def run_eVIP(infile=None, zscore_gct = None, out_directory=None, sig_info =None, c=None, r=None, num_reps=None, ie_filter=None,ie_col=None, i=None, allele_col=None, conn_null=None, conn_thresh=None, mut_wt_rep_rank_diff=None, use_c_pval=None, cell_id=None, plate_id=None, ref_allele_mode=None, x_thresh=None, y_thresh=None, annotate=None, by_gene_color=None, pdf=None, xmin=None, xmax=None, ymin=None, ymax=None, viz_ymin=None, viz_ymax=None, corr_val=None,mut_wt_rep_thresh=None,disting_thresh=None,sparkler_off=None,viz_off=None,cond_median_max_diff_thresh=None): #different sig_gctx for exp an z inputs used in viz sig_gctx_val = out_directory+ "/z_scores.gct" # if args.zscore_gct : # sig_gctx_val = args.zscore_gct # run eVIP_corr.py # print('calculating correlations...') run_corr = eVIP_corr.run_main(input=infile,zscore_gct=zscore_gct, out_dir= out_directory) # print('comparing...') run_compare = eVIP_compare.run_main(sig_info=sig_info, gctx = out_directory+"/spearman_rank_matrix.gct", allele_col = allele_col, o= out_directory+"/compare", r = r, c = c, i = i, conn_null = conn_null, ie_col = ie_col, ie_filter = ie_filter, num_reps = num_reps, cell_id = cell_id, plate_id = plate_id) # print('predicting...') run_predict = eVIP_predict.run_main(out_directory+"/compare.txt", out_directory+"/predict", conn_thresh, mut_wt_rep_thresh, mut_wt_rep_rank_diff, disting_thresh, use_c_pval,cond_median_max_diff_thresh) if not sparkler_off: # print "making sparkler plots..." run_sparkler = eVIP_sparkler.eVIP_run_main(pred_file = out_directory+"/predict.txt", ref_allele_mode=ref_allele_mode, y_thresh = y_thresh , x_thresh = x_thresh, use_c_pval= use_c_pval,annotate=annotate, by_gene_color= by_gene_color, pdf= pdf, xmin= xmin, xmax = xmax, ymin = ymin, ymax = ymax, out_dir = out_directory+"/sparkler_plots") if not viz_off: # print "making visualizations..." if conn_null: null_conn = conn_null else: null_conn = out_directory + "/compare_conn_null.txt" run_viz = eVIP_viz.eVIP_run_main(pred_file= out_directory+"/predict.txt", sig_info = sig_info, gctx=out_directory+"/spearman_rank_matrix.gct", sig_gctx = sig_gctx_val, ref_allele_mode = ref_allele_mode, null_conn = null_conn, out_dir = out_directory+"/viz",ymin = viz_ymin, ymax= viz_ymax, allele_col = allele_col, use_c_pval = use_c_pval, pdf = pdf, cell_id = cell_id, plate_id = plate_id, corr_val_str= corr_val)
def run_eVIP_multiple_testing_pt1(infile=None, zscore_gct = None, out_directory=None, sig_info =None, c=None, r=None, num_reps=None, ie_filter=None,ie_col=None, i=None, allele_col=None, conn_null=None, conn_thresh=None, mut_wt_rep_rank_diff=None, use_c_pval=None, cell_id=None, plate_id=None, ref_allele_mode=None, x_thresh=None, y_thresh=None, annotate=None, by_gene_color=None, pdf=None, xmin=None, xmax=None, ymin=None, ymax=None, viz_ymin=None, viz_ymax=None, corr_val=None,sparkler_off=None,viz_off=None): #runs eVIP_corr and compare and returns the p values from compare #different sig_gctx for exp an z inputs used in viz sig_gctx_val = out_directory+ "/z_scores.gct" #run eVIP_corr.py # print('calculating correlations...') run_corr = eVIP_corr.run_main(input=infile,zscore_gct=zscore_gct, out_dir= out_directory) #run eVIP_compare.py # print('comparing...') run_compare = eVIP_compare.run_main(sig_info, out_directory+"/spearman_rank_matrix.gct", allele_col , out_directory+"/compare", r ,c , i , conn_null , ie_col, ie_filter, num_reps, cell_id , plate_id) #getting the p values from the pathway compare file mut_wt_rep_pvals_from_compare = [] mut_wt_conn_null_pvals_from_compare = [] wt_mut_rep_vs_wt_mut_conn_pvals_from_compare = [] num_test_alleles = None with open(out_directory+"/compare.txt", "r") as compare_file: file_reader = csv.DictReader(compare_file, delimiter="\t") for row in file_reader: mut_wt_rep_pvals_from_compare.append(row['mut_wt_rep_pval']) mut_wt_conn_null_pvals_from_compare.append(row['mut_wt_conn_null_pval']) wt_mut_rep_vs_wt_mut_conn_pvals_from_compare.append(row['wt_mut_rep_vs_wt_mut_conn_pval']) #counting the number of mutations being tested with open(out_directory + "/compare.txt", "r") as compare_file: file_reader = csv.DictReader(compare_file, delimiter="\t") each_line = list(file_reader) num_test_alleles=len(each_line) return mut_wt_rep_pvals_from_compare, mut_wt_conn_null_pvals_from_compare, wt_mut_rep_vs_wt_mut_conn_pvals_from_compare,num_test_alleles
def run_eVIP(infile=None, zscore_gct=None, out_directory=None, sig_info=None, c=None, r=None, num_reps=None, ie_filter=None, ie_col=None, i=None, allele_col=None, conn_null=None, conn_thresh=None, mut_wt_rep_rank_diff=None, use_c_pval=None, cell_id=None, plate_id=None, ref_allele_mode=None, x_thresh=None, y_thresh=None, annotate=None, by_gene_color=None, pdf=None, xmin=None, xmax=None, ymin=None, ymax=None, viz_ymin=None, viz_ymax=None, corr_val=None): #different sig_gctx for exp an z inputs used in viz if args.infile: sig_gctx_val = out_directory + "/z_scores.gct" if args.zscore_gct: sig_gctx_val = args.zscore_gct # run eVIP_corr.py print('calculating correlations...') run_corr = eVIP_corr.run_main(input=infile, zscore_gct=zscore_gct, out_dir=out_directory) print('comparing...') run_compare = eVIP_compare.run_main(sig_info=sig_info, gctx=out_directory + "/spearman_rank_matrix.gct", allele_col=args.allele_col, o=out_directory + "/compare", r=args.r, c=args.c, i=args.i, conn_null=args.conn_null, ie_col=args.ie_col, ie_filter=args.ie_filter, num_reps=args.num_reps, cell_id=args.cell_id, plate_id=args.plate_id) print('predicting...') run_predict = eVIP_predict.run_main( i=out_directory + "/compare.txt", o=out_directory + "/predict", conn_thresh=args.conn_thresh, mut_wt_rep_thresh=args.mut_wt_rep_thresh, mut_wt_rep_rank_diff=args.mut_wt_rep_rank_diff, disting_thresh=args.disting_thresh, use_c_pval=args.use_c_pval) if not args.sparkler_off: print "making sparkler plots..." run_sparkler = eVIP_sparkler.eVIP_run_main( pred_file=out_directory + "/predict.txt", ref_allele_mode=args.ref_allele_mode, y_thresh=args.y_thresh, x_thresh=args.x_thresh, use_c_pval=args.use_c_pval, annotate=args.annotate, by_gene_color=args.by_gene_color, pdf=args.pdf, xmin=args.xmin, xmax=args.xmax, ymin=args.ymin, ymax=args.ymax, out_dir=out_directory + "/sparkler_plots") if not args.viz_off: print "making visualizations..." if args.conn_null: null_conn = args.conn_null else: null_conn = out_directory + "/compare_conn_null.txt" run_viz = eVIP_viz.eVIP_run_main( pred_file=out_directory + "/predict.txt", sig_info=args.sig_info, gctx=out_directory + "/spearman_rank_matrix.gct", sig_gctx=sig_gctx_val, ref_allele_mode=args.ref_allele_mode, null_conn=null_conn, out_dir=out_directory + "/viz", ymin=args.viz_ymin, ymax=args.viz_ymax, allele_col=args.allele_col, use_c_pval=args.use_c_pval, pdf=args.pdf, cell_id=args.cell_id, plate_id=args.plate_id, corr_val_str=args.corr_val)