Beispiel #1
0
    def get_deepnet(self,
                    deepnet,
                    query_string='',
                    shared_username=None,
                    shared_api_key=None):
        """Retrieves a deepnet.

           The model parameter should be a string containing the
           deepnet id or the dict returned by
           create_deepnet.
           As a deepnet is an evolving object that is processed
           until it reaches the FINISHED or FAULTY state, the function will
           return a dict that encloses the deepnet
           values and state info available at the time it is called.

           If this is a shared deepnet, the username and
           sharing api key must also be provided.
        """
        check_resource_type(deepnet,
                            DEEPNET_PATH,
                            message="A deepnet id is needed.")
        deepnet_id = get_deepnet_id(deepnet)
        if deepnet_id:
            return self._get("%s%s" % (self.url, deepnet_id),
                             query_string=query_string,
                             shared_username=shared_username,
                             shared_api_key=shared_api_key)
Beispiel #2
0
    def delete_deepnet(self, deepnet):
        """Deletes a deepnet.

        """
        check_resource_type(deepnet, DEEPNET_PATH,
                            message="A deepnet id is needed.")
        deepnet_id = get_deepnet_id(deepnet)
        if deepnet_id:
            return self._delete("%s%s" % (self.url, deepnet_id))
Beispiel #3
0
    def delete_deepnet(self, deepnet):
        """Deletes a deepnet.

        """
        check_resource_type(deepnet, DEEPNET_PATH,
                            message="A deepnet id is needed.")
        deepnet_id = get_deepnet_id(deepnet)
        if deepnet_id:
            return self._delete("%s%s" % (self.url, deepnet_id))
Beispiel #4
0
    def update_deepnet(self, deepnet, changes):
        """Updates a deepnet.

        """
        check_resource_type(deepnet,
                            DEEPNET_PATH,
                            message="A deepnet id is needed.")
        deepnet_id = get_deepnet_id(deepnet)
        if deepnet_id:
            body = json.dumps(changes)
            return self._update("%s%s" % (self.url, deepnet_id), body)
Beispiel #5
0
    def update_deepnet(self, deepnet, changes):
        """Updates a deepnet.

        """
        check_resource_type(deepnet, DEEPNET_PATH,
                            message="A deepnet id is needed.")
        deepnet_id = get_deepnet_id(deepnet)
        if deepnet_id:
            body = json.dumps(changes)
            return self._update(
                "%s%s" % (self.url, deepnet_id), body)
Beispiel #6
0
    def get_deepnet(self, deepnet, query_string='',
                    shared_username=None, shared_api_key=None):
        """Retrieves a deepnet.

           The model parameter should be a string containing the
           deepnet id or the dict returned by
           create_deepnet.
           As a deepnet is an evolving object that is processed
           until it reaches the FINISHED or FAULTY state, the function will
           return a dict that encloses the deepnet
           values and state info available at the time it is called.

           If this is a shared deepnet, the username and
           sharing api key must also be provided.
        """
        check_resource_type(deepnet, DEEPNET_PATH,
                            message="A deepnet id is needed.")
        deepnet_id = get_deepnet_id(deepnet)
        if deepnet_id:
            return self._get("%s%s" % (self.url, deepnet_id),
                             query_string=query_string,
                             shared_username=shared_username,
                             shared_api_key=shared_api_key)
Beispiel #7
0
    def create_prediction(self,
                          model,
                          input_data=None,
                          args=None,
                          wait_time=3,
                          retries=10):
        """Creates a new prediction.
           The model parameter can be:
            - a simple tree model
            - a simple logistic regression model
            - an ensemble
            - a deepnet
           Note that the old `by_name` argument has been deprecated.

        """
        deepnet_id = None
        logistic_regression_id = None
        ensemble_id = None
        model_id = None

        resource_type = get_resource_type(model)
        if resource_type == ENSEMBLE_PATH:
            ensemble_id = get_ensemble_id(model)
            if ensemble_id is not None:
                check_resource(ensemble_id,
                               query_string=TINY_RESOURCE,
                               wait_time=wait_time,
                               retries=retries,
                               raise_on_error=True,
                               api=self)
        elif resource_type == MODEL_PATH:
            model_id = get_model_id(model)
            check_resource(model_id,
                           query_string=TINY_RESOURCE,
                           wait_time=wait_time,
                           retries=retries,
                           raise_on_error=True,
                           api=self)
        elif resource_type == LOGISTIC_REGRESSION_PATH:
            logistic_regression_id = get_logistic_regression_id(model)
            check_resource(logistic_regression_id,
                           query_string=TINY_RESOURCE,
                           wait_time=wait_time,
                           retries=retries,
                           raise_on_error=True,
                           api=self)
        elif resource_type == DEEPNET_PATH:
            deepnet_id = get_deepnet_id(model)
            check_resource(deepnet_id,
                           query_string=TINY_RESOURCE,
                           wait_time=wait_time,
                           retries=retries,
                           raise_on_error=True,
                           api=self)
        else:
            raise Exception("A model or ensemble id is needed to create a"
                            " prediction. %s found." % resource_type)

        if input_data is None:
            input_data = {}
        create_args = {}
        if args is not None:
            create_args.update(args)
        create_args.update({"input_data": input_data})
        if model_id is not None:
            create_args.update({"model": model_id})
        elif ensemble_id is not None:
            create_args.update({"ensemble": ensemble_id})
        elif logistic_regression_id is not None:
            create_args.update({"logisticregression": logistic_regression_id})
        elif deepnet_id is not None:
            create_args.update({"deepnet": deepnet_id})

        body = json.dumps(create_args)
        return self._create(self.prediction_url,
                            body,
                            verify=self.verify_prediction)