Beispiel #1
0
def comma_algo(add_e_evaluation, add_v_variation, add_s_selection):
    crossover = SinglePointCrossover()
    mutation = SinglePointMutation(mutation_function)
    evo_alg = MuCommaLambda(add_e_evaluation, add_s_selection, crossover,
                            mutation, 0.2, 0.4, 20)
    evo_alg.variation = add_v_variation
    return evo_alg
Beispiel #2
0
def evol_alg():
    crossover = SinglePointCrossover()
    mutation = SinglePointMutation(mutation_function)
    selection = Tournament(SELECTION_SIZE)
    fitness = MultipleValueFitnessFunction()
    evaluator = Evaluation(fitness)
    return MuPlusLambda(evaluator, selection, crossover, mutation, 0.2, 0.4,
                        OFFSPRING_SIZE)
Beispiel #3
0
def test_just_replication(population):
    crossover = SinglePointCrossover()
    mutation = SinglePointMutation(mutation_function)
    var_or_instance = VarOr(crossover, mutation, 0.0, 0.0)
    _ = var_or_instance(population, 25)
    for cross, mut in zip(var_or_instance.crossover_offspring,
                          var_or_instance.mutation_offspring):
        assert not (cross or mut)
def ev_alg():
    crossover = SinglePointCrossover()
    mutation = SinglePointMutation(np.random.random)
    selection = Tournament(2)
    training_data = np.linspace(0.1, 1, FULL_TRAINING_DATA_SIZE)
    fitness = DistanceToAverage(training_data)
    evaluator = Evaluation(fitness)
    return MuPlusLambda(evaluator, selection, crossover, mutation,
                        0., 1.0, MAIN_POPULATION_SIZE)
def test_fitness_is_not_inherited_crossover():
    crossover = SinglePointCrossover()
    parent1 = MultipleValueChromosome(
        [np.random.choice([True, False]) for _ in range(10)])
    parent2 = MultipleValueChromosome(
        [np.random.choice([True, False]) for _ in range(10)])
    child1, child2 = crossover(parent1, parent2)
    assert not child1.fit_set
    assert not child2.fit_set
Beispiel #6
0
def island():
    crossover = SinglePointCrossover()
    mutation = SinglePointMutation(mutation_function)
    selection = Tournament(10)
    fitness = MultipleValueFitnessFunction()
    evaluator = Evaluation(fitness)
    ev_alg = MuPlusLambda(evaluator, selection, crossover, mutation, 0.2, 0.4,
                          20)
    generator = MultipleValueChromosomeGenerator(mutation_function, 10)
    return Island(ev_alg, generator, 25)
def test_genetic_age_is_oldest_parent():
    crossover = SinglePointCrossover()
    parent1 = MultipleValueChromosome([np.random.choice([True, False])
                                       for _ in range(10)])
    parent2 = MultipleValueChromosome([np.random.choice([True, False])
                                       for _ in range(10)])
    parent1.genetic_age = 8
    parent2.genetic_age = 4
    child1, child2 = crossover(parent1, parent2)
    assert child1.genetic_age == 8
    assert child2.genetic_age == 8
Beispiel #8
0
def create_evolutionary_algorithm():
    crossover = SinglePointCrossover()
    mutation = SinglePointMutation(generate_0_or_1)
    variation_phase = VarOr(crossover, mutation, crossover_probability=0.4,
                            mutation_probability=0.4)

    fitness = OneMaxFitnessFunction()
    evaluation_phase = Evaluation(fitness)

    selection_phase = Tournament(tournament_size=2)

    return EvolutionaryAlgorithm(variation_phase, evaluation_phase,
                                 selection_phase)
def test_crossover(population):
    crossover = SinglePointCrossover()
    child_1, child_2 = crossover(population[0], population[1])
    cross_pt = crossover._crossover_point
    assert child_1.values[:cross_pt] == \
        population[0].values[:cross_pt]

    assert child_2.values[:cross_pt] == \
        population[1].values[:cross_pt]

    assert child_1.values[cross_pt:] == \
        population[1].values[cross_pt:]

    assert child_2.values[cross_pt:] == \
        population[0].values[cross_pt:]
Beispiel #10
0
def main():
    crossover = SinglePointCrossover()
    mutation = SinglePointMutation(get_random_float)
    selection = Tournament(10)
    fitness = ZeroMinFitnessFunction()
    local_opt_fitness = ContinuousLocalOptimization(fitness)
    evaluator = Evaluation(local_opt_fitness)
    ea = MuPlusLambda(evaluator, selection, crossover, mutation, 0.4, 0.4, 20)
    generator = MultipleFloatChromosomeGenerator(get_random_float, 8)
    island = Island(ea, generator, 25)

    best_indv_values = []
    best_indv_values.append(island.best_individual().values)
    for i in range(500):
        island.execute_generational_step()
        best_indv_values.append(island.best_individual().values)

    bingo.animation.animate_data(best_indv_values)
Beispiel #11
0
def main():
    crossover = SinglePointCrossover()
    mutation = SinglePointMutation(get_random_float)
    selection = Tournament(10)
    fitness = ZeroMinFitnessFunction()
    local_opt_fitness = ContinuousLocalOptimization(fitness)
    evaluator = Evaluation(local_opt_fitness)
    ea = MuPlusLambda(evaluator, selection, crossover, mutation, 0.4, 0.4, 20)
    generator = MultipleFloatChromosomeGenerator(get_random_float, 8)
    island = Island(ea, generator, 25)
    for i in range(25):
        island.execute_generational_step()
        print("\nGeneration #", i)
        print("-" * 80, "\n")
        report_max_min_mean_fitness(island.population)
        print("\npopulation: \n")
        for indv in island.population:
            print(["{0:.2f}".format(val) for val in indv.values])
Beispiel #12
0
def test_invalid_probabilities():
    crossover = SinglePointCrossover()
    mutation = SinglePointMutation(mutation_function)
    with pytest.raises(ValueError):
        _ = VarOr(crossover, mutation, 0.6, 0.41)
Beispiel #13
0
def var_or():
    crossover = SinglePointCrossover()
    mutation = SinglePointMutation(mutation_function)
    var_or_instance = VarOr(crossover, mutation, 0.2, 0.4)
    return var_or_instance
def dc_ea(onemax_evaluator):
    crossover = SinglePointCrossover()
    mutation = SinglePointMutation(return_true)
    return DeterministicCrowdingEA(onemax_evaluator, crossover, mutation, 0.2,
                                   0.2)