def test_mutable_tx_creation_with_immutable_parts_specified(self):
        tx = CMutableTransaction(
            vin=[CTxIn(prevout=COutPoint(hash=b'a' * 32, n=0))],
            vout=[CTxOut(nValue=1)],
            witness=CTxWitness([CTxInWitness()]))

        def check_mutable_parts(tx):
            self.assertTrue(tx.vin[0].is_mutable())
            self.assertTrue(tx.vin[0].prevout.is_mutable())
            self.assertTrue(tx.vout[0].is_mutable())
            self.assertTrue(tx.wit.is_mutable())
            self.assertTrue(tx.wit.vtxinwit[0].is_mutable())

        check_mutable_parts(tx)

        # Test that if we deserialize with CMutableTransaction,
        # all the parts are mutable
        tx = CMutableTransaction.deserialize(tx.serialize())
        check_mutable_parts(tx)

        # Test some parts separately, because when created via
        # CMutableTransaction instantiation, they are created with from_*
        # methods, and not directly

        txin = CMutableTxIn(prevout=COutPoint(hash=b'a' * 32, n=0))
        self.assertTrue(txin.prevout.is_mutable())

        wit = CMutableTxWitness((CTxInWitness(), ))
        self.assertTrue(wit.vtxinwit[0].is_mutable())
Beispiel #2
0
txin_scriptPubKey = \
    P2PKHBitcoinAddress.from_pubkey(seckey.pub).to_scriptPubKey()

# Create the txout. This time we create the scriptPubKey from a Bitcoin
# address.
txout = CMutableTxOut(
    0.001 * COIN,
    CBitcoinAddress('1C7zdTfnkzmr13HfA2vNm5SJYRK6nEKyq8').to_scriptPubKey())

# Create the unsigned transaction.
tx = CMutableTransaction([txin], [txout])

# Calculate the signature hash for that transaction.
sighash = SignatureHash(txin_scriptPubKey, tx, 0, SIGHASH_ALL)

# Now sign it. We have to append the type of signature we want to the end, in
# this case the usual SIGHASH_ALL.
sig = seckey.sign(sighash) + bytes([SIGHASH_ALL])

# Set the scriptSig of our transaction input appropriately.
txin.scriptSig = CScript([sig, seckey.pub])

# Verify the signature worked. This calls EvalScript() and actually executes
# the opcodes in the scripts to see if everything worked out. If it doesn't an
# exception will be raised.
VerifyScript(txin.scriptSig, txin_scriptPubKey, tx, 0)

# Done! Print the transaction to standard output with the bytes-to-hex
# function.
print(b2x(tx.serialize()))
Beispiel #3
0
def claim_funds_back(say, utxos, die, rpc):
    """Try to claim our funds by sending our UTXO to our own addresses"""

    # The transaction-building code here does not introduce anything new
    # compared to the code in participant functions, so it will not be
    # commented too much.

    input_descriptors = []
    # It is better to prepare the claw-back transaction beforehand, to avoid
    # the possibility of unexpected problems arising at the critical time when
    # we need to send claw-back tx ASAP, but that would clutter the earlier
    # part of the example with details that are not very relevant there.
    tx = CMutableTransaction()
    for utxo in utxos:
        tx.vin.append(
            CTxIn(prevout=COutPoint(hash=lx(utxo['txid']), n=utxo['vout'])))
        input_descriptors.append(
            BlindingInputDescriptor(
                asset=CAsset(lx(utxo['asset'])),
                amount=coins_to_satoshi(utxo['amount']),
                blinding_factor=Uint256(lx(utxo['amountblinder'])),
                asset_blinding_factor=Uint256(lx(utxo['assetblinder']))))

    asset_amounts = {}
    # If some assets are the same, we want them to be sent to one address
    for idesc in input_descriptors:
        if idesc.asset == fee_asset:
            amount = idesc.amount - FIXED_FEE_SATOSHI
            assert amount >= FIXED_FEE_SATOSHI  # enforced at find_utxo_for_fee
        else:
            amount = idesc.amount

        asset_amounts[idesc.asset] = amount

    output_pubkeys = []
    for asset, amount in asset_amounts.items():
        dst_addr, _ = get_dst_addr(None, rpc)
        tx.vout.append(
            CTxOut(nValue=CConfidentialValue(amount),
                   nAsset=CConfidentialAsset(asset),
                   scriptPubKey=dst_addr.to_scriptPubKey()))
        output_pubkeys.append(dst_addr.blinding_pubkey)

    # Add the explicit fee output
    tx.vout.append(
        CTxOut(nValue=CConfidentialValue(FIXED_FEE_SATOSHI),
               nAsset=CConfidentialAsset(fee_asset)))
    # Add dummy pubkey for non-blinded fee output
    output_pubkeys.append(CPubKey())

    # We used immutable objects for transaction components like CTxIn,
    # just for our convenience. Convert them all to mutable.
    tx = tx.to_immutable().to_mutable()

    # And blind the combined transaction
    blind_result = tx.blind(input_descriptors=input_descriptors,
                            output_pubkeys=output_pubkeys)

    assert (not blind_result.error
            and blind_result.num_successfully_blinded == len(utxos))

    for n, utxo in enumerate(utxos):
        sign_input(tx, n, utxo)

    # It is possible that Bob has actually sent the swap transaction.
    # We will get an error if our node has received this transaction.
    # In real application, we might handle this case, too, but
    # here we will just ignore it.
    txid = rpc.sendrawtransaction(b2x(tx.serialize()))

    rpc.generatetoaddress(1, rpc.getnewaddress())
    wait_confirm(say, txid, die, rpc)
Beispiel #4
0
def bob(say, recv, send, die, rpc):
    """A function that implements the logic
    of the second participant of an asset atomic swap"""

    # Issue an asset that we are going to swap
    asset_str, asset_utxo = issue_asset(say, 1.0, rpc)
    asset_amount_satoshi = coins_to_satoshi(asset_utxo['amount'])

    say('Setting up communication with Alice')

    # Wait for Alice to start communication
    recv('ready')
    # To avoid mempool synchronization problems in two-node regtest setup,
    # in our example Alice is the one in charge of generating test blocks.
    # Send txid of asset issuance to alice so she can ensure it is confirmed.
    send('wait-txid-confirm', asset_utxo['txid'])

    say('Waiting for Alice to send us an offer array')

    alice_offers = recv('offer')

    # We unconditionally accept Alice's offer - her assets are
    # equally worthless as our asset :-)

    say("Alice's offers are {}, sending my offer".format(alice_offers))

    my_offer = AtomicSwapOffer(amount=asset_amount_satoshi, asset=asset_str)

    send('offer', my_offer)

    say('Waiting for Alice\'s address and assetcommitments')

    alice_addr_str, alice_assetcommitments = recv('addr_and_assetcommitments')

    print_asset_balances(say, alice_offers + [my_offer], rpc)

    # Convert Alice's address to address object.
    # If Alice passes invalid address, we die with we die with exception.
    alice_addr = CCoinAddress(alice_addr_str)

    say('Alice\'s address: {}'.format(alice_addr))
    say('Alice\'s assetcommitments: {}'.format(alice_assetcommitments))

    # Create asset commitments array. First goes our own asset commitment,
    # because our UTXO will be first.
    assetcommitments = [x(asset_utxo['assetcommitment'])]
    for ac in alice_assetcommitments:
        # If Alice sends non-hex data, we will die while converting.
        assetcommitments.append(x(ac))

    # Let's create our part of the transaction. We need to create
    # mutable transaction, because blind() method only works for mutable.
    partial_tx = CMutableTransaction(
        vin=[
            CTxIn(prevout=COutPoint(hash=lx(asset_utxo['txid']),
                                    n=asset_utxo['vout']))
        ],
        vout=[
            CTxOut(nValue=CConfidentialValue(asset_amount_satoshi),
                   nAsset=CConfidentialAsset(CAsset(lx(asset_str))),
                   scriptPubKey=alice_addr.to_scriptPubKey())
        ])

    # Blind our part of transaction, specifying assetcommitments
    # (Incliding those received from Alice) as auxiliary_generators.

    # Note that we could get the blinding factors if we retrieve
    # the transaction that we spend from, deserialize it, and unblind
    # the output that we are going to spend.
    # We could do everything here (besides issuing the asset and sending
    # the transactions) without using Elements RPC, if we get our data
    # from files or database, etc. But to simplify our demonstration,
    # we will use the values we got from RPC.

    # See 'spend-to-confidential-address.py' example for the code
    # that does the unblinding itself, and uses the unblinded values
    # to create a spending transaction.

    blind_result = partial_tx.blind(
        input_descriptors=[
            BlindingInputDescriptor(
                asset=CAsset(lx(asset_utxo['asset'])),
                amount=asset_amount_satoshi,
                blinding_factor=Uint256(lx(asset_utxo['amountblinder'])),
                asset_blinding_factor=Uint256(lx(asset_utxo['assetblinder'])))
        ],
        output_pubkeys=[alice_addr.blinding_pubkey],
        auxiliary_generators=assetcommitments)

    # The blinding must succeed!
    if blind_result.error:
        die('blind failed: {}'.format(blind_result.error))

    # And must blind exactly one output
    if blind_result.num_successfully_blinded != 1:
        die('blinded {} outputs, expected to be 1'.format(
            blind_result.num_successfully_blinded))

    say('Successfully blinded partial transaction, sending it to Alice')

    send('partial_blinded_tx', partial_tx.serialize())

    say("Generating addresses to receive Alice's assets")
    # Generate as many destination addresses as there are assets
    # in Alice's offer. Record blinding keys for the addresses.
    our_addrs = []
    blinding_keys = []
    for _ in alice_offers:
        addr, blinding_key = get_dst_addr(say, rpc)
        our_addrs.append(str(addr))
        blinding_keys.append(blinding_key)

    say("Sending my addresses and assetcommitment to Alice")
    send('addr_list_and_assetcommitment',
         (our_addrs, asset_utxo['assetcommitment']))

    semi_signed_tx_bytes = recv('partially_signed_tx')

    say('Got partially signed tx of size {} bytes from Alice'.format(
        len(semi_signed_tx_bytes)))

    semi_signed_tx = CTransaction.deserialize(semi_signed_tx_bytes)

    # Transaction should have 3 extra outputs - one output to Alice,
    # fee output, and fee asset change output
    if len(semi_signed_tx.vout) != len(alice_offers) + 3:
        die('unexpected number of outputs in tx from Alice: '
            'expected {}, got {}'.format(
                len(alice_offers) + 3, len(semi_signed_tx.vout)))

    if not semi_signed_tx.vout[-1].is_fee():
        die('Last output in tx from Alice '
            'is expected to be fee output, but it is not')

    # Unblind outputs that should be directed to us and check
    # that they match the offer. We use n+1 as output index
    # because we skip our own output, which is at index 0.
    for n, offer in enumerate(alice_offers):
        result = semi_signed_tx.vout[n + 1].unblind_confidential_pair(
            blinding_keys[n], semi_signed_tx.wit.vtxoutwit[n + 1].rangeproof)

        if result.error:
            die('cannot unblind output {} that should have been '
                'directed to us: {}'.format(n + 1, result.error))

        if result.asset.to_hex() != offer.asset:
            die("asset at position {} (vout {}) in partial transaction "
                "from Alice {} is not the same as asset in Alice's "
                "initial offer ({})".format(n, n + 1, result.asset.to_hex(),
                                            offer.asset))

        if result.amount != offer.amount:
            die("amount at position {} (vout {}) in partial transaction "
                "from Alice {} is not the same as amount in Alice's "
                "initial offer ({})".format(n, n + 1, result.amount,
                                            offer.amount))

    say("Assets and amounts in partially signed transaction "
        "match Alice's offer")

    # Signing will change the tx, so i
    tx = semi_signed_tx.to_mutable()

    # Our input is at index 0
    sign_input(tx, 0, asset_utxo)

    # Note that at this point both participants can still opt out of the swap:
    # Bob by not broadcasting the transaction, and Alice by double-spending
    # her inputs to the transaction. Bob still have tiny advantage, because
    # he can pretend to have 'difficulties' in broadcasting and try to exploit
    # Alice's patience

    say('Signed the transaction from my side, ready to send')

    tx_hex = b2x(tx.serialize())

    if bob_be_sneaky:
        say('Hey! I am now in control of the final transaction. '
            'I have the option to exectue the swap or abort. ')
        say('Why not wait a bit and watch asset prices, and execute '
            'the swap only if it is profitable')
        say('I will reduce my risk a bit by doing that.')
        # Bob takes his time and is not sending the final
        # transaction to Alice for some time...
        time.sleep(ALICE_PATIENCE_LIMIT + 2)
        say('OK, I am willing to execute the swap now')

    # Send the final transaction to Alice, so she can be sure that
    # we is not cheating
    send('final-signed-tx', tx_hex)

    txid = rpc.sendrawtransaction(tx_hex)

    say('Sent with txid {}'.format(txid))

    # Wait for alice to politely end the conversation
    recv('thanks-goodbye')
    print_asset_balances(say, alice_offers + [my_offer], rpc)

    for i, offer in enumerate(alice_offers):
        balance = coins_to_satoshi(rpc.getbalance("*", 1, False, offer.asset))
        if balance != offer.amount:
            die('something went wrong, asset{} balance after swap should be '
                '{} satoshi, but it is {} satoshi'.format(
                    i, balance, offer.amount))

    say('Asset atomic swap completed successfully')