Beispiel #1
0
        def update_plot(attrname, old, new):
            form = form_select.value[-1:]
            cols = []
            for techs in range(1, self.n_techs + 1):
                cols.append('n' + str(techs) + str(form))

            tbar = Bar(
                cap_source,
                values=blend(*cols, name='medals', labels_name='medal'),
                label='n_list',
                stack='medal',
                legend=None,
                color=color(columns='medal',
                            palette=brewer['Set1'][self.n_techs],
                            sort=True),
                title="Energy Capacity per Node for Each Form of Energy",
                plot_width=1000,
                plot_height=300,
                xlabel="Nodes",
                ylabel="Storage Capacity(kW)")

            hover = HoverTool(tooltips=[
                ("Node", "@n_list"),
                ("Value", "@height"),
            ])
            tbar.add_tools(hover)

            disp_row_1.children[0] = tbar
            fin_column.children[1] = self.create_legend()
Beispiel #2
0
        def update_plotw(attrname, old, new):
            node = node_selectw.value[-1:]
            form = form_selectw.value[-1:]

            cols = []

            for techs in range(1, self.n_techs + 1):
                cols.append('n' + str(node) + str(form) + str(techs))
                print('n' + str(node) + str(form) + str(techs))

            pbarw = Bar(
                prod_dataw,
                values=blend(*cols, name='medals', labels_name='medal'),
                label='time_step',
                stack='medal',
                legend=None,
                title="Energy Production per Node for Each Form of Energy",
                color=color(columns='medal',
                            palette=brewer['Set1'][self.n_techs],
                            sort=True),
                plot_width=1000,
                plot_height=300,
                xlabel="Weeks",
                ylabel="Energy Production(kW)")

            hover = HoverTool(tooltips=[
                ("Hour", "@time_step"),
                ("Value", "@height"),
            ])
            pbarw.add_tools(hover)

            disp_row_2.children[0] = pbarw
            fin_column.children[1] = self.create_legend()
Beispiel #3
0
def generate_users_bar(current_user_source):
  users_bar = Bar(current_user_source,values="editions",xlabel = None,ylabel = None,label="users",stack="edited",legend = None,title = "Editions for users",name ="Editions for users",tools = tools, width = 1000,height = 400)
  hover = users_bar.select(dict(type=HoverTool))
  hover.tooltips = [
  ('User','$x'),
  ('Page','@edited'),
  ('Editions','@height')]
  users_bar.background_fill_color = "#2f2f2f"
  users_bar.border_fill_color = "#2f2f2f"
  return users_bar
def test_bar_chart_below_visibility():
    from bkcharts import Bar

    # Visible because we have multiple bars
    df = dict(types=['foo', 'bar'], counts=[3, 2])
    p = Bar(df, values='counts')
    p.below[0].visible

    # Visible because we excplicitly specify labels
    df = dict(types=['foo'], counts=[3])
    p = Bar(df, values='counts', label='types')
    assert p.below[0].visible

    # Not visible because only one item and no labels
    df = dict(types=['foo'], counts=[3])
    p = Bar(df, values='counts')
    assert not p.below[0].visible
 def create_bar(self):
     #Here, we interact with bokeh to create the bar chart. We use the dataframe we created above, set birth to the values on the y-axis and stack the data by sex.
     #The x axis label is represented by the areas. We define hover over the tooltips and define Gender and Births, with the corresponding value of the y axis.
     #Last but not least, we colour the data with always coloring female red and male blue.
     bar = Bar(
         self._dataframe, values='Births', label='Area', stack="Sex", agg="mean",
         title="Births in Zurich, 2015 per Area", legend='top_right', height=450, width=1050,
         tooltips=[('Gender:', '@Sex'), ('Births:', '@height')], palette=["#cc3737", "#0053d8"]
     )
     #we return the bar to plot in on the Dashboard class
     return bar
Beispiel #6
0
        def update_plot_st(attrname, old, new):
            form = form_select_st.value[-1:]

            st_bar = Bar(storage_dict,
                         values='f' + str(form),
                         label='n_list',
                         legend=None,
                         title="Storage Capacity per Node",
                         plot_width=1000,
                         plot_height=300,
                         xlabel="Nodes",
                         ylabel="Storage Capacity(kW)")

            hover = HoverTool(tooltips=[
                ("Node", "@n_list"),
                ("Value", "@height"),
            ])

            st_bar.add_tools(hover)

            disp_row_2.children[0] = st_bar
            fin_column.children[1] = self.create_legend()
 def goChart(label, stack_or_group, values, ylabel=None, color=None):
     convertPDFDate(workingPDF, keyFields[0])
     if ylabel is None:
         ylabel = values
     label = label if isinstance(label, (list, tuple)) else [label]
     if stacked:
         charts.append(
             Bar(workingPDF,
                 label=CatAttr(columns=label, sort=False),
                 stack=stack_or_group,
                 color=color,
                 values=values,
                 legend=self.showLegend(),
                 ylabel=ylabel))
     else:
         charts.append(
             Bar(workingPDF,
                 label=CatAttr(columns=label, sort=False),
                 group=stack_or_group,
                 color=color,
                 values=values,
                 legend=self.showLegend(),
                 ylabel=ylabel))
Beispiel #8
0
    def createFigure1(self):
        #Plot 1: Births in 2015 per gender
        births_2015 = pd.DataFrame(self.data.loc[self.data['Jahr'] == 2015],
                                   copy=True)

        # Removing the unnecessary columns
        births_2015 = births_2015.drop("SexCd", axis=1)
        births_2015 = births_2015.drop("StatZoneSort", axis=1)
        births_2015 = births_2015.drop("QuarSort", axis=1)

        #X-Axis Values: The names of the different parts of the city of Zurich
        quartier_names = []

        for name in births_2015['Quartier']:
            if name not in quartier_names:
                quartier_names.append(name)

        quartier_names.sort()

        #Y-Axis Values: Nr of Births (male & female) per city part in 2015
        births = pd.DataFrame(births_2015, copy=True)
        births = births.drop("Jahr", axis=1)
        births = births.groupby(['Sex',
                                 'Quartier'])['Births'].sum().reset_index()

        colors = ["#e84d60", "#718dbf"]

        #Creating the vertical stacked bar chart
        self.plot1 = Bar(
            births,
            label='Quartier',
            stack='Sex',
            values='Births',
            title=
            'Aggregated Number of Births per City Part (Quartier) in 2015',
            color=colors,
        )

        # Designing the plot (legend, axis alignment & spacing)
        self.plot1.width = 1800
        self.plot1.height = 450
        self.plot1.legend.location = "top_right"
        self.plot1.legend.orientation = "horizontal"

        #X-Axis design
        self.plot1.xaxis.major_label_orientation = 0.3
        self.plot1.x_range.range_padding = 0.05
        self.plot1.xgrid.grid_line_color = None
        self.plot1.xaxis.axis_label = 'City Parts in Zurich'

        #Y-Axis design
        self.plot1.y_range.start = 0
        self.plot1.yaxis[0].ticker.max_interval = 50
        self.plot1.yaxis[0].ticker.num_minor_ticks = 0
        self.plot1.yaxis.axis_label = 'Number of Births'

        #Creating the hover tooltip
        hover = HoverTool(
            tooltips=[("Quartier",
                       "@Quartier"), ("Sex", "@Sex"), ("Births", "@height")])
        self.plot1.tools.append(hover)
# transform ColumnDataFrame to ColumnDataSource
tax_increase = ColumnDataSource(
    pd.DataFrame(df_dropped["Tax Units with Tax Increase"]))
tax_cut = ColumnDataSource(pd.DataFrame(df_dropped["Tax Units with Tax Cut"]))
cds_df_dropped = ColumnDataSource(df_dropped)

# the plots with the bars
p = Bar(
    df_dropped,
    label=cat(columns='Intervals', sort=False),
    values=blend('Tax Units with Tax Increase',
                 'Tax Units with Tax Cut',
                 name='values',
                 labels_name='vars'),
    tooltips=[('Value', '@values')],
    ylabel="Tax units with tax cut             Tax units with tax increase",
    stack=cat(columns='values', sort=False),
    color=color(columns='vars', palette=['silver', 'orange'], sort=True),
    bar_width=0.4,
    tools="pan,box_zoom, reset, save",
    plot_width=600,
    plot_height=450,
    toolbar_sticky=False,
    legend=False)
p.xaxis.axis_label = 'Income [$ thousands]'
p.toolbar.logo = None

values = blend('Tax Units with Tax Increase',
               'Tax Units with Tax Cut',
               name='values',
               labels_name='vars')
Beispiel #10
0
    def carbon_emissions(self):

        c_em_tech = {}
        c_em_tech['time_step'] = np.linspace(1, self.time_steps,
                                             self.time_steps)
        for techs in range(1, self.n_techs + 1):
            c_em_tech['t' + str(techs)] = np.zeros((self.time_steps))
            for time_step in range(1, self.time_steps):
                c_em_tech['t' + str(techs)][time_step] = value(
                    model.carbonFactors[techs] *
                    sum(model.P[i, time_step, techs] for i in model.hub_i))

        cols = []
        for techs in range(1, self.n_techs + 1):
            cols.append('t' + str(techs))

        bar = Bar(c_em_tech,
                  values=blend(*cols, name='medals', labels_name='medal'),
                  label='time_step',
                  stack='medal',
                  legend=None,
                  title="Carbon Emissions per form of Technology",
                  color=color(columns='medal',
                              palette=brewer['Set1'][self.n_techs],
                              sort=True),
                  plot_width=1000,
                  plot_height=300,
                  xlabel="Hours",
                  ylabel="Carbon Emissions(kg)")

        hover = HoverTool(tooltips=[
            ("Hour", "@time_step"),
            ("Value", "@height"),
        ])

        bar.add_tools(hover)

        tech_legend1 = self.create_legend()

        c_em_techw = {}
        if (self.time_weeks == 0):
            for k, v in c_em_tech.items():
                c_em_techw[k] = np.zeros((1))
            c_em_techw['time_step'] = np.zeros((1))
        else:
            for k, v in c_em_tech.items():
                v = v[:self.time_weeks * self.week_h]
                c_em_techw[k] = np.sum(v.reshape(-1, self.week_h), axis=1)
            c_em_techw['time_step'] = np.linspace(1, self.time_weeks,
                                                  self.time_weeks)

        bar_w = Bar(c_em_techw,
                    values=blend(*cols, name='medals', labels_name='medal'),
                    label='time_step',
                    stack='medal',
                    legend=None,
                    title="Carbon Emissions per form of Technology per Week",
                    color=color(columns='medal',
                                palette=brewer['Set1'][self.n_techs],
                                sort=True),
                    plot_width=1000,
                    plot_height=300,
                    xlabel="Weeks",
                    ylabel="Carbon Emissions(kg)")

        hover = HoverTool(tooltips=[
            ("Hour", "@time_step"),
            ("Value", "@height"),
        ])

        c_em_nodes = {}
        c_em_nodes['time_step'] = np.linspace(1, self.time_steps,
                                              self.time_steps)

        for hub_step in range(1, self.n_hubs + 1):
            c_em_nodes['n' + str(hub_step)] = np.zeros((self.time_steps))
            for time_step in range(1, self.time_steps):
                c_em_nodes['n' + str(hub_step)][time_step] = value(
                    sum(model.carbonFactors[inp] *
                        model.P[hub_step, time_step, inp] for inp in model.In))

        col_nodes = []
        for hubs in range(1, self.n_hubs + 1):
            col_nodes.append('n' + str(hubs))

        if (self.n_hubs == 1):
            hub_colour = ["red"]
        elif (self.n_hubs == 2):
            hub_colour = ["red", "blue"]
        else:
            hub_colour = brewer['Set1'][self.n_hubs]

        n_bar = Bar(c_em_nodes,
                    values=blend(*col_nodes,
                                 name='medals',
                                 labels_name='medal'),
                    label='time_step',
                    stack='medal',
                    legend=None,
                    title="Carbon Emissions per Node",
                    color=color(columns='medal', palette=hub_colour,
                                sort=True),
                    plot_width=1000,
                    plot_height=300,
                    xlabel="Nodes",
                    ylabel="Carbon Emissions(kg)")

        n_hover = HoverTool(tooltips=[
            ("Hour", "@time_step"),
            ("Value", "@height"),
        ])

        n_bar.add_tools(n_hover)

        y = [0] * len(self.nodes)
        x = self.nodes
        #pal = ['SaddleBrown', 'Silver', 'Goldenrod']
        node_legend = figure(width=1000,
                             height=50,
                             toolbar_location=None,
                             active_drag=None,
                             x_range=self.nodes)
        node_legend.rect(x, y, color=hub_colour, width=1, height=10)
        node_legend.yaxis.major_label_text_color = None
        node_legend.yaxis.major_tick_line_color = None
        node_legend.yaxis.minor_tick_line_color = None

        return column(bar, tech_legend1, bar_w, n_bar, node_legend)
Beispiel #11
0
    def costs(self):

        op_cost = model.OpCost.get_values()[None]
        opcost_dict = {}
        opcost_dict.update(
            (x, y * op_cost) for x, y in model.P.get_values().items())
        opcost_data = {}

        for techs in range(1, self.n_techs + 1):
            opcost_data['t' + str(techs)] = np.zeros((self.time_steps))
            for time_step in range(1, self.time_steps):
                for hub_step in range(1, self.n_hubs + 1):
                    opcost_data['t' + str(techs)][time_step] += opcost_dict[(
                        hub_step, time_step, techs)]

        opcost_data['time_step'] = np.linspace(1, self.time_steps,
                                               self.time_steps)

        cols = []
        for techs in range(1, self.n_techs + 1):
            cols.append('t' + str(techs))

        opcost_bar = Bar(opcost_data,
                         values=blend(*cols,
                                      name='medals',
                                      labels_name='medal'),
                         label='time_step',
                         stack='medal',
                         legend=None,
                         title="Operational Cost per form of Technology",
                         color=color(columns='medal',
                                     palette=brewer['Set1'][self.n_techs],
                                     sort=True),
                         plot_width=1000,
                         plot_height=300,
                         xlabel="Hours",
                         ylabel="CHF")

        hover = HoverTool(tooltips=[
            ("Hour", "@time_step"),
            ("Value", "@height"),
        ])

        opcost_bar.add_tools(hover)

        tech_legend1 = self.create_legend()

        opcost_dataw = {}
        if (self.time_weeks == 0):
            for k, v in opcost_data.items():
                opcost_dataw[k] = np.zeros((1))
            opcost_dataw['time_step'] = np.zeros((1))
        else:
            for k, v in opcost_data.items():
                v = v[:self.time_weeks * self.week_h]
                print(v[:self.time_weeks * self.week_h])
                opcost_dataw[k] = np.sum(v.reshape(-1, self.week_h), axis=1)
            opcost_dataw['time_step'] = np.linspace(1, self.time_weeks,
                                                    self.time_weeks)

        opcostbar_w = Bar(
            opcost_dataw,
            values=blend(*cols, name='medals', labels_name='medal'),
            label='time_step',
            stack='medal',
            legend=None,
            title="Operational Cost per form of Technology per Week",
            color=color(columns='medal',
                        palette=brewer['Set1'][self.n_techs],
                        sort=True),
            plot_width=1000,
            plot_height=300,
            xlabel="Hours",
            ylabel="CHF")

        hover = HoverTool(tooltips=[
            ("Hour", "@time_step"),
            ("Value", "@height"),
        ])

        mtc_cost = data.VarMaintCost()

        P = model.P.get_values()

        for hub_step in range(1, self.n_hubs + 1):
            for techs in range(1, self.n_techs + 1):
                for time_step in range(1, self.time_steps):
                    P[(hub_step, time_step, techs)] *= mtc_cost[(hub_step,
                                                                 techs)]

        mtccost_data = {}
        for techs in range(1, self.n_techs + 1):
            mtccost_data['t' + str(techs)] = np.zeros((self.time_steps))
            for time_step in range(1, self.time_steps):
                for hub_step in range(1, self.n_hubs + 1):
                    mtccost_data['t' + str(techs)][time_step] += P[(hub_step,
                                                                    time_step,
                                                                    techs)]

        mtccost_data['time_step'] = np.linspace(1, self.time_steps,
                                                self.time_steps)

        mtccost_bar = Bar(mtccost_data,
                          values=blend(*cols,
                                       name='medals',
                                       labels_name='medal'),
                          label='time_step',
                          stack='medal',
                          legend=None,
                          title="Maintenance Cost per form of Technology",
                          color=color(columns='medal',
                                      palette=brewer['Set1'][self.n_techs],
                                      sort=True),
                          plot_width=1000,
                          plot_height=300,
                          xlabel="Hours",
                          ylabel="CHF")

        hover = HoverTool(tooltips=[
            ("Hour", "@time_step"),
            ("Value", "@height"),
        ])

        mtccost_bar.add_tools(hover)

        opc = model.OpCost.get_values()[None]
        mtc = model.MaintCost.get_values()[None]
        inc = model.InvCost.get_values()[None]
        income = model.IncomeExp.get_values()[None]

        sum_pi = opc + mtc + inc + income
        values = [opc, mtc, inc, income]
        percents = [
            0, opc / sum_pi, (opc + mtc) / sum_pi, (opc + mtc + inc) / sum_pi,
            (opc + mtc + inc + income) / sum_pi
        ]

        starts = [p * 2 * np.pi for p in percents[:-1]]
        ends = [p * 2 * np.pi for p in percents[1:]]
        colors = brewer["Set1"][4]

        cost_labels = [
            "Operational Cost", "Maintenance Cost", "Investment Cost", "Income"
        ]

        pie_chart_source = ColumnDataSource(data=dict(x=[0 for x in percents],
                                                      y=[0 for x in percents],
                                                      percents=percents,
                                                      starts=starts,
                                                      colors=colors,
                                                      ends=ends,
                                                      values=values,
                                                      cost_labels=cost_labels))

        pie_chart = figure(title="Cost vs Income Breakdown",
                           plot_width=500,
                           plot_height=300,
                           toolbar_location="left")
        r = pie_chart.wedge(source=pie_chart_source,
                            x='x',
                            y='y',
                            alpha=0.8,
                            radius=0.8,
                            start_angle='starts',
                            end_angle='ends',
                            color='colors')
        legend = Legend(
            items=[LegendItem(label=dict(field="cost_labels"), renderers=[r])],
            location=(0, -50))
        pie_chart.add_layout(legend, 'right')

        hover = HoverTool(tooltips=[
            ("Type", "@cost_labels"),
            ("Value", "@values"),
        ])

        pie_chart.add_tools(hover)
        pie_chart.xaxis.visible = False
        pie_chart.xgrid.visible = False
        pie_chart.yaxis.visible = False
        pie_chart.ygrid.visible = False

        op_column = column(opcost_bar, tech_legend1, opcostbar_w, mtccost_bar,
                           pie_chart)
        return op_column
Beispiel #12
0
    def capacities(self):

        cap_source = {}

        for techs in range(1, self.n_techs + 1):
            for forms in range(1, self.n_forms + 1):
                cap_source['n' + str(techs) + str(forms)] = np.zeros(
                    (self.n_hubs))
                for hub_step in range(1, self.n_hubs + 1):
                    cap_source['n' + str(techs) +
                               str(forms)][hub_step -
                                           1] = self.cap_dict[(hub_step, techs,
                                                               forms)]
                #cap_source['n' + str(techs) + str(forms)] = np.array(cap_source['n' + str(techs) + str(forms)])

#        for forms in range(1,self.n_forms+1):
#            cap_source['n' + str(self.n_techs+2) + str(forms)] = np.zeros((self.n_hubs))
#            for hub_step in range(1,self.n_hubs+1):
#                for techs in range(1,self.n_techs+1):
#                    cap_source['n' + str(self.n_techs+2) + str(forms)][hub_step-1] += cap_source['n' + str(techs) + str(forms)][hub_step-1]
#
#        cap_source['n_list'] = []
#        for hub_step in range(1,self.n_hubs+1):
#            cap_source['n_list'].append( "Node " + str(hub_step))
        cap_source['n_list'] = self.nodes
        #cap_source['n21'] = np.array([34.8,78,54,12,90])

        cols = []
        for techs in range(1, self.n_techs + 1):
            cols.append('n' + str(techs) + str(1))

        v_bar = Bar(cap_source,
                    values=blend(*cols, name="medal_v", labels_name="medals"),
                    label='n_list',
                    stack='medals',
                    legend=None,
                    color=color(columns='medals',
                                palette=brewer['Set1'][self.n_techs],
                                sort=True),
                    title="Energy Capacity per Node for Each Technology",
                    plot_width=1000,
                    plot_height=300,
                    xlabel="Nodes",
                    ylabel="Energy Capacity(kW)")

        hover = HoverTool(tooltips=[
            ("Node", "@n_list"),
            ("Value", "@height"),
        ])

        v_bar.add_tools(hover)

        def update_plot(attrname, old, new):
            form = form_select.value[-1:]
            cols = []
            for techs in range(1, self.n_techs + 1):
                cols.append('n' + str(techs) + str(form))

            tbar = Bar(
                cap_source,
                values=blend(*cols, name='medals', labels_name='medal'),
                label='n_list',
                stack='medal',
                legend=None,
                color=color(columns='medal',
                            palette=brewer['Set1'][self.n_techs],
                            sort=True),
                title="Energy Capacity per Node for Each Form of Energy",
                plot_width=1000,
                plot_height=300,
                xlabel="Nodes",
                ylabel="Storage Capacity(kW)")

            hover = HoverTool(tooltips=[
                ("Node", "@n_list"),
                ("Value", "@height"),
            ])
            tbar.add_tools(hover)

            disp_row_1.children[0] = tbar
            fin_column.children[1] = self.create_legend()

        form_select = Select(value="Form1",
                             title='Forms',
                             options=self.e_forms)
        form_select.on_change('value', update_plot)

        tech_legend1 = self.create_legend()

        storage = model.StorageCap.get_values()
        print(storage)
        storage_dict = {}
        storage_dict['n_list'] = self.nodes

        for forms in range(1, self.n_forms + 1):
            storage_dict['f' + str(forms)] = np.zeros((self.n_hubs))
            for hub_step in range(1, self.n_hubs + 1):
                storage_dict['f' + str(forms)][hub_step -
                                               1] = storage[(hub_step, forms)]


#        storage_dict['f1'] = [23,67,98,41,11]

        storage_bar = Bar(storage_dict,
                          values='f1',
                          label='n_list',
                          legend=None,
                          title="Storage Capacity per Node",
                          plot_width=1000,
                          plot_height=300,
                          xlabel="Nodes",
                          ylabel="Storage Capacity(kW)")

        hover = HoverTool(tooltips=[
            ("Node", "@n_list"),
            ("Value", "@height"),
        ])

        def update_plot_st(attrname, old, new):
            form = form_select_st.value[-1:]

            st_bar = Bar(storage_dict,
                         values='f' + str(form),
                         label='n_list',
                         legend=None,
                         title="Storage Capacity per Node",
                         plot_width=1000,
                         plot_height=300,
                         xlabel="Nodes",
                         ylabel="Storage Capacity(kW)")

            hover = HoverTool(tooltips=[
                ("Node", "@n_list"),
                ("Value", "@height"),
            ])

            st_bar.add_tools(hover)

            disp_row_2.children[0] = st_bar
            fin_column.children[1] = self.create_legend()

        form_select_st = Select(value="Form1",
                                title='Forms',
                                options=self.e_forms)
        form_select_st.on_change('value', update_plot_st)

        gis_dict = {}
        gis_dict['x'] = 14 * np.random.rand(self.n_hubs, )
        gis_dict['y'] = 6 * np.random.rand(self.n_hubs, )
        if (self.n_hubs == 1):
            x_range = (0, gis_dict['x'].max())
            y_range = (0, gis_dict['y'].max())
        else:
            x_range = (gis_dict['x'].min(), gis_dict['x'].max())
            y_range = (gis_dict['y'].min(), gis_dict['y'].max())
        gis_plot = figure(title="Node Locations with Capacities",
                          plot_width=600,
                          plot_height=600,
                          x_range=x_range,
                          y_range=y_range)
        gis_plot.xaxis.axis_label = "X Coordinates"
        gis_plot.yaxis.axis_label = "Y Coordinates"

        for k, v in cap_source.items():
            gis_dict[k] = v
            if (k != 'n_list' and v.max(axis=0) != 0):
                gis_dict[k + 'n'] = v / v.max(axis=0) * abs(max(y_range) * 3)
            else:
                gis_dict[k + 'n'] = gis_dict[k]

        gis_dict['temp'] = gis_dict['n11']
        gis_dict['tempn'] = gis_dict['n11n']

        gis_source = ColumnDataSource(data=gis_dict)

        gis_plot.circle(
            x='x',
            y='y',
            radius='tempn',
            source=gis_source,
            radius_dimension='y',
            radius_units='screen',
        )

        gis_hover = HoverTool(tooltips=[("X", "@x"), ("Y",
                                                      "@y"), ("Value",
                                                              "@temp")])

        gis_plot.add_tools(gis_hover)

        def update_plot_gis(attrname, old, new):
            form = form_select_gis.value[-1:]
            tech = tech_select_gis.value[-1:]

            gis_source.data['temp'] = gis_source.data['n' + str(tech) +
                                                      str(form)]
            gis_source.data['tempn'] = gis_source.data['n' + str(tech) +
                                                       str(form) + 'n']

        form_select_gis = Select(value="Form1",
                                 title='Forms',
                                 options=self.e_forms)
        tech_select_gis = Select(value="Tech1",
                                 title='Technologies',
                                 options=self.e_techs)
        form_select_gis.on_change('value', update_plot_gis)
        tech_select_gis.on_change('value', update_plot_gis)

        controls = column(form_select)
        controls_2 = column(form_select_st)
        controls_3 = column(form_select_gis, tech_select_gis)
        disp_row_1 = row(v_bar, controls)
        disp_row_2 = row(storage_bar, controls_2)
        disp_row_3 = row(gis_plot, controls_3)

        fin_column = column(disp_row_1, tech_legend1, disp_row_2, disp_row_3)

        return fin_column
Beispiel #13
0
    def production(self):

        prodmat = {}

        for hub_step in range(1, self.n_hubs + 1):
            for time_step in range(1, self.time_steps + 1):
                for forms in range(1, self.n_forms + 1):
                    for techs in range(1, self.n_techs + 1):
                        prodmat[(hub_step, time_step, forms,
                                 techs)] = self.demand[(hub_step, time_step,
                                                        forms)] * self.cmatrix[
                                                            (techs, forms)]

        prod_data = {}

        for hub_step in range(1, self.n_hubs + 1):
            for forms in range(1, self.n_forms + 1):
                for techs in range(1, self.n_techs + 1):
                    prod_data['n' + str(hub_step) + str(forms) +
                              str(techs)] = np.zeros((self.time_steps + 1))
                    for time_step in range(1, self.time_steps + 1):
                        prod_data['n' + str(hub_step) + str(forms) +
                                  str(techs)][time_step] = prodmat[(hub_step,
                                                                    time_step,
                                                                    forms,
                                                                    techs)]

        prod_data['time_step'] = np.linspace(1, self.time_steps + 1,
                                             self.time_steps + 1)

        cols = []
        for techs in range(1, self.n_techs + 1):
            cols.append('n' + str(11) + str(techs))

        bar = Bar(prod_data,
                  values=blend(*cols, name='medals', labels_name='medal'),
                  label='time_step',
                  stack='medal',
                  legend=None,
                  title="Energy Production per Node for Each Form of Energy",
                  color=color(columns='medal',
                              palette=brewer['Set1'][self.n_techs],
                              sort=True),
                  plot_width=1000,
                  plot_height=300,
                  xlabel="Hours",
                  ylabel="Energy Production(kW)")

        hover = HoverTool(tooltips=[
            ("Hour", "@time_step"),
            ("Value", "@height"),
        ])

        bar.add_tools(hover)

        tech_legend1 = self.create_legend()

        prod_dataw = {}
        if (self.time_weeks == 0):
            for k, v in prod_data.items():
                prod_dataw[k] = np.zeros((1))
            prod_dataw['time_step'] = np.zeros((1))
        else:
            for k, v in prod_data.items():
                v = v[:self.time_weeks * self.week_h]
                prod_dataw[k] = np.sum(v.reshape(-1, self.week_h), axis=1)
            prod_dataw['time_step'] = np.linspace(1, self.time_weeks,
                                                  self.time_weeks)

        bar_w = Bar(
            prod_dataw,
            values=blend(*cols, name='medals', labels_name='medal'),
            label='time_step',
            stack='medal',
            legend=None,
            title="Energy Production per Node for Each Form of Energy per Week",
            color=color(columns='medal',
                        palette=brewer['Set1'][self.n_techs],
                        sort=True),
            plot_width=1000,
            plot_height=300,
            xlabel="Weeks",
            ylabel="Energy Production(kW)")

        hover = HoverTool(tooltips=[
            ("Hour", "@time_step"),
            ("Value", "@height"),
        ])

        bar_w.add_tools(hover)

        def update_plot(attrname, old, new):
            node = node_select.value[-1:]
            form = form_select.value[-1:]

            cols = []

            for techs in range(1, self.n_techs + 1):
                cols.append('n' + str(node) + str(form) + str(techs))

            pbar = Bar(
                prod_data,
                values=blend(*cols, name='medals', labels_name='medal'),
                label='time_step',
                stack='medal',
                legend=None,
                title="Energy Production per Node for Each Form of Energy",
                color=color(columns='medal',
                            palette=brewer['Set1'][self.n_techs],
                            sort=True),
                plot_width=1000,
                plot_height=300,
                xlabel="Hours",
                ylabel="Energy Production(kW)")

            hover = HoverTool(tooltips=[
                ("Hour", "@time_step"),
                ("Value", "@height"),
            ])
            pbar.add_tools(hover)

            disp_row.children[0] = pbar

        def update_plotw(attrname, old, new):
            node = node_selectw.value[-1:]
            form = form_selectw.value[-1:]

            cols = []

            for techs in range(1, self.n_techs + 1):
                cols.append('n' + str(node) + str(form) + str(techs))
                print('n' + str(node) + str(form) + str(techs))

            pbarw = Bar(
                prod_dataw,
                values=blend(*cols, name='medals', labels_name='medal'),
                label='time_step',
                stack='medal',
                legend=None,
                title="Energy Production per Node for Each Form of Energy",
                color=color(columns='medal',
                            palette=brewer['Set1'][self.n_techs],
                            sort=True),
                plot_width=1000,
                plot_height=300,
                xlabel="Weeks",
                ylabel="Energy Production(kW)")

            hover = HoverTool(tooltips=[
                ("Hour", "@time_step"),
                ("Value", "@height"),
            ])
            pbarw.add_tools(hover)

            disp_row_2.children[0] = pbarw
            fin_column.children[1] = self.create_legend()

        node_select = Select(value="Node1", title='Nodes', options=self.nodes)
        form_select = Select(value="Form1",
                             title='Forms',
                             options=self.e_forms)

        node_select.on_change('value', update_plot)
        form_select.on_change('value', update_plot)

        controls = column(node_select, form_select)
        disp_row = row(bar, controls)

        node_selectw = Select(value="Node1", title='Nodes', options=self.nodes)
        form_selectw = Select(value="Form1",
                              title='Forms',
                              options=self.e_forms)

        node_selectw.on_change('value', update_plotw)
        form_selectw.on_change('value', update_plotw)

        controlsw = column(node_selectw, form_selectw)
        disp_row_2 = row(bar_w, controlsw)

        fin_column = column(disp_row, tech_legend1, disp_row_2)

        return fin_column
Beispiel #14
0
    def createBokehChart(self):
        keyFields = self.getKeyFields()
        valueFields = self.getValueFields()
        clusterby = self.options.get("clusterby")
        stacked = self.options.get("charttype", "grouped") == "stacked"
        subplots = self.isSubplot()
        workingPDF = self.getWorkingPandasDataFrame().copy()

        def convertPDFDate(df, col):
            #Bokeh doesn't support datetime as index in Bar chart. Convert to String
            if len(keyFields) == 1:
                dtype = df[col].dtype.type if col in df else None
                if numpy.issubdtype(dtype, numpy.datetime64):
                    dateFormat = self.options.get("dateFormat", None)
                    try:
                        df[col] = df[col].apply(
                            lambda x: str(x).replace(':', '-')
                            if dateFormat is None else x.strftime(dateFormat))
                    except:
                        self.exception("Error converting dateFormat {}".format(
                            dateFormat))
                        df[col] = df[col].apply(
                            lambda x: str(x).replace(':', '-'))

        for index, row in workingPDF.iterrows():
            for k in keyFields:
                if isinstance(row[k],
                              str if sys.version >= '3' else basestring):
                    row[k] = row[k].replace(':', '.')
            workingPDF.loc[index] = row

        charts = []

        def goChart(label, stack_or_group, values, ylabel=None, color=None):
            convertPDFDate(workingPDF, keyFields[0])
            if ylabel is None:
                ylabel = values
            label = label if isinstance(label, (list, tuple)) else [label]
            if stacked:
                charts.append(
                    Bar(workingPDF,
                        label=CatAttr(columns=label, sort=False),
                        stack=stack_or_group,
                        color=color,
                        values=values,
                        legend=self.showLegend(),
                        ylabel=ylabel))
            else:
                charts.append(
                    Bar(workingPDF,
                        label=CatAttr(columns=label, sort=False),
                        group=stack_or_group,
                        color=color,
                        values=values,
                        legend=self.showLegend(),
                        ylabel=ylabel))

        if clusterby is not None and (subplots or len(valueFields) <= 1):
            subplots = subplots if len(valueFields) == 1 or subplots else False
            if subplots:
                for j, valueField in enumerate(valueFields):
                    pivot = workingPDF.pivot(index=keyFields[0],
                                             columns=clusterby,
                                             values=valueField)
                    for i, col in enumerate(pivot.columns[:10]):  #max 10
                        data = pd.DataFrame({
                            'values': pivot[col].values,
                            'names': pivot.index.values
                        })
                        convertPDFDate(data, 'names')
                        if subplots:
                            charts.append(
                                Bar(data,
                                    label=CatAttr(columns=['names'],
                                                  sort=False),
                                    color=Colors.hexRGB(1. * i / 2),
                                    values='values',
                                    ylabel=valueField,
                                    legend=False,
                                    title="{0} = {1}".format(
                                        clusterby, pivot.columns[i])))
            else:
                goChart(keyFields[0], clusterby, valueFields[0])
        else:
            if subplots:
                for i, valueField in enumerate(valueFields):
                    goChart(keyFields[0],
                            None,
                            valueField,
                            color=Colors.hexRGB(1. * i / 2))
            else:
                if len(valueFields) > 1:
                    series = '_'.join(valueFields)
                    values = blend(*valueFields,
                                   name=series.replace('_', ','),
                                   labels_name=series)
                else:
                    series = False
                    values = valueFields[0]
                goChart(keyFields,
                        series,
                        values,
                        ylabel=','.join(valueFields))

            if clusterby is not None:
                self.addMessage(
                    "Warning: 'Cluster By' ignored when grouped option with multiple Value Fields is selected"
                )
        return charts
Beispiel #15
0
from bkcharts import Bar, output_file, show
from bkcharts.attributes import cat, color
from bkcharts.operations import blend
from bkcharts.utils import df_from_json
from bokeh.sampledata.olympics2014 import data

# utilize utility to make it easy to get json/dict data converted to a dataframe
df = df_from_json(data)

# filter by countries with at least one medal and sort by total medals
df = df[df['total'] > 0]
df = df.sort_values(by="total", ascending=False)

bar = Bar(df,
          values=blend('bronze', 'silver', 'gold', name='medals', labels_name='medal'),
          label=cat(columns='abbr', sort=False),
          stack=cat(columns='medal', sort=False),
          color=color(columns='medal', palette=['SaddleBrown', 'Silver', 'Goldenrod'],
                      sort=False),
          legend='top_right',
          title="Medals per Country, Sorted by Total Medals",
          tooltips=[('medal', '@medal'), ('country', '@abbr')])


output_file("stacked_bar.html", title="stacked_bar.py example")

show(bar)
Beispiel #16
0
            y=600,
            text='year',
            text_font_size='20pt',
            text_color='#0569CE',
            text_alpha=1)

#add the Bar graph
p = Bar(
    renderer_source.data,
    label=cat(columns='Intervals', sort=False),
    values=blend('Tax Units with Tax Increase',
                 'Tax Units with Tax Cut',
                 name='values',
                 labels_name='vars'),
    tooltips=[('Value', '@values')],
    ylabel="Tax units with tax cut             Tax units with tax increase",
    stack=cat(columns='values', sort=False),
    color=color(columns='vars', palette=['silver', 'orange'], sort=True),
    bar_width=0.4,
    tools="pan,box_zoom, reset, save",
    plot_width=600,
    plot_height=500,
    logo=None,
    toolbar_sticky=False,
    legend=False)
p.xaxis.axis_label = 'Income [$ thousands]'
#add the text as a glyph
p.add_glyph(text_source, text)

# Create the "Average tax" figure
s1 = figure(plot_width=600,
            plot_height=200,
Beispiel #17
0
from bkcharts import Bar, output_file, show, defaults
from bokeh.layouts import gridplot
from bokeh.sampledata.autompg import autompg as df

df['neg_mpg'] = 0 - df['mpg']

defaults.plot_width = 400
defaults.plot_height = 400

bar_plot = Bar(df, label='cyl', title="label='cyl'")
bar_plot.title.text_font_size = '10pt'

bar_plot2 = Bar(df,
                label='cyl',
                bar_width=0.4,
                title="label='cyl' bar_width=0.4")
bar_plot2.title.text_font_size = '10pt'

bar_plot3 = Bar(df,
                label='cyl',
                values='mpg',
                agg='mean',
                title="label='cyl' values='mpg' agg='mean'")
bar_plot3.title.text_font_size = '10pt'

bar_plot4 = Bar(df,
                label='cyl',
                title="label='cyl' color='DimGray'",
                color='dimgray')
bar_plot4.title.text_font_size = '10pt'