def test_inserts_value_to_the_right_if_greater_second_level(self):
        bt = BinarySearchTree()
        bt.insert(10)
        bt.insert(11)
        bt.insert(12)

        self.assertEqual(bt.root.right.right.value, 12)
    def test_inserts_value_to_the_right_and_then_left(self):
        bt = BinarySearchTree()
        bt.insert(10)
        bt.insert(20)
        bt.insert(15)

        self.assertEqual(bt.root.right.left.value, 15)
Beispiel #3
0
    def test_delete_node(self):
        values = [7, 3, 23, 1, 5, 9, 52, 2, 4, 36]
        tr = BinarySearchTree()
        for v in values:
            tr.insert(v)
        tr.populate_parent()

        expected_in_order_tree_after_7_delete = \
                [1, 2, 3, 4, 5, 9, 23, 36, 52]
        tr.delete_data(7)
        self.assertEquals(tr.getInOrderPath(), expected_in_order_tree_after_7_delete)
        self.assertRaises(Exception, tr.delete_data, 6)


        expected_in_order = \
                [1, 3, 4, 5, 9, 23, 36, 52]
        tr.delete_data(2)
        self.assertEquals(tr.getInOrderPath(), expected_in_order)

        expected_in_order = \
                [1, 4, 5, 9, 23, 36, 52]
        tr.delete_data(3)
        self.assertEquals(tr.getInOrderPath(), expected_in_order)

        expected_in_order = \
                [1, 4, 5, 9, 23, 36]
        tr.delete_data(52)
        self.assertEquals(tr.getInOrderPath(), expected_in_order)

        expected_in_order = \
                [1, 5, 9, 23, 36]
        tr.delete_data(4)
        self.assertEquals(tr.getInOrderPath(), expected_in_order)
    def test_inserts_value_to_the_left_if_smaller_second_level(self):
        bt = BinarySearchTree()
        bt.insert(10)
        bt.insert(2)
        bt.insert(1)

        self.assertEqual(bt.root.left.left.value, 1)
Beispiel #5
0
    def test_size(self):
        bstn = BinarySearchTreeNode(10)
        bst = BinarySearchTree(bstn)

        bst.insert(12)
        bst.insert(8)
        bst.insert(7)

        self.assertEqual(size(bst.root), 4)
Beispiel #6
0
    def test_insert(self):
        bstn = BinarySearchTreeNode(10)
        bst = BinarySearchTree(bstn)

        bst.insert(12)
        bst.insert(8)

        self.assertFalse(bst.is_in_tree(9))
        self.assertTrue(bst.is_in_tree(12))
        self.assertTrue(bst.is_in_tree(8))
    def test_throws_when_adding_an_already_existing_value_with_multiple_values_tree(
            self):
        bt = BinarySearchTree()
        bt.insert(10)
        bt.insert(11)
        bt.insert(21)
        bt.insert(301)
        bt.insert(1)

        with self.assertRaises(ValueError):
            bt.insert(10)
 def test_insert_with_7_items(self):
     # Create a complete binary search tree of 7 items in level-order
     items = [4, 2, 6, 1, 3, 5, 7]
     tree = BinarySearchTree()
     for item in items:
         tree.insert(item)
     assert tree.root.data == 4
     assert tree.root.left.data == 2
     assert tree.root.right.data == 6
     assert tree.root.left.left.data == 1
     assert tree.root.left.right.data == 3
     assert tree.root.right.left.data == 5
     assert tree.root.right.right.data == 7
Beispiel #9
0
class TestBinarySearchTree(unittest.TestCase):
    def setUp(self):

        self.empty_bst = BinarySearchTree()
        self.single_node_bst = BinarySearchTree()
        self.single_node_bst.insert(-1)

        self.small_bst = BinarySearchTree()
        self.small_bst.insert(43)
        self.small_bst.insert(43)
        self.small_bst.insert(-2)
        self.small_bst.insert(102)

        self.toy_bst = get_toy_binary_search_tree()

    def test_maxValue(self):
        self.assertRaises(TypeError, self.empty_bst.maxValue)
        self.assertEqual(-1, self.single_node_bst.maxValue())
        self.assertEqual(102, self.small_bst.maxValue())
        self.assertEqual(102, self.toy_bst.maxValue())

    def test_minValue(self):
        self.assertRaises(TypeError, self.empty_bst.minValue)
        self.assertEqual(-1, self.single_node_bst.minValue())
        self.assertEqual(-2, self.small_bst.minValue())
        self.assertEqual(-1, self.toy_bst.minValue())

    def test_delete_node(self):
        values = [7, 3, 23, 1, 5, 9, 52, 2, 4, 36]
        tr = BinarySearchTree()
        for v in values:
            tr.insert(v)
        tr.populate_parent()

        expected_in_order_tree_after_7_delete = \
                [1, 2, 3, 4, 5, 9, 23, 36, 52]
        tr.delete_data(7)
        self.assertEquals(tr.getInOrderPath(), expected_in_order_tree_after_7_delete)
        self.assertRaises(Exception, tr.delete_data, 6)


        expected_in_order = \
                [1, 3, 4, 5, 9, 23, 36, 52]
        tr.delete_data(2)
        self.assertEquals(tr.getInOrderPath(), expected_in_order)

        expected_in_order = \
                [1, 4, 5, 9, 23, 36, 52]
        tr.delete_data(3)
        self.assertEquals(tr.getInOrderPath(), expected_in_order)

        expected_in_order = \
                [1, 4, 5, 9, 23, 36]
        tr.delete_data(52)
        self.assertEquals(tr.getInOrderPath(), expected_in_order)

        expected_in_order = \
                [1, 5, 9, 23, 36]
        tr.delete_data(4)
        self.assertEquals(tr.getInOrderPath(), expected_in_order)
Beispiel #10
0
    def test_is_bst(self):
        bstn = BinarySearchTreeNode(10)
        bst = BinarySearchTree(bstn)

        bst.insert(12)
        bst.insert(8)
        bst.insert(7)

        self.assertEqual(is_bst(bst.root, None, None), True)

        bstn = BinarySearchTreeNode(10)
        bstn.left = BinarySearchTreeNode(10)
        bstn.left.left = BinarySearchTreeNode(11)
        bstn.right = BinarySearchTreeNode(12)

        self.assertEqual(is_bst(bstn, None, None), False)

        bstn = BinarySearchTreeNode(20)
        bstn.left = BinarySearchTreeNode(10)
        bstn.left.right = BinarySearchTreeNode(25)
        bstn.right = BinarySearchTreeNode(30)

        self.assertEqual(is_bst(bstn, None, None), False)
 def test_size(self):
     tree = BinarySearchTree()
     assert tree.size == 0
     tree.insert('B')
     assert tree.size == 1
     tree.insert('A')
     assert tree.size == 2
     tree.insert('C')
     assert tree.size == 3
 def test_insert_with_3_items(self):
     # Create a complete binary search tree of 3 items in level-order
     tree = BinarySearchTree()
     tree.insert(2)
     assert tree.root.data == 2
     assert tree.root.left is None
     assert tree.root.right is None
     tree.insert(1)
     assert tree.root.data == 2
     assert tree.root.left.data == 1
     assert tree.root.right is None
     tree.insert(3)
     assert tree.root.data == 2
     assert tree.root.left.data == 1
     assert tree.root.right.data == 3
Beispiel #13
0
from binary_tree import BinarySearchTree
import random


def pretty_print(node, level):
    # step 1 (base case)
    if node.val is None:
        return
    # step 2
    if node.left is not None:
        to_print = "\t" * level + str(node.val)
        print(to_print)
        pretty_print(node.left, level + 1)
    elif node.right is not None:
        to_print = "\t" * level + str(node.val)
        print(to_print)
        pretty_print(node.right, level + 1)


tree = BinarySearchTree()

listing = []
for _ in range(10):
    elem = random.randint(0, 10)
    listing.append(elem)
    tree.insert(elem)

print(listing)
pretty_print(tree.root, 0)
start_time = time.time()

f = open('names_1.txt', 'r')
names_1 = f.read().split("\n")  # List containing 10000 names
f.close()

f = open('names_2.txt', 'r')
names_2 = f.read().split("\n")  # List containing 10000 names
f.close()

duplicates = []  # Return the list of duplicates in this data structure

# Replace the nested for loops below with your improvements
bst = BinarySearchTree("")

for name_2 in names_2:
    bst.insert(name_2)

for name_1 in names_1:
    if bst.contains(name_1):
        duplicates.append(name_1)

end_time = time.time()
print(f"{len(duplicates)} duplicates:\n\n{', '.join(duplicates)}\n\n")
print(f"runtime: {end_time - start_time} seconds")

# ---------- Stretch Goal -----------
# Python has built-in tools that allow for a very efficient approach to this problem
# What's the best time you can accomplish?  Thare are no restrictions on techniques or data
# structures, but you may not import any additional libraries that you did not write yourself.
    def test_throws_when_adding_an_already_existing_value(self):
        bt = BinarySearchTree()
        bt.insert(10)

        with self.assertRaises(ValueError):
            bt.insert(10)
Beispiel #16
0
import time
from binary_tree import BinarySearchTree

start_time = time.time()

f = open('names_1.txt', 'r')
names_1 = f.read().split("\n")  # List containing 10000 names
f.close()

f = open('names_2.txt', 'r')
names_2 = f.read().split("\n")  # List containing 10000 names
f.close()

duplicates = []  # Return the list of duplicates in this data structure

binary_tree = BinarySearchTree(names_1[0])
for name in names_1[1:]:
    binary_tree.insert(name)
for name in names_2:
    if binary_tree.contains(name):
        duplicates.append(name)
end_time = time.time()
print (f"{len(duplicates)} duplicates:\n\n{', '.join(duplicates)}\n\n")
print (f"runtime: {end_time - start_time} seconds")

# ---------- Stretch Goal -----------
# Python has built-in tools that allow for a very efficient approach to this problem
# What's the best time you can accomplish?  Thare are no restrictions on techniques or data
# structures, but you may not import any additional libraries that you did not write yourself.
import time
from binary_tree import BinarySearchTree


start_time = time.time()

f = open('names_1.txt', 'r')
names_1 = f.read().split("\n")  # List containing 10000 names
f.close()

f = open('names_2.txt', 'r')
names_2 = f.read().split("\n")  # List containing 10000 names
f.close()

duplicates = []
tree = BinarySearchTree('tree')
for name_1 in names_1:
    tree.insert(name_1)

for name_2 in names_2:
    if tree.contains(name_2):
        duplicates.append(name_2)

end_time = time.time()
print (f"{len(duplicates)} duplicates:\n\n{', '.join(duplicates)}\n\n")
print (f"runtime: {end_time - start_time} seconds")

    def test_inserts_first_node_as_root_node(self):
        bt = BinarySearchTree()
        bt.insert(10)

        self.assertIs(bt.root.value, 10)
    def test_does_not_insert_subsequent_node_as_root_node(self):
        bt = BinarySearchTree()
        bt.insert(10)
        bt.insert(20)

        self.assertEqual(bt.root.value, 10)