Beispiel #1
0
def save_txt_and_json(object_dict, output, api=None):
    """Saves in txt and JSON format the contents of a dict object

    """
    open_mode = 'wt' if PYTHON3 else 'wb'
    message = json.dumps(object_dict)
    if not PYTHON3:
        message = utf8(message)
    with open(output + '.json', open_mode) as dict_json:
        dict_json.write(message)
    with open(output + '.txt', open_mode) as dict_txt:
        api.pprint(object_dict, dict_txt)
Beispiel #2
0
def save_evaluation(evaluation, output, api=None):
    """Creates the evaluation .txt and .json files

    """
    if api is None:
        api = bigml.api.BigML()
    evaluation_json = open(output + '.json', 'w', 0)
    evaluation = evaluation.get('object', evaluation).get('result', evaluation)
    evaluation_json.write(json.dumps(evaluation))
    evaluation_json.flush()
    evaluation_json.close()
    evaluation_txt = open(output + '.txt', 'w', 0)
    api.pprint(evaluation, evaluation_txt)
    evaluation_txt.flush()
    evaluation_txt.close()
Beispiel #3
0
def save_evaluation(evaluation, output, api=None):
    """Creates the evaluation .txt and .json files

    """
    if api is None:
        api = bigml.api.BigML()
    evaluation_json = open(output + '.json', 'w', 0)
    evaluation = evaluation.get('object', evaluation).get('result', evaluation)
    evaluation_json.write(json.dumps(evaluation))
    evaluation_json.flush()
    evaluation_json.close()
    evaluation_txt = open(output + '.txt', 'w', 0)
    api.pprint(evaluation, evaluation_txt)
    evaluation_txt.flush()
    evaluation_txt.close()
Beispiel #4
0
def compute_output(api, args, training_set, test_set=None, output=None,
                   objective_field=None,
                   description=None,
                   field_attributes=None,
                   types=None,
                   dataset_fields=None,
                   model_fields=None,
                   name=None, training_set_header=True,
                   test_set_header=True, model_ids=None,
                   votes_files=None, resume=False, fields_map=None):
    """ Creates one or more models using the `training_set` or uses the ids
    of previously created BigML models to make predictions for the `test_set`.

    """
    source = None
    dataset = None
    model = None
    models = None
    fields = None

    path = u.check_dir(output)
    session_file = "%s%s%s" % (path, os.sep, SESSIONS_LOG)
    csv_properties = {}
    # If logging is required, open the file for logging
    log = None
    if args.log_file:
        u.check_dir(args.log_file)
        log = args.log_file
        # If --clear_logs the log files are cleared
        if args.clear_logs:
            try:
                open(log, 'w', 0).close()
            except IOError:
                pass

    if (training_set or (args.evaluate and test_set)):
        if resume:
            resume, args.source = u.checkpoint(u.is_source_created, path,
                                               bigml.api, debug=args.debug)
            if not resume:
                message = u.dated("Source not found. Resuming.\n")
                u.log_message(message, log_file=session_file,
                              console=args.verbosity)

    # If neither a previous source, dataset or model are provided.
    # we create a new one. Also if --evaluate and test data are provided
    # we create a new dataset to test with.
    data_set = None
    if (training_set and not args.source and not args.dataset and
            not args.model and not args.models):
        data_set = training_set
        data_set_header = training_set_header
    elif (args.evaluate and test_set and not args.source):
        data_set = test_set
        data_set_header = test_set_header

    if not data_set is None:

        source_args = {
            "name": name,
            "description": description,
            "category": args.category,
            "tags": args.tag,
            "source_parser": {"header": data_set_header}}
        message = u.dated("Creating source.\n")
        u.log_message(message, log_file=session_file, console=args.verbosity)
        source = api.create_source(data_set, source_args,
                                   progress_bar=args.progress_bar)
        source = api.check_resource(source, api.get_source)
        message = u.dated("Source created: %s\n" % u.get_url(source, api))
        u.log_message(message, log_file=session_file, console=args.verbosity)
        u.log_message("%s\n" % source['resource'], log_file=log)

        fields = Fields(source['object']['fields'],
                        source['object']['source_parser']['missing_tokens'],
                        source['object']['source_parser']['locale'])
        source_file = open(path + '/source', 'w', 0)
        source_file.write("%s\n" % source['resource'])
        source_file.write("%s\n" % source['object']['name'])
        source_file.flush()
        source_file.close()

    # If a source is provided, we retrieve it.
    elif args.source:
        message = u.dated("Retrieving source. %s\n" %
                          u.get_url(args.source, api))
        u.log_message(message, log_file=session_file, console=args.verbosity)
        source = api.get_source(args.source)

    # If we already have source, we check that is finished and extract the
    # fields, and update them if needed.
    if source:
        if source['object']['status']['code'] != bigml.api.FINISHED:
            message = u.dated("Retrieving source. %s\n" %
                              u.get_url(source, api))
            u.log_message(message, log_file=session_file,
                          console=args.verbosity)
            source = api.check_resource(source, api.get_source)
        csv_properties = {'missing_tokens':
                          source['object']['source_parser']['missing_tokens'],
                          'data_locale':
                          source['object']['source_parser']['locale']}

        fields = Fields(source['object']['fields'], **csv_properties)
        update_fields = {}
        if field_attributes:
            for (column, value) in field_attributes.iteritems():
                update_fields.update({
                    fields.field_id(column): value})
            message = u.dated("Updating source. %s\n" %
                              u.get_url(source, api))
            u.log_message(message, log_file=session_file,
                          console=args.verbosity)
            source = api.update_source(source, {"fields": update_fields})

        update_fields = {}
        if types:
            for (column, value) in types.iteritems():
                update_fields.update({
                    fields.field_id(column): {'optype': value}})
            message = u.dated("Updating source. %s\n" %
                              u.get_url(source, api))
            u.log_message(message, log_file=session_file,
                          console=args.verbosity)
            source = api.update_source(source, {"fields": update_fields})

    if (training_set or args.source or (args.evaluate and test_set)):
        if resume:
            resume, args.dataset = u.checkpoint(u.is_dataset_created, path,
                                                bigml.api,
                                                debug=args.debug)
            if not resume:
                message = u.dated("Dataset not found. Resuming.\n")
                u.log_message(message, log_file=session_file,
                              console=args.verbosity)
    # If we have a source but not dataset or model has been provided, we
    # create a new dataset if the no_dataset option isn't set up. Also
    # if evaluate is set and test_set has been provided.
    if ((source and not args.dataset and not args.model and not model_ids and
            not args.no_dataset) or
            (args.evaluate and args.test_set and not args.dataset)):
        dataset_args = {
            "name": name,
            "description": description,
            "category": args.category,
            "tags": args.tag
        }

        if args.json_filter:
            dataset_args.update(json_filter=args.json_filter)
        elif args.lisp_filter:
            dataset_args.update(lisp_filter=args.lisp_filter)

        input_fields = []
        if dataset_fields:
            for name in dataset_fields:
                input_fields.append(fields.field_id(name))
            dataset_args.update(input_fields=input_fields)
        message = u.dated("Creating dataset.\n")
        u.log_message(message, log_file=session_file, console=args.verbosity)
        dataset = api.create_dataset(source, dataset_args)
        dataset = api.check_resource(dataset, api.get_dataset)
        message = u.dated("Dataset created: %s\n" % u.get_url(dataset, api))
        u.log_message(message, log_file=session_file, console=args.verbosity)
        u.log_message("%s\n" % dataset['resource'], log_file=log)
        dataset_file = open(path + '/dataset', 'w', 0)
        dataset_file.write("%s\n" % dataset['resource'])
        dataset_file.flush()
        dataset_file.close()

    # If a dataset is provided, let's retrieve it.
    elif args.dataset:
        message = u.dated("Retrieving dataset. %s\n" %
                          u.get_url(args.dataset, api))
        u.log_message(message, log_file=session_file, console=args.verbosity)
        dataset = api.get_dataset(args.dataset)

    # If we already have a dataset, we check the status and get the fields if
    # we hadn't them yet.
    if dataset:
        if dataset['object']['status']['code'] != bigml.api.FINISHED:
            message = u.dated("Retrieving dataset. %s\n" %
                              u.get_url(dataset, api))
            u.log_message(message, log_file=session_file,
                          console=args.verbosity)
            dataset = api.check_resource(dataset, api.get_dataset)
        if not csv_properties:
            csv_properties = {'data_locale':
                              dataset['object']['locale']}
        if args.public_dataset:
            if not description:
                raise Exception("You should provide a description to publish.")
            public_dataset = {"private": False}
            if args.dataset_price:
                message = u.dated("Updating dataset. %s\n" %
                                  u.get_url(dataset, api))
                u.log_message(message, log_file=session_file,
                              console=args.verbosity)
                public_dataset.update(price=args.dataset_price)
            message = u.dated("Updating dataset. %s\n" %
                              u.get_url(dataset, api))
            u.log_message(message, log_file=session_file,
                          console=args.verbosity)
            dataset = api.update_dataset(dataset, public_dataset)
        fields = Fields(dataset['object']['fields'], **csv_properties)

    # If we have a dataset but not a model, we create the model if the no_model
    # flag hasn't been set up.
    if (dataset and not args.model and not model_ids and not args.no_model):
        model_args = {
            "name": name,
            "description": description,
            "category": args.category,
            "tags": args.tag
        }
        if objective_field is not None:
            model_args.update({"objective_field":
                               fields.field_id(objective_field)})
        # If evaluate flag is on, we choose a deterministic sampling with 80%
        # of the data to create the model
        if args.evaluate:
            if args.sample_rate == 1:
                args.sample_rate = EVALUATE_SAMPLE_RATE
            seed = SEED
            model_args.update(seed=seed)

        input_fields = []
        if model_fields:
            for name in model_fields:
                input_fields.append(fields.field_id(name))
            model_args.update(input_fields=input_fields)

        if args.pruning and args.pruning != 'smart':
            model_args.update(stat_pruning=(args.pruning == 'statistical'))

        model_args.update(sample_rate=args.sample_rate,
                          replacement=args.replacement,
                          randomize=args.randomize)
        model_ids = []
        models = []
        if resume:
            resume, model_ids = u.checkpoint(u.are_models_created, path,
                                             args.number_of_models,
                                             bigml.api, debug=args.debug)
            if not resume:
                message = u.dated("Found %s models out of %s. Resuming.\n" %
                                  (len(model_ids),
                                   args.number_of_models))
                u.log_message(message, log_file=session_file,
                              console=args.verbosity)
            models = model_ids
            args.number_of_models -= len(model_ids)

        model_file = open(path + '/models', 'w', 0)
        for model_id in model_ids:
            model_file.write("%s\n" % model_id)
        last_model = None
        if args.number_of_models > 0:
            message = u.dated("Creating %s.\n" %
                              u.plural("model", args.number_of_models))
            u.log_message(message, log_file=session_file,
                          console=args.verbosity)
            for i in range(1, args.number_of_models + 1):
                if i > args.max_parallel_models:
                    api.check_resource(last_model, api.get_model)
                model = api.create_model(dataset, model_args)
                u.log_message("%s\n" % model['resource'], log_file=log)
                last_model = model
                model_ids.append(model['resource'])
                models.append(model)
                model_file.write("%s\n" % model['resource'])
                model_file.flush()
            if args.number_of_models < 2 and args.verbosity:
                if model['object']['status']['code'] != bigml.api.FINISHED:
                    model = api.check_resource(model, api.get_model)
                    models[0] = model
                message = u.dated("Model created: %s.\n" %
                                  u.get_url(model, api))
                u.log_message(message, log_file=session_file,
                              console=args.verbosity)
        model_file.close()

    # If a model is provided, we retrieve it.
    elif args.model:
        message = u.dated("Retrieving model. %s\n" %
                          u.get_url(args.model, api))
        u.log_message(message, log_file=session_file, console=args.verbosity)
        model = api.get_model(args.model)

    elif args.models or args.model_tag:
        models = model_ids[:]

    if model_ids and test_set and not args.evaluate:
        model_id = ""
        if len(model_ids) == 1:
            model_id = model_ids[0]
        message = u.dated("Retrieving %s. %s\n" %
                          (u.plural("model", len(model_ids)),
                           u.get_url(model_id, api)))
        u.log_message(message, log_file=session_file, console=args.verbosity)
        if len(model_ids) < args.max_batch_models:
            models = []
            for model in model_ids:
                model = api.check_resource(model, api.get_model)
                models.append(model)
            model = models[0]
        else:
            model = api.check_resource(model_ids[0], api.get_model)
            models[0] = model

    # We check that the model is finished and get the fields if haven't got
    # them yet.
    if model and not args.evaluate and (test_set or args.black_box
                                        or args.white_box):
        if model['object']['status']['code'] != bigml.api.FINISHED:
            message = u.dated("Retrieving model. %s\n" %
                              u.get_url(model, api))
            u.log_message(message, log_file=session_file,
                          console=args.verbosity)
            model = api.check_resource(model, api.get_model)
        if args.black_box:
            if not description:
                raise Exception("You should provide a description to publish.")
            model = api.update_model(model, {"private": False})
        if args.white_box:
            if not description:
                raise Exception("You should provide a description to publish.")
            public_model = {"private": False, "white_box": True}
            if args.model_price:
                message = u.dated("Updating model. %s\n" %
                                  u.get_url(model, api))
                u.log_message(message, log_file=session_file,
                              console=args.verbosity)
                public_model.update(price=args.model_price)
            if args.cpp:
                message = u.dated("Updating model. %s\n" %
                                  u.get_url(model, api))
                u.log_message(message, log_file=session_file,
                              console=args.verbosity)
                public_model.update(credits_per_prediction=args.cpp)
            model = api.update_model(model, public_model)
        if not csv_properties:
            csv_properties = {'data_locale':
                              model['object']['locale']}
        csv_properties.update(verbose=True)
        if args.user_locale:
            csv_properties.update(data_locale=args.user_locale)

        fields = Fields(model['object']['model']['fields'], **csv_properties)

    if model and not models:
        models = [model]

    if models and test_set and not args.evaluate:
        objective_field = models[0]['object']['objective_fields']
        if isinstance(objective_field, list):
            objective_field = objective_field[0]
        predict(test_set, test_set_header, models, fields, output,
                objective_field, args.remote, api, log,
                args.max_batch_models, args.method, resume, args.tag,
                args.verbosity, session_file, args.debug)

    # When combine_votes flag is used, retrieve the predictions files saved
    # in the comma separated list of directories and combine them
    if votes_files:
        model_id = re.sub(r'.*(model_[a-f0-9]{24})__predictions\.csv$',
                          r'\1', votes_files[0]).replace("_", "/")
        model = api.check_resource(model_id, api.get_model)
        local_model = Model(model)
        message = u.dated("Combining votes.\n")
        u.log_message(message, log_file=session_file,
                      console=args.verbosity)
        u.combine_votes(votes_files, local_model.to_prediction,
                        output, args.method)

    # If evaluate flag is on, create remote evaluation and save results in
    # json and human-readable format.
    if args.evaluate:
        if resume:
            resume, evaluation = u.checkpoint(u.is_evaluation_created, path,
                                              bigml.api,
                                              debug=args.debug)
            if not resume:
                message = u.dated("Evaluation not found. Resuming.\n")
                u.log_message(message, log_file=session_file,
                              console=args.verbosity)
        if not resume:
            evaluation_file = open(path + '/evaluation', 'w', 0)
            evaluation_args = {
                "name": name,
                "description": description,
                "tags": args.tag
            }
            if not fields_map is None:
                update_map = {}
                for (dataset_column, model_column) in fields_map.iteritems():
                    update_map.update({
                        fields.field_id(dataset_column):
                        fields.field_id(model_column)})
                evaluation_args.update({"fields_map": update_map})
            if not ((args.dataset or args.test_set)
                    and (args.model or args.models or args.model_tag)):
                evaluation_args.update(out_of_bag=True, seed=SEED,
                                       sample_rate=args.sample_rate)
            message = u.dated("Creating evaluation.\n")
            u.log_message(message, log_file=session_file,
                          console=args.verbosity)
            evaluation = api.create_evaluation(model, dataset, evaluation_args)
            u.log_message("%s\n" % evaluation['resource'], log_file=log)
            evaluation_file.write("%s\n" % evaluation['resource'])
            evaluation_file.flush()
            evaluation_file.close()
        message = u.dated("Retrieving evaluation. %s\n" %
                          u.get_url(evaluation, api))
        u.log_message(message, log_file=session_file, console=args.verbosity)
        evaluation = api.check_resource(evaluation, api.get_evaluation)
        evaluation_json = open(output + '.json', 'w', 0)
        evaluation_json.write(json.dumps(evaluation['object']['result']))
        evaluation_json.flush()
        evaluation_json.close()
        evaluation_txt = open(output + '.txt', 'w', 0)
        api.pprint(evaluation['object']['result'],
                   evaluation_txt)
        evaluation_txt.flush()
        evaluation_txt.close()

    # Workaround to restore windows console cp850 encoding to print the tree
    if sys.platform == "win32" and sys.stdout.isatty():
        import locale
        data_locale = locale.getlocale()
        if not data_locale[0] is None:
            locale.setlocale(locale.LC_ALL, (data_locale[0], "850"))
        message = (u"\nGenerated files:\n\n" +
                   unicode(u.print_tree(path, " "), "utf-8") + u"\n")
    else:
        message = "\nGenerated files:\n\n" + u.print_tree(path, " ") + "\n"
    u.log_message(message, log_file=session_file, console=args.verbosity)