def sign_input(tx, input_index, utxo):
    """Sign an input of transaction.
    Single-signature signing with SIGHASH_ALL"""

    key = utxo['key']
    src_addr = CCoinAddress(utxo['address'])

    script_for_sighash = CScript(
        [OP_DUP, OP_HASH160,
         Hash160(key.pub), OP_EQUALVERIFY, OP_CHECKSIG])

    assert isinstance(src_addr, (P2PKHCoinAddress, P2SHCoinAddress,
                                 P2WPKHCoinAddress)),\
        'only p2pkh, p2wpkh and p2sh_p2wpkh addresses are supported'

    if isinstance(src_addr, P2PKHCoinAddress):
        sigversion = SIGVERSION_BASE
    else:
        sigversion = SIGVERSION_WITNESS_V0

    if 'amountcommitment' in utxo:
        amountcommitment = CConfidentialValue(x(utxo['amountcommitment']))
    else:
        amountcommitment = CConfidentialValue(coins_to_satoshi(utxo['amount']))

    sighash = script_for_sighash.sighash(tx,
                                         input_index,
                                         SIGHASH_ALL,
                                         amount=amountcommitment,
                                         sigversion=sigversion)

    sig = key.sign(sighash) + bytes([SIGHASH_ALL])

    if isinstance(src_addr, P2PKHCoinAddress):
        tx.vin[input_index].scriptSig = CScript(
            [CScript(sig), CScript(key.pub)])
        scriptpubkey = src_addr.to_scriptPubKey()
    elif isinstance(src_addr, P2WPKHCoinAddress):
        tx.vin[input_index].scriptSig = CScript()
        tx.wit.vtxinwit[input_index] = CTxInWitness(
            CScriptWitness([CScript(sig), CScript(key.pub)]))
        scriptpubkey = src_addr.to_scriptPubKey()
    else:
        # Assume that this is p2sh-wrapped p2wpkh address
        inner_scriptPubKey = CScript([0, Hash160(key.pub)])
        tx.vin[input_index].scriptSig = CScript([inner_scriptPubKey])
        tx.wit.vtxinwit[input_index] = CTxInWitness(
            CScriptWitness([CScript(sig), CScript(key.pub)]))
        scriptpubkey = inner_scriptPubKey.to_p2sh_scriptPubKey()

    VerifyScript(tx.vin[input_index].scriptSig,
                 scriptpubkey,
                 tx,
                 input_index,
                 amount=amountcommitment,
                 flags=(SCRIPT_VERIFY_P2SH, ))
Beispiel #2
0
def payment_request():
    """Generates a http PaymentRequest object"""

    bc = RPCCaller(allow_default_conf=True)
    btc = CCoinAddress(bc.getnewaddress())

    #   Setting the 'amount' field to 0 (zero) should prompt the user to enter
    #   the amount for us but a bug in bitcoin core qt version 0.9.1 (at time of
    #   writing) wrongly informs us that the value is too small and aborts.
    #   https://github.com/bitcoin/bitcoin/issues/3095
    #   Also there can be no leading 0's (zeros).
    btc_amount = 100000
    serialized_pubkey = btc.to_scriptPubKey()

    pdo = o.PaymentDetails(network="regtest")
    # pdo.network = 'test'
    pdo.outputs.add(amount=btc_amount, script=serialized_pubkey)
    pdo.time = int(time())
    pdo.memo = 'String shown to user before confirming payment'
    pdo.payment_url = 'http://{}:{}/{}'.format(listen_on['host'],
                                               listen_on['port'], ack_url_path)

    pro = o.PaymentRequest()
    pro.serialized_payment_details = pdo.SerializeToString()

    sds_pr = pro.SerializeToString()

    headers = {
        'Content-Type': 'application/bitcoin-payment',
        'Accept': 'application/bitcoin-paymentrequest'
    }

    return sds_pr, headers
    def check_sign(self, blinded_tx: CTransaction, signed_tx: CTransaction,
                   bundle: Dict[str, Any]) -> None:
        tx_to_sign = blinded_tx.to_mutable()
        for n, vin in enumerate(tx_to_sign.vin):
            utxo = bundle['vin_utxo'][n]
            amount = -1 if utxo['amount'] == -1 else coins_to_satoshi(
                utxo['amount'])

            scriptPubKey = CScript(x(utxo['scriptPubKey']))
            a = CCoinAddress(utxo['address'])
            if 'privkey' in utxo:
                privkey = CCoinKey(utxo['privkey'])
                assert isinstance(a, P2PKHCoinAddress),\
                    "only P2PKH is supported for single-sig"
                assert a == P2PKHElementsAddress.from_pubkey(privkey.pub)
                assert scriptPubKey == a.to_scriptPubKey()
                sighash = SignatureHash(scriptPubKey,
                                        tx_to_sign,
                                        n,
                                        SIGHASH_ALL,
                                        amount=amount,
                                        sigversion=SIGVERSION_BASE)
                sig = privkey.sign(sighash) + bytes([SIGHASH_ALL])
                tx_to_sign.vin[n].scriptSig = CScript(
                    [CScript(sig), CScript(privkey.pub)])
            else:
                pk_list = [CCoinKey(pk) for pk in utxo['privkey_list']]
                redeem_script_data = [utxo['num_p2sh_participants']]
                redeem_script_data.extend([pk.pub for pk in pk_list])
                redeem_script_data.extend([len(pk_list), OP_CHECKMULTISIG])
                redeem_script = CScript(redeem_script_data)
                assert isinstance(a, P2SHCoinAddress),\
                    "only P2SH is supported for multi-sig."
                assert scriptPubKey == redeem_script.to_p2sh_scriptPubKey()
                assert a == P2SHElementsAddress.from_scriptPubKey(
                    redeem_script.to_p2sh_scriptPubKey())
                sighash = SignatureHash(redeem_script,
                                        tx_to_sign,
                                        n,
                                        SIGHASH_ALL,
                                        amount=amount,
                                        sigversion=SIGVERSION_BASE)
                sigs = [
                    pk.sign(sighash) + bytes([SIGHASH_ALL]) for pk in pk_list
                ]
                tx_to_sign.vin[n].scriptSig = CScript([b''] + sigs +
                                                      [redeem_script])

            VerifyScript(tx_to_sign.vin[n].scriptSig,
                         scriptPubKey,
                         tx_to_sign,
                         n,
                         amount=amount)

        self.assertEqual(tx_to_sign.serialize(), signed_tx.serialize())
Beispiel #4
0
    def get_utxos_by_address(self, address: Address) -> List[Utxo]:
        raw_utxos = self.query_api(self.Query.GET_UNSPENT_TX, str(address))["txs"]
        utxos: List[Utxo] = []

        for raw_utxo in raw_utxos:
            value = int(float(raw_utxo["value"]) * SATOSHIS_PER_COIN)
            tx_hash = raw_utxo["txid"]
            block = self.get_block_by_tx(tx_hash)
            vout = raw_utxo["output_no"]

            tx_in = TxIn(OutPoint(lx(tx_hash), vout))
            tx_out = TxOut(value, address.to_scriptPubKey())

            utxo = Utxo(block, tx_in, tx_out)
            utxos.append(utxo)

        return utxos
Beispiel #5
0
def bob(say, recv, send, die, rpc):
    """A function that implements the logic
    of the second participant of an asset atomic swap"""

    # Issue an asset that we are going to swap
    asset_str, asset_utxo = issue_asset(say, 1.0, rpc)
    asset_amount_satoshi = coins_to_satoshi(asset_utxo['amount'])

    say('Setting up communication with Alice')

    # Wait for Alice to start communication
    recv('ready')
    # To avoid mempool synchronization problems in two-node regtest setup,
    # in our example Alice is the one in charge of generating test blocks.
    # Send txid of asset issuance to alice so she can ensure it is confirmed.
    send('wait-txid-confirm', asset_utxo['txid'])

    say('Waiting for Alice to send us an offer array')

    alice_offers = recv('offer')

    # We unconditionally accept Alice's offer - her assets are
    # equally worthless as our asset :-)

    say("Alice's offers are {}, sending my offer".format(alice_offers))

    my_offer = AtomicSwapOffer(amount=asset_amount_satoshi, asset=asset_str)

    send('offer', my_offer)

    say('Waiting for Alice\'s address and assetcommitments')

    alice_addr_str, alice_assetcommitments = recv('addr_and_assetcommitments')

    print_asset_balances(say, alice_offers + [my_offer], rpc)

    # Convert Alice's address to address object.
    # If Alice passes invalid address, we die with we die with exception.
    alice_addr = CCoinAddress(alice_addr_str)

    say('Alice\'s address: {}'.format(alice_addr))
    say('Alice\'s assetcommitments: {}'.format(alice_assetcommitments))

    # Create asset commitments array. First goes our own asset commitment,
    # because our UTXO will be first.
    assetcommitments = [x(asset_utxo['assetcommitment'])]
    for ac in alice_assetcommitments:
        # If Alice sends non-hex data, we will die while converting.
        assetcommitments.append(x(ac))

    # Let's create our part of the transaction. We need to create
    # mutable transaction, because blind() method only works for mutable.
    partial_tx = CMutableTransaction(
        vin=[
            CTxIn(prevout=COutPoint(hash=lx(asset_utxo['txid']),
                                    n=asset_utxo['vout']))
        ],
        vout=[
            CTxOut(nValue=CConfidentialValue(asset_amount_satoshi),
                   nAsset=CConfidentialAsset(CAsset(lx(asset_str))),
                   scriptPubKey=alice_addr.to_scriptPubKey())
        ])

    # Blind our part of transaction, specifying assetcommitments
    # (Incliding those received from Alice) as auxiliary_generators.

    # Note that we could get the blinding factors if we retrieve
    # the transaction that we spend from, deserialize it, and unblind
    # the output that we are going to spend.
    # We could do everything here (besides issuing the asset and sending
    # the transactions) without using Elements RPC, if we get our data
    # from files or database, etc. But to simplify our demonstration,
    # we will use the values we got from RPC.

    # See 'spend-to-confidential-address.py' example for the code
    # that does the unblinding itself, and uses the unblinded values
    # to create a spending transaction.

    blind_result = partial_tx.blind(
        input_descriptors=[
            BlindingInputDescriptor(
                asset=CAsset(lx(asset_utxo['asset'])),
                amount=asset_amount_satoshi,
                blinding_factor=Uint256(lx(asset_utxo['amountblinder'])),
                asset_blinding_factor=Uint256(lx(asset_utxo['assetblinder'])))
        ],
        output_pubkeys=[alice_addr.blinding_pubkey],
        auxiliary_generators=assetcommitments)

    # The blinding must succeed!
    if blind_result.error:
        die('blind failed: {}'.format(blind_result.error))

    # And must blind exactly one output
    if blind_result.num_successfully_blinded != 1:
        die('blinded {} outputs, expected to be 1'.format(
            blind_result.num_successfully_blinded))

    say('Successfully blinded partial transaction, sending it to Alice')

    send('partial_blinded_tx', partial_tx.serialize())

    say("Generating addresses to receive Alice's assets")
    # Generate as many destination addresses as there are assets
    # in Alice's offer. Record blinding keys for the addresses.
    our_addrs = []
    blinding_keys = []
    for _ in alice_offers:
        addr, blinding_key = get_dst_addr(say, rpc)
        our_addrs.append(str(addr))
        blinding_keys.append(blinding_key)

    say("Sending my addresses and assetcommitment to Alice")
    send('addr_list_and_assetcommitment',
         (our_addrs, asset_utxo['assetcommitment']))

    semi_signed_tx_bytes = recv('partially_signed_tx')

    say('Got partially signed tx of size {} bytes from Alice'.format(
        len(semi_signed_tx_bytes)))

    semi_signed_tx = CTransaction.deserialize(semi_signed_tx_bytes)

    # Transaction should have 3 extra outputs - one output to Alice,
    # fee output, and fee asset change output
    if len(semi_signed_tx.vout) != len(alice_offers) + 3:
        die('unexpected number of outputs in tx from Alice: '
            'expected {}, got {}'.format(
                len(alice_offers) + 3, len(semi_signed_tx.vout)))

    if not semi_signed_tx.vout[-1].is_fee():
        die('Last output in tx from Alice '
            'is expected to be fee output, but it is not')

    # Unblind outputs that should be directed to us and check
    # that they match the offer. We use n+1 as output index
    # because we skip our own output, which is at index 0.
    for n, offer in enumerate(alice_offers):
        result = semi_signed_tx.vout[n + 1].unblind_confidential_pair(
            blinding_keys[n], semi_signed_tx.wit.vtxoutwit[n + 1].rangeproof)

        if result.error:
            die('cannot unblind output {} that should have been '
                'directed to us: {}'.format(n + 1, result.error))

        if result.asset.to_hex() != offer.asset:
            die("asset at position {} (vout {}) in partial transaction "
                "from Alice {} is not the same as asset in Alice's "
                "initial offer ({})".format(n, n + 1, result.asset.to_hex(),
                                            offer.asset))

        if result.amount != offer.amount:
            die("amount at position {} (vout {}) in partial transaction "
                "from Alice {} is not the same as amount in Alice's "
                "initial offer ({})".format(n, n + 1, result.amount,
                                            offer.amount))

    say("Assets and amounts in partially signed transaction "
        "match Alice's offer")

    # Signing will change the tx, so i
    tx = semi_signed_tx.to_mutable()

    # Our input is at index 0
    sign_input(tx, 0, asset_utxo)

    # Note that at this point both participants can still opt out of the swap:
    # Bob by not broadcasting the transaction, and Alice by double-spending
    # her inputs to the transaction. Bob still have tiny advantage, because
    # he can pretend to have 'difficulties' in broadcasting and try to exploit
    # Alice's patience

    say('Signed the transaction from my side, ready to send')

    tx_hex = b2x(tx.serialize())

    if bob_be_sneaky:
        say('Hey! I am now in control of the final transaction. '
            'I have the option to exectue the swap or abort. ')
        say('Why not wait a bit and watch asset prices, and execute '
            'the swap only if it is profitable')
        say('I will reduce my risk a bit by doing that.')
        # Bob takes his time and is not sending the final
        # transaction to Alice for some time...
        time.sleep(ALICE_PATIENCE_LIMIT + 2)
        say('OK, I am willing to execute the swap now')

    # Send the final transaction to Alice, so she can be sure that
    # we is not cheating
    send('final-signed-tx', tx_hex)

    txid = rpc.sendrawtransaction(tx_hex)

    say('Sent with txid {}'.format(txid))

    # Wait for alice to politely end the conversation
    recv('thanks-goodbye')
    print_asset_balances(say, alice_offers + [my_offer], rpc)

    for i, offer in enumerate(alice_offers):
        balance = coins_to_satoshi(rpc.getbalance("*", 1, False, offer.asset))
        if balance != offer.amount:
            die('something went wrong, asset{} balance after swap should be '
                '{} satoshi, but it is {} satoshi'.format(
                    i, balance, offer.amount))

    say('Asset atomic swap completed successfully')
Beispiel #6
0
 def assemble_transaction_spend_output(self, recipient: ExternalAddress,
                                       selection: CoinSelection):
     return TxOut(selection.target_value, recipient.to_scriptPubKey())