique()
            final_roc_df = rounded_roc_df.groupby("FPR",
                                                  as_index=False)[["TPR"
                                                                   ]].mean()
            endgame_roc_df = final_roc_df.round({'FPR': 2, 'TPR': 3})
        # Calculating prediction_split
        val_cnts = prediction.groupBy('label').count()
        val_cnts = map(lambda row: row.asDict(), val_cnts.collect())
        prediction_split = {}
        total_nos = prediction.select('label').count()
        for item in val_cnts:
            print(labelMapping)
            classname = labelMapping[item['label']]
            prediction_split[classname] = round(
                item['count'] * 100 / float(total_nos), 2)

        if not algoSetting.is_hyperparameter_tuning_enabled():
            modelName = "M" + "0" * (GLOBALSETTINGS.MODEL_NAME_MAX_LENGTH -
                                     1) + "1"
            modelFilepathArr = model_filepath.split("/")[:-1]
            modelFilepathArr.append(modelName)
            bestModel.save("/".join(modelFilepathArr))
        runtime = round((time.time() - st_global), 2)

        try:
            print(pmml_filepath)
            pmmlBuilder = PMMLBuilder(self._spark, trainingData,
                                      bestModel).putOption(
                                          clf, 'compact', True)
            pmmlBuilder.buildFile(pmml_filepath)
            pmmlfile = open(pmml_filepath, "r")
            pmmlText = pmmlfile.read()
            pmmlfile.close()
            self._result_setter.update_pmml_object({self._slug: pmmlText})
        except Exception as e:
            print("PMML failed...", str(e))
            pass

        cat_cols = list(set(categorical_columns) - {result_column})
        self._model_summary = MLModelSummary()
        self._model_summary.set_algorithm_name("Naive Bayes")
        self._model_summary.set_algorithm_display_name("Naive Bayes")
        self._model_summary.set_slug(self._slug)
        self._model_summary.set_training_time(runtime)
        self._model_summary.set_confusion_matrix(confusion_matrix)
        # self._model_summary.set_feature_importance(objs["feature_importance"])
        self._model_summary.set_feature_list(objs["featureList"])
        self._model_summary.set_model_accuracy(accuracy)
        self._model_summary.set_training_time(round((time.time() - st), 2))
        self._model_summary.set_precision_recall_stats([precision, recall])
        self._model_summary.set_model_precision(precision)
        self._model_summary.set_model_recall(recall)
        self._model_summary.set_model_F1_score(f1_score)
        self._model_summary.set_model_log_loss(logLoss)
        self._model_summary.set_gain_lift_KS_data(gain_lift_KS_dataframe)
        self._model_summary.set_AUC_score(roc_auc)
        self._model_summary.set_target_variable(result_column)
        self._model_summary.set_prediction_split(prediction_split)
        self._model_summary.set_validation_method("KFold")
        self._model_summary.set_level_map_dict(objs["labelMapping"])
        # self._model_summary.set_model_features(list(set(x_train.columns)-set([result_column])))
        self._model_summary.set_model_features(objs["featureList"])
        self._model_summary.set_level_counts(
            self._metaParser.get_unique_level_dict(
                list(set(categorical_columns)) + [result_column]))
        #self._model_summary.set_num_trees(objs['trained_model'].getNumTrees)
        self._model_summary.set_num_rules(300)
        self._model_summary.set_target_level(self._targetLevel)

        if not algoSetting.is_hyperparameter_tuning_enabled():
            modelDropDownObj = {
                "name": self._model_summary.get_algorithm_name(),
                "evaluationMetricValue": accuracy,
                "evaluationMetricName": "accuracy",
                "slug": self._model_summary.get_slug(),
                "Model Id": modelName
            }
            modelSummaryJson = {
                "dropdown": modelDropDownObj,
                "levelcount": self._model_summary.get_level_counts(),
                "modelFeatureList": self._model_summary.get_feature_list(),
                "levelMapping": self._model_summary.get_level_map_dict(),
                "slug": self._model_summary.get_slug(),
                "name": self._model_summary.get_algorithm_name()
            }
        else:
            modelDropDownObj = {
                "name": self._model_summary.get_algorithm_name(),
                "evaluationMetricValue": accuracy,
                "evaluationMetricName": "accuracy",
                "slug": self._model_summary.get_slug(),
                "Model Id": resultArray[0]["Model Id"]
            }
            modelSummaryJson = {
                "dropdown": modelDropDownObj,
                "levelcount": self._model_summary.get_level_counts(),
                "modelFeatureList": self._model_summary.get_feature_list(),
                "levelMapping": self._model_summary.get_level_map_dict(),
                "slug": self._model_summary.get_slug(),
                "name": self._model_summary.get_algorithm_name()
            }
        self._model_management = MLModelSummary()
        print(modelmanagement_)
        self._model_management.set_job_type(
            self._dataframe_context.get_job_name())  #Project name
        self._model_management.set_training_status(
            data="completed")  # training status
        self._model_management.set_target_level(
            self._targetLevel)  # target column value
        self._model_management.set_training_time(runtime)  # run time
        self._model_management.set_model_accuracy(round(metrics.accuracy, 2))
        # self._model_management.set_model_accuracy(round(metrics.accuracy_score(objs["actual"], objs["predicted"]),2))#accuracy
        self._model_management.set_algorithm_name(
            "NaiveBayes")  #algorithm name
        self._model_management.set_validation_method(
            str(validationDict["displayName"]) + "(" +
            str(validationDict["value"]) + ")")  #validation method
        self._model_management.set_target_variable(
            result_column)  #target column name
        self._model_management.set_creation_date(data=str(
            datetime.now().strftime('%b %d ,%Y  %H:%M ')))  #creation date
        self._model_management.set_datasetName(self._datasetName)
        self._model_management.set_model_type(data='classification')
        self._model_management.set_var_smoothing(
            data=int(modelmanagement_['smoothing']))

        # self._model_management.set_no_of_independent_variables(df) #no of independent varables

        modelManagementSummaryJson = [
            ["Project Name",
             self._model_management.get_job_type()],
            ["Algorithm",
             self._model_management.get_algorithm_name()],
            ["Training Status",
             self._model_management.get_training_status()],
            ["Accuracy",
             self._model_management.get_model_accuracy()],
            ["RunTime", self._model_management.get_training_time()],
            #["Owner",None],
            ["Created On",
             self._model_management.get_creation_date()]
        ]

        modelManagementModelSettingsJson = [
            ["Training Dataset",
             self._model_management.get_datasetName()],
            ["Target Column",
             self._model_management.get_target_variable()],
            ["Target Column Value",
             self._model_management.get_target_level()],
            ["Algorithm",
             self._model_management.get_algorithm_name()],
            [
                "Model Validation",
                self._model_management.get_validation_method()
            ],
            ["Model Type",
             self._model_management.get_model_type()],
            ["Smoothing",
             self._model_management.get_var_smoothing()],

            #,["priors",self._model_management.get_priors()]
            #,["var_smoothing",self._model_management.get_var_smoothing()]
        ]

        nbOverviewCards = [
            json.loads(CommonUtils.convert_python_object_to_json(cardObj))
            for cardObj in MLUtils.create_model_management_card_overview(
                self._model_management, modelManagementSummaryJson,
                modelManagementModelSettingsJson)
        ]
        nbPerformanceCards = [
            json.loads(CommonUtils.convert_python_object_to_json(cardObj))
            for cardObj in MLUtils.create_model_management_cards(
                self._model_summary, endgame_roc_df)
        ]
        nbDeploymentCards = [
            json.loads(CommonUtils.convert_python_object_to_json(cardObj))
            for cardObj in MLUtils.create_model_management_deploy_empty_card()
        ]
        nbCards = [
            json.loads(CommonUtils.convert_python_object_to_json(cardObj)) for
            cardObj in MLUtils.create_model_summary_cards(self._model_summary)
        ]
        NB_Overview_Node = NarrativesTree()
        NB_Overview_Node.set_name("Overview")
        NB_Performance_Node = NarrativesTree()
        NB_Performance_Node.set_name("Performance")
        NB_Deployment_Node = NarrativesTree()
        NB_Deployment_Node.set_name("Deployment")
        for card in nbOverviewCards:
            NB_Overview_Node.add_a_card(card)
        for card in nbPerformanceCards:
            NB_Performance_Node.add_a_card(card)
        for card in nbDeploymentCards:
            NB_Deployment_Node.add_a_card(card)
        for card in nbCards:
            self._prediction_narrative.add_a_card(card)

        self._result_setter.set_model_summary({
            "naivebayes":
            json.loads(
                CommonUtils.convert_python_object_to_json(self._model_summary))
        })
        self._result_setter.set_naive_bayes_model_summary(modelSummaryJson)
        self._result_setter.set_nb_cards(nbCards)
        self._result_setter.set_nb_nodes(
            [NB_Overview_Node, NB_Performance_Node, NB_Deployment_Node])
        self._result_setter.set_nb_fail_card({
            "Algorithm_Name": "Naive Bayes",
            "success": "True"
        })

        CommonUtils.create_update_and_save_progress_message(
            self._dataframe_context,
            self._scriptWeightDict,
            self._scriptStages,
            self._slug,
            "completion",
            "info",
            display=True,
            emptyBin=False,
            customMsg=None,
            weightKey="total")

        print("\n\n")
    def Train(self):
        st = time.time()
        categorical_columns = self._dataframe_helper.get_string_columns()
        numerical_columns = self._dataframe_helper.get_numeric_columns()
        result_column = self._dataframe_context.get_result_column()
        categorical_columns = [
            x for x in categorical_columns if x != result_column
        ]

        model_path = self._dataframe_context.get_model_path()
        pipeline_filepath = model_path + "/LogisticRegression/TrainedModels/pipeline"
        model_filepath = model_path + "/LogisticRegression/TrainedModels/model"
        summary_filepath = model_path + "/LogisticRegression/ModelSummary/summary.json"

        df = self._data_frame
        pipeline = MLUtils.create_pyspark_ml_pipeline(numerical_columns,
                                                      categorical_columns,
                                                      result_column)
        pipelineModel = pipeline.fit(df)
        indexed = pipelineModel.transform(df)
        MLUtils.save_pipeline_or_model(pipelineModel, pipeline_filepath)
        trainingData, validationData = MLUtils.get_training_and_validation_data(
            indexed, result_column, 0.8)
        OriginalTargetconverter = IndexToString(
            inputCol="label", outputCol="originalTargetColumn")
        levels = trainingData.select("label").distinct().collect()

        if self._classifier == "lr":
            if len(levels) == 2:
                lr = LogisticRegression(maxIter=10,
                                        regParam=0.3,
                                        elasticNetParam=0.8)
            elif len(levels) > 2:
                lr = LogisticRegression(maxIter=10,
                                        regParam=0.3,
                                        elasticNetParam=0.8,
                                        family="multinomial")
            fit = lr.fit(trainingData)
        elif self._classifier == "OneVsRest":
            lr = LogisticRegression()
            ovr = OneVsRest(classifier=lr)
            fit = ovr.fit(trainingData)
        transformed = fit.transform(validationData)
        MLUtils.save_pipeline_or_model(fit, model_filepath)

        print fit.coefficientMatrix
        print fit.interceptVector

        # feature_importance = MLUtils.calculate_sparkml_feature_importance(indexed,fit,categorical_columns,numerical_columns)
        label_classes = transformed.select("label").distinct().collect()
        results = transformed.select(["prediction", "label"])
        if len(label_classes) > 2:
            evaluator = MulticlassClassificationEvaluator(
                predictionCol="prediction")
            evaluator.evaluate(results)
            self._model_summary["model_accuracy"] = evaluator.evaluate(
                results,
                {evaluator.metricName: "accuracy"})  # accuracy of the model
        else:
            evaluator = BinaryClassificationEvaluator(
                rawPredictionCol="prediction")
            evaluator.evaluate(results)
            # print evaluator.evaluate(results,{evaluator.metricName: "areaUnderROC"})
            # print evaluator.evaluate(results,{evaluator.metricName: "areaUnderPR"})
            self._model_summary["model_accuracy"] = evaluator.evaluate(
                results,
                {evaluator.metricName: "areaUnderPR"})  # accuracy of the model

        # self._model_summary["feature_importance"] = MLUtils.transform_feature_importance(feature_importance)
        self._model_summary["runtime_in_seconds"] = round((time.time() - st),
                                                          2)

        transformed = OriginalTargetconverter.transform(transformed)
        label_indexer_dict = [
            dict(enumerate(field.metadata["ml_attr"]["vals"]))
            for field in transformed.schema.fields if field.name == "label"
        ][0]
        prediction_to_levels = udf(lambda x: label_indexer_dict[x],
                                   StringType())
        transformed = transformed.withColumn(
            "predictedClass", prediction_to_levels(transformed.prediction))
        prediction_df = transformed.select(
            ["originalTargetColumn", "predictedClass"]).toPandas()
        objs = {
            "actual": prediction_df["originalTargetColumn"],
            "predicted": prediction_df["predictedClass"]
        }

        self._model_summary[
            "confusion_matrix"] = MLUtils.calculate_confusion_matrix(
                objs["actual"], objs["predicted"])
        overall_precision_recall = MLUtils.calculate_overall_precision_recall(
            objs["actual"], objs["predicted"])
        self._model_summary[
            "precision_recall_stats"] = overall_precision_recall[
                "classwise_stats"]
        self._model_summary["model_precision"] = overall_precision_recall[
            "precision"]
        self._model_summary["model_recall"] = overall_precision_recall[
            "recall"]
        self._model_summary["target_variable"] = result_column
        self._model_summary[
            "test_sample_prediction"] = overall_precision_recall[
                "prediction_split"]
        self._model_summary["algorithm_name"] = "Random Forest"
        self._model_summary["validation_method"] = "Train and Test"
        self._model_summary["independent_variables"] = len(
            categorical_columns) + len(numerical_columns)
        self._model_summary["level_counts"] = CommonUtils.get_level_count_dict(
            trainingData,
            categorical_columns,
            self._dataframe_context.get_column_separator(),
            dataType="spark")
        # print json.dumps(self._model_summary,indent=2)
        self._model_summary["total_trees"] = 100
        self._model_summary["total_rules"] = 300
        CommonUtils.write_to_file(
            summary_filepath, json.dumps({"modelSummary":
                                          self._model_summary}))
Beispiel #6
0
    def Train(self):
        st_global = time.time()

        CommonUtils.create_update_and_save_progress_message(self._dataframe_context, self._scriptWeightDict,
                                                            self._scriptStages, self._slug, "initialization", "info",
                                                            display=True, emptyBin=False, customMsg=None,
                                                            weightKey="total")

        algosToRun = self._dataframe_context.get_algorithms_to_run()
        algoSetting = [x for x in algosToRun if x.get_algorithm_slug()==self._slug][0]
        categorical_columns = self._dataframe_helper.get_string_columns()
        uid_col = self._dataframe_context.get_uid_column()

        if self._metaParser.check_column_isin_ignored_suggestion(uid_col):
            categorical_columns = list(set(categorical_columns) - {uid_col})

        allDateCols = self._dataframe_context.get_date_columns()
        categorical_columns = list(set(categorical_columns) - set(allDateCols))
        numerical_columns = self._dataframe_helper.get_numeric_columns()
        result_column = self._dataframe_context.get_result_column()
        categorical_columns = [x for x in categorical_columns if x != result_column]

        appType = self._dataframe_context.get_app_type()

        model_path = self._dataframe_context.get_model_path()
        if model_path.startswith("file"):
            model_path = model_path[7:]
        validationDict = self._dataframe_context.get_validation_dict()

        # pipeline_filepath = "file://"+str(model_path)+"/"+str(self._slug)+"/pipeline/"
        # model_filepath = "file://"+str(model_path)+"/"+str(self._slug)+"/model"
        # pmml_filepath = "file://"+str(model_path)+"/"+str(self._slug)+"/modelPmml"

        df = self._data_frame
        levels = df.select(result_column).distinct().count()

        appType = self._dataframe_context.get_app_type()

        model_filepath = model_path + "/" + self._slug + "/model"
        pmml_filepath = str(model_path) + "/" + str(self._slug) + "/trainedModel.pmml"

        CommonUtils.create_update_and_save_progress_message(self._dataframe_context, self._scriptWeightDict,
                                                            self._scriptStages, self._slug, "training", "info",
                                                            display=True, emptyBin=False, customMsg=None,
                                                            weightKey="total")

        st = time.time()
        pipeline = MLUtils.create_pyspark_ml_pipeline(numerical_columns, categorical_columns, result_column)
        vectorFeats = pipeline.getStages()[-1].transform(df)
        input_feats = len(vectorFeats.select('features').take(1)[0][0])

        trainingData, validationData = MLUtils.get_training_and_validation_data(df, result_column, 0.8)  # indexed

        labelIndexer = StringIndexer(inputCol=result_column, outputCol="label")
        # OriginalTargetconverter = IndexToString(inputCol="label", outputCol="originalTargetColumn")

        # Label Mapping and Inverse
        labelIdx = labelIndexer.fit(trainingData)
        labelMapping = {k: v for k, v in enumerate(labelIdx.labels)}
        inverseLabelMapping = {v: float(k) for k, v in enumerate(labelIdx.labels)}

        clf = MultilayerPerceptronClassifier()
        if not algoSetting.is_hyperparameter_tuning_enabled():
            algoParams = algoSetting.get_params_dict()
        else:
            algoParams = algoSetting.get_params_dict_hyperparameter()
        clfParams = [prm.name for prm in clf.params]

        algoParams = {getattr(clf, k): v if isinstance(v, list) else [v] for k, v in algoParams.items() if
                      k in clfParams}

        paramGrid = ParamGridBuilder()
        layer_param_val = algoParams[getattr(clf, 'layers')]

        for layer in layer_param_val:
            layer.insert(0, input_feats)
            layer.append(levels)

        print('layer_param_val =', layer_param_val)

        # if not algoSetting.is_hyperparameter_tuning_enabled():
        #     for k,v in algoParams.items():
        #         if k.name == 'layers':
        #             paramGrid = paramGrid.addGrid(k,layer_param_val)
        #         else:
        #             paramGrid = paramGrid.addGrid(k,v)
        #     paramGrid = paramGrid.build()
        # else:
        for k, v in algoParams.items():
            if v == [None] * len(v):
                continue
            if k.name == 'layers':
                paramGrid = paramGrid.addGrid(k, layer_param_val)
            else:
                paramGrid = paramGrid.addGrid(k, v)
        paramGrid = paramGrid.build()

        if len(paramGrid) > 1:
            hyperParamInitParam = algoSetting.get_hyperparameter_params()
            evaluationMetricDict = {"name": hyperParamInitParam["evaluationMetric"]}
            evaluationMetricDict["displayName"] = GLOBALSETTINGS.SKLEARN_EVAL_METRIC_NAME_DISPLAY_MAP[
                evaluationMetricDict["name"]]
        else:
            evaluationMetricDict = {"name": GLOBALSETTINGS.CLASSIFICATION_MODEL_EVALUATION_METRIC}
            evaluationMetricDict["displayName"] = GLOBALSETTINGS.SKLEARN_EVAL_METRIC_NAME_DISPLAY_MAP[
                evaluationMetricDict["name"]]

        self._result_setter.set_hyper_parameter_results(self._slug, None)

        if validationDict["name"] == "kFold":
            numFold = int(validationDict["value"])
            estimator = Pipeline(stages=[pipeline, labelIndexer, clf])
            if algoSetting.is_hyperparameter_tuning_enabled():
                modelFilepath = "/".join(model_filepath.split("/")[:-1])
                pySparkHyperParameterResultObj = PySparkGridSearchResult(estimator, paramGrid, appType, modelFilepath,
                                                                         levels,
                                                                         evaluationMetricDict, trainingData,
                                                                         validationData, numFold, self._targetLevel,
                                                                         labelMapping, inverseLabelMapping,
                                                                         df)
                resultArray = pySparkHyperParameterResultObj.train_and_save_classification_models()
                self._result_setter.set_hyper_parameter_results(self._slug, resultArray)
                self._result_setter.set_metadata_parallel_coordinates(self._slug,
                                                                      {
                                                                          "ignoreList": pySparkHyperParameterResultObj.get_ignore_list(),
                                                                          "hideColumns": pySparkHyperParameterResultObj.get_hide_columns(),
                                                                          "metricColName": pySparkHyperParameterResultObj.get_comparison_metric_colname(),
                                                                          "columnOrder": pySparkHyperParameterResultObj.get_keep_columns()})

                bestModel = pySparkHyperParameterResultObj.getBestModel()
                prediction = pySparkHyperParameterResultObj.getBestPrediction()
                bestModelName = resultArray[0]["Model Id"]

            else:
                crossval = CrossValidator(estimator=estimator,
                                          estimatorParamMaps=paramGrid,
                                          evaluator=BinaryClassificationEvaluator() if levels == 2 else MulticlassClassificationEvaluator(),
                                          numFolds=3 if numFold is None else numFold)  # use 3+ folds in practice
                cvrf = crossval.fit(trainingData)
                prediction = cvrf.transform(validationData)
                bestModel = cvrf.bestModel
                bestModelName = "M" + "0" * (GLOBALSETTINGS.MODEL_NAME_MAX_LENGTH - 1) + "1"

        else:
            train_test_ratio = float(self._dataframe_context.get_train_test_split())
            estimator = Pipeline(stages=[pipeline, labelIndexer, clf])
            if algoSetting.is_hyperparameter_tuning_enabled():
                modelFilepath = "/".join(model_filepath.split("/")[:-1])
                pySparkHyperParameterResultObj = PySparkTrainTestResult(estimator, paramGrid, appType, modelFilepath,
                                                                        levels,
                                                                        evaluationMetricDict, trainingData,
                                                                        validationData, train_test_ratio,
                                                                        self._targetLevel, labelMapping,
                                                                        inverseLabelMapping,
                                                                        df)
                resultArray = pySparkHyperParameterResultObj.train_and_save_classification_models()
                self._result_setter.set_hyper_parameter_results(self._slug, resultArray)
                self._result_setter.set_metadata_parallel_coordinates(self._slug,
                                                                      {
                                                                          "ignoreList": pySparkHyperParameterResultObj.get_ignore_list(),
                                                                          "hideColumns": pySparkHyperParameterResultObj.get_hide_columns(),
                                                                          "metricColName": pySparkHyperParameterResultObj.get_comparison_metric_colname(),
                                                                          "columnOrder": pySparkHyperParameterResultObj.get_keep_columns()})

                bestModel = pySparkHyperParameterResultObj.getBestModel()
                prediction = pySparkHyperParameterResultObj.getBestPrediction()
                bestModelName = resultArray[0]["Model Id"]

            else:
                tvs = TrainValidationSplit(estimator=estimator,
                                           estimatorParamMaps=paramGrid,
                                           evaluator=BinaryClassificationEvaluator() if levels == 2 else MulticlassClassificationEvaluator(),
                                           trainRatio=train_test_ratio)

                tvrf = tvs.fit(trainingData)
                prediction = tvrf.transform(validationData)
                bestModel = tvrf.bestModel
                bestModelName = "M" + "0" * (GLOBALSETTINGS.MODEL_NAME_MAX_LENGTH - 1) + "1"

        MLUtils.save_pipeline_or_model(bestModel,model_filepath)
        predsAndLabels = prediction.select(['prediction', 'label']).rdd.map(tuple)
        metrics = MulticlassMetrics(predsAndLabels)
        posLabel = inverseLabelMapping[self._targetLevel]

        conf_mat_ar = metrics.confusionMatrix().toArray()
        print(conf_mat_ar)
        confusion_matrix = {}
        for i in range(len(conf_mat_ar)):
            confusion_matrix[labelMapping[i]] = {}
            for j, val in enumerate(conf_mat_ar[i]):
                confusion_matrix[labelMapping[i]][labelMapping[j]] = val
        print(confusion_matrix)

        trainingTime = time.time() - st

        f1_score = metrics.fMeasure(inverseLabelMapping[self._targetLevel], 1.0)
        precision = metrics.precision(inverseLabelMapping[self._targetLevel])
        recall = metrics.recall(inverseLabelMapping[self._targetLevel])
        accuracy = metrics.accuracy
        roc_auc = 'Undefined'
        if levels == 2:
            bin_metrics = BinaryClassificationMetrics(predsAndLabels)
            roc_auc = bin_metrics.areaUnderROC
            precision = metrics.precision(inverseLabelMapping[self._targetLevel])
            recall = metrics.recall(inverseLabelMapping[self._targetLevel])
        print(f1_score,precision,recall,accuracy)

        #gain chart implementation
        def cal_prob_eval(x):
            if len(x) == 1:
                if x == posLabel:
                    return(float(x[1]))
                else:
                    return(float(1 - x[1]))
            else:
                return(float(x[int(posLabel)]))


        column_name= 'probability'
        def y_prob_for_eval_udf():
            return udf(lambda x:cal_prob_eval(x))
        prediction = prediction.withColumn("y_prob_for_eval", y_prob_for_eval_udf()(col(column_name)))

        try:
            pys_df = prediction.select(['y_prob_for_eval','prediction','label'])
            gain_lift_ks_obj = GainLiftKS(pys_df, 'y_prob_for_eval', 'prediction', 'label', posLabel, self._spark)
            gain_lift_KS_dataframe = gain_lift_ks_obj.Run().toPandas()
        except:
            try:
                temp_df = pys_df.toPandas()
                gain_lift_ks_obj = GainLiftKS(temp_df, 'y_prob_for_eval', 'prediction', 'label', posLabel, self._spark)
                gain_lift_KS_dataframe = gain_lift_ks_obj.Rank_Ordering()
            except:
                print("gain chant failed")
                gain_lift_KS_dataframe = None


        objs = {"trained_model": bestModel, "actual": prediction.select('label'),
                "predicted": prediction.select('prediction'),
                "probability": prediction.select('probability'), "feature_importance": None,
                "featureList": list(categorical_columns) + list(numerical_columns), "labelMapping": labelMapping}

        # Calculating prediction_split
        val_cnts = prediction.groupBy('label').count()
        val_cnts = map(lambda row: row.asDict(), val_cnts.collect())
        prediction_split = {}
        total_nos = objs['actual'].count()
        for item in val_cnts:
            classname = labelMapping[item['label']]
            prediction_split[classname] = round(item['count'] * 100 / float(total_nos), 2)

        if not algoSetting.is_hyperparameter_tuning_enabled():
            # modelName = "M" + "0" * (GLOBALSETTINGS.MODEL_NAME_MAX_LENGTH - 1) + "1"
            modelFilepathArr = model_filepath.split("/")[:-1]
            modelFilepathArr.append(bestModelName)
            bestModel.save("/".join(modelFilepathArr))
        runtime = round((time.time() - st_global), 2)

        try:
            print(pmml_filepath)
            pmmlBuilder = PMMLBuilder(self._spark, trainingData, bestModel).putOption(clf, 'compact', True)
            pmmlBuilder.buildFile(pmml_filepath)
            pmmlfile = open(pmml_filepath, "r")
            pmmlText = pmmlfile.read()
            pmmlfile.close()
            self._result_setter.update_pmml_object({self._slug: pmmlText})
        except Exception as e:
            print("PMML failed...", str(e))
            pass

        cat_cols = list(set(categorical_columns) - {result_column})
        self._model_summary = MLModelSummary()
        self._model_summary.set_algorithm_name("Spark ML Multilayer Perceptron")
        self._model_summary.set_algorithm_display_name("Spark ML Multilayer Perceptron")
        self._model_summary.set_slug(self._slug)
        self._model_summary.set_training_time(runtime)
        self._model_summary.set_confusion_matrix(confusion_matrix)
        self._model_summary.set_feature_importance(objs["feature_importance"])
        self._model_summary.set_feature_list(objs["featureList"])
        self._model_summary.set_model_accuracy(accuracy)
        self._model_summary.set_training_time(round((time.time() - st), 2))
        self._model_summary.set_precision_recall_stats([precision, recall])
        self._model_summary.set_model_precision(precision)
        self._model_summary.set_model_recall(recall)
        self._model_summary.set_target_variable(result_column)
        self._model_summary.set_prediction_split(prediction_split)
        self._model_summary.set_validation_method("KFold")
        self._model_summary.set_level_map_dict(objs["labelMapping"])
        self._model_summary.set_model_features(objs["featureList"])
        self._model_summary.set_level_counts(
            self._metaParser.get_unique_level_dict(list(set(categorical_columns)) + [result_column]))
        self._model_summary.set_num_trees(None)
        self._model_summary.set_num_rules(300)
        self._model_summary.set_target_level(self._targetLevel)

        modelManagementJson = {
            "Model ID": "SPMLP-" + bestModelName,
            "Project Name": self._dataframe_context.get_job_name(),
            "Algorithm": self._model_summary.get_algorithm_name(),
            "Status": 'Completed',
            "Accuracy": accuracy,
            "Runtime": runtime,
            "Created On": "",
            "Owner": "",
            "Deployment": 0,
            "Action": ''
        }

        # if not algoSetting.is_hyperparameter_tuning_enabled():
        #     modelDropDownObj = {
        #         "name": self._model_summary.get_algorithm_name(),
        #         "evaluationMetricValue": locals()[evaluationMetricDict["name"]], # accuracy
        #         "evaluationMetricName": evaluationMetricDict["displayName"], # accuracy
        #         "slug": self._model_summary.get_slug(),
        #         "Model Id": bestModelName
        #     }
        #     modelSummaryJson = {
        #         "dropdown": modelDropDownObj,
        #         "levelcount": self._model_summary.get_level_counts(),
        #         "modelFeatureList": self._model_summary.get_feature_list(),
        #         "levelMapping": self._model_summary.get_level_map_dict(),
        #         "slug": self._model_summary.get_slug(),
        #         "name": self._model_summary.get_algorithm_name()
        #     }
        # else:
        modelDropDownObj = {
            "name": self._model_summary.get_algorithm_name(),
            "evaluationMetricValue": accuracy, #locals()[evaluationMetricDict["name"]],
            "evaluationMetricName": "accuracy", # evaluationMetricDict["name"],
            "slug": self._model_summary.get_slug(),
            "Model Id": bestModelName
        }
        modelSummaryJson = {
            "dropdown": modelDropDownObj,
            "levelcount": self._model_summary.get_level_counts(),
            "modelFeatureList": self._model_summary.get_feature_list(),
            "levelMapping": self._model_summary.get_level_map_dict(),
            "slug": self._model_summary.get_slug(),
            "name": self._model_summary.get_algorithm_name()
        }

        mlpcCards = [json.loads(CommonUtils.convert_python_object_to_json(cardObj)) for cardObj in
                     MLUtils.create_model_summary_cards(self._model_summary)]
        for card in mlpcCards:
            self._prediction_narrative.add_a_card(card)

        self._result_setter.set_model_summary(
            {"sparkperceptron": json.loads(CommonUtils.convert_python_object_to_json(self._model_summary))})
        self._result_setter.set_spark_multilayer_perceptron_model_summary(modelSummaryJson)
        self._result_setter.set_spark_multilayer_perceptron_management_summary(modelManagementJson)
        self._result_setter.set_mlpc_cards(mlpcCards)

        CommonUtils.create_update_and_save_progress_message(self._dataframe_context, self._scriptWeightDict,
                                                            self._scriptStages, self._slug, "completion", "info",
                                                            display=True, emptyBin=False, customMsg=None,
                                                            weightKey="total")