def init_connection(self): """Initialize variables that are local to a connection, (needed if the client automatically reconnect)""" self.ready_lock.acquire( False) # reacquire the ready-lock in case of reconnection self.connected = PYMUMBLE_CONN_STATE_NOT_CONNECTED self.control_socket = None self.media_socket = None # Not implemented - for UDP media self.bandwidth = PYMUMBLE_BANDWIDTH # reset the outgoing bandwidth to it's default before connectiong self.server_max_bandwidth = None self.udp_active = False self.users = users.Users( self, self.callbacks ) # contain the server's connected users informations self.channels = channels.Channels( self, self.callbacks) # contain the server's channels informations self.blobs = blobs.Blobs(self) # manage the blob objects self.sound_output = soundoutput.SoundOutput( self, PYMUMBLE_AUDIO_PER_PACKET, self.bandwidth) # manage the outgoing sounds self.commands = commands.Commands( ) # manage commands sent between the main and the mumble threads self.receive_buffer = "" # initialize the control connection input buffer
def run_game(): pygame.init() ai_settings = Settings() #创建屏幕 screen = pygame.display.set_mode( (ai_settings.screen_width, ai_settings.screen_height)) pygame.display.set_caption("Supreme Commander Kim VS Trump") #创建一艘飞船 player = Player(screen) #创建n个blob my_blobs = blobs.Blobs() my_blobs.generate_blob(ai_settings, screen, player, ai_settings.blob_num_init) while True: #对各个事件做出反应 gf.check_events(player, my_blobs, ai_settings) #更新屏幕 if player.life_value > 0: gf.update_screen(ai_settings, screen, player, my_blobs) else: screen.fill([0, 0, 0]) pygame.display.flip()
# Format data and merge on shapefile IDs ordered_blocks = pd.DataFrame( df.loc[:, ['geoid10', 'tract_bloc', 'Pop', 'order']]) ordered_blocks.sort(['order']) crime_hour_tables = [] for i in range(24): hourlyTable = pd.merge(crime_hour[i], ordered_blocks, how='right', left_on='geoid10', right_on='geoid10', sort=False).fillna(0).sort(['order']) hourlyTable = hourlyTable.drop(['order', 'hour'], 1) crime_hour_tables.append(hourlyTable) i = 0 print i class bd: data = crime_hour_tables[i] w = w shp_link = shp_link id = 'geoid10' level = 'block' d = bd() b = blobs.Blobs(d, 'Pop', 1000, plot=False, iterations=1) b.generate_shapefile(filename='blob_hour_test_0_1000.shp')
### script to test blobs ### contributors: [email protected] ### 6/18/15 import blobs # tract level d = blobs.Blobs_Data('Chicago Census.csv', 'tract', 'tracts/CensusTractsTIGER2010.shp', 'tractce10', [ 'crimes_2001_to_present', '311_service_requests_vacant_and_abandoned_building', '311_service_requests_rodent_baiting' ]) b = blobs.Blobs(d, 'pop', 10000) # block level d = blobs.Blobs_Data('Chicago Census.csv', 'block', 'blocks/CensusBlockTIGER2010.shp', 'geoid10', [ 'crimes_2001_to_present', '311_service_requests_vacant_and_abandoned_building', '311_service_requests_rodent_baiting' ]) b = blobs.Blobs(d, 'pop', 10000) cl = blobs.Cluster_blobs(b, blobs_per_cluster=10) # the following will let you get started immediately on pre-downloaded data import numpy as np import pandas as pd import pysal as ps shp_link = 'tracts/CensusTractsTIGER2010.shp' dbf = ps.open('tracts/CensusTractsTIGER2010.dbf')