Beispiel #1
0
convnet.push_initialization_config()

convnet.layers[0].weights_init = Uniform(width=0.2)
convnet.layers[1].weights_init = Uniform(width=0.2)
convnet.layers[2].weights_init = Uniform(width=0.2)
convnet.top_mlp.linear_transformations[0].weights_init = Uniform(width=0.2)
convnet.top_mlp.linear_transformations[1].weights_init = Uniform(width=0.2)
convnet.initialize()

#########################################################
#Generate output and error signal
predict = convnet.apply(x)
cost = CategoricalCrossEntropy().apply(y.flatten(), predict).copy(name='cost')
error = MisclassificationRate().apply(y.flatten(), predict)
#Little trick to plot the error rate in two different plots (We can't use two time the same data in the plot for a unknow reason)
error_rate = error.copy(name='error_rate')
error_rate2 = error.copy(name='error_rate2')
cg = ComputationGraph([cost, error_rate])
########### ALGORITHM of training#############
algorithm = GradientDescent(cost=cost,
                            parameters=cg.parameters,
                            step_rule=Adam(learning_rate=0.0005))
extensions = [
    Timing(),
    FinishAfter(after_n_epochs=num_epochs),
    DataStreamMonitoring([cost, error_rate, error_rate2],
                         stream_valid,
                         prefix="valid"),
    TrainingDataMonitoring(
        [cost, error_rate,
         aggregation.mean(algorithm.total_gradient_norm)],
    data_train_stream = create_data(DogsVsCats(('train',), subset=slice(0, 100)))
    data_valid_stream = create_data(DogsVsCats(('train',), subset=slice(100, 110)))
if mode is  "GPU_run":
    data_train_stream = create_data(DogsVsCats(('train',), subset=slice(0, 22500)))
    data_valid_stream = create_data(DogsVsCats(('train',), subset=slice(22500, 25000)))
if mode is "data_server":
    data_train_stream = ServerDataStream(('image_features','targets'), False, port=5560)
    data_valid_stream = ServerDataStream(('image_features','targets'), False, port=5561)


### Setting up the model
probs = top_mlp.apply(conv_out)

cost = CategoricalCrossEntropy().apply(y.flatten(), probs).copy(name='cost')
error = MisclassificationRate().apply(y.flatten(), probs)
error_rate = error.copy(name='error_rate')
error_rate2 = error.copy(name='error_rate2')
cg = ComputationGraph([cost, error_rate])

### Gradient Descent
algorithm = GradientDescent(cost=cost, parameters=cg.parameters, step_rule=Scale(learning_rate=learning_rate))

extensions = [Timing(),
              FinishAfter(after_n_epochs=num_epochs),
              DataStreamMonitoring(
                  [cost, error_rate, error_rate2],
                  data_valid_stream,
                  prefix="valid"),
              TrainingDataMonitoring(
                  [cost, error_rate,
                   aggregation.mean(algorithm.total_gradient_norm)],
Beispiel #3
0
def build_and_run(label, config):
    ############## CREATE THE NETWORK ###############
    #Define the parameters
    num_epochs, num_batches, num_channels, image_shape, filter_size, num_filter, pooling_sizes, mlp_hiddens, output_size, batch_size, activation, mlp_activation = config[
        'num_epochs'], config['num_batches'], config['num_channels'], config[
            'image_shape'], config['filter_size'], config[
                'num_filter'], config['pooling_sizes'], config[
                    'mlp_hiddens'], config['output_size'], config[
                        'batch_size'], config['activation'], config[
                            'mlp_activation']
    #    print(num_epochs, num_channels, image_shape, filter_size, num_filter, pooling_sizes, mlp_hiddens, output_size, batch_size, activation, mlp_activation)
    lambda_l1 = 0.000025
    lambda_l2 = 0.000025

    print("Building model")
    #Create the symbolics variable
    x = T.tensor4('image_features')
    y = T.lmatrix('targets')

    #Get the parameters
    conv_parameters = zip(filter_size, num_filter)

    #Create the convolutions layers
    conv_layers = list(
        interleave([(Convolutional(filter_size=filter_size,
                                   num_filters=num_filter,
                                   name='conv_{}'.format(i))
                     for i, (filter_size,
                             num_filter) in enumerate(conv_parameters)),
                    (activation),
                    (MaxPooling(size, name='pool_{}'.format(i))
                     for i, size in enumerate(pooling_sizes))]))
    #    (AveragePooling(size, name='pool_{}'.format(i)) for i, size in enumerate(pooling_sizes))]))

    #Create the sequence
    conv_sequence = ConvolutionalSequence(conv_layers,
                                          num_channels,
                                          image_size=image_shape,
                                          weights_init=Uniform(width=0.2),
                                          biases_init=Constant(0.))
    #Initialize the convnet
    conv_sequence.initialize()
    #Add the MLP
    top_mlp_dims = [np.prod(conv_sequence.get_dim('output'))
                    ] + mlp_hiddens + [output_size]
    out = Flattener().apply(conv_sequence.apply(x))
    mlp = MLP(mlp_activation,
              top_mlp_dims,
              weights_init=Uniform(0, 0.2),
              biases_init=Constant(0.))
    #Initialisze the MLP
    mlp.initialize()
    #Get the output
    predict = mlp.apply(out)

    cost = CategoricalCrossEntropy().apply(y.flatten(),
                                           predict).copy(name='cost')
    error = MisclassificationRate().apply(y.flatten(), predict)

    #Little trick to plot the error rate in two different plots (We can't use two time the same data in the plot for a unknow reason)
    error_rate = error.copy(name='error_rate')
    error_rate2 = error.copy(name='error_rate2')

    ########### REGULARIZATION ##################
    cg = ComputationGraph([cost])
    weights = VariableFilter(roles=[WEIGHT])(cg.variables)
    biases = VariableFilter(roles=[BIAS])(cg.variables)
    # # l2_penalty_weights = T.sum([i*lambda_l2/len(weights) * (W ** 2).sum() for i,W in enumerate(weights)]) # Gradually increase penalty for layer
    l2_penalty = T.sum([
        lambda_l2 * (W**2).sum() for i, W in enumerate(weights + biases)
    ])  # Gradually increase penalty for layer
    # # #l2_penalty_bias = T.sum([lambda_l2*(B **2).sum() for B in biases])
    # # #l2_penalty = l2_penalty_weights + l2_penalty_bias
    l2_penalty.name = 'l2_penalty'
    l1_penalty = T.sum([lambda_l1 * T.abs_(z).sum() for z in weights + biases])
    #  l1_penalty_weights = T.sum([i*lambda_l1/len(weights) * T.abs_(W).sum() for i,W in enumerate(weights)]) # Gradually increase penalty for layer
    #  l1_penalty_biases = T.sum([lambda_l1 * T.abs_(B).sum() for B in biases])
    #  l1_penalty = l1_penalty_biases + l1_penalty_weights
    l1_penalty.name = 'l1_penalty'
    costreg = cost + l2_penalty + l1_penalty
    costreg.name = 'costreg'

    ########### DEFINE THE ALGORITHM #############
    #  algorithm = GradientDescent(cost=cost, parameters=cg.parameters, step_rule=Momentum())
    algorithm = GradientDescent(cost=costreg,
                                parameters=cg.parameters,
                                step_rule=Adam())

    ########### GET THE DATA #####################
    istest = 'test' in config.keys()
    train_stream, valid_stream, test_stream = get_stream(batch_size,
                                                         image_shape,
                                                         test=istest)

    ########### INITIALIZING EXTENSIONS ##########
    checkpoint = Checkpoint('models/best_' + label + '.tar')
    checkpoint.add_condition(
        ['after_epoch'], predicate=OnLogRecord('valid_error_rate_best_so_far'))
    #Adding a live plot with the bokeh server
    plot = Plot(
        label,
        channels=[
            ['train_error_rate', 'valid_error_rate'],
            ['valid_cost', 'valid_error_rate2'],
            # ['train_costreg','train_grad_norm']], #
            [
                'train_costreg', 'train_total_gradient_norm',
                'train_l2_penalty', 'train_l1_penalty'
            ]
        ],
        server_url="http://hades.calculquebec.ca:5042")

    grad_norm = aggregation.mean(algorithm.total_gradient_norm)
    grad_norm.name = 'grad_norm'

    extensions = [
        Timing(),
        FinishAfter(after_n_epochs=num_epochs, after_n_batches=num_batches),
        DataStreamMonitoring([cost, error_rate, error_rate2],
                             valid_stream,
                             prefix="valid"),
        TrainingDataMonitoring([
            costreg, error_rate, error_rate2, grad_norm, l2_penalty, l1_penalty
        ],
                               prefix="train",
                               after_epoch=True),
        plot,
        ProgressBar(),
        Printing(),
        TrackTheBest('valid_error_rate', min),  #Keep best
        checkpoint,  #Save best
        FinishIfNoImprovementAfter('valid_error_rate_best_so_far', epochs=4)
    ]  # Early-stopping
    model = Model(cost)
    main_loop = MainLoop(algorithm,
                         data_stream=train_stream,
                         model=model,
                         extensions=extensions)
    main_loop.run()
def main(feature_maps=None, mlp_hiddens=None, conv_sizes=None, pool_sizes=None, batch_size=None, num_batches=None):
    if feature_maps is None:
        feature_maps = [32, 48, 64, 80, 128, 128]
    if mlp_hiddens is None:
        mlp_hiddens = [1000]
    if conv_sizes is None:
        conv_sizes = [7, 5, 5, 5, 5, 4]
    if pool_sizes is None:
        pool_sizes = [3, 2, 2, 2, 2, 1]
    if batch_size is None:
        batch_size = 64
    conv_steps = [2, 1, 1, 1, 1, 1]  # same as stride
    image_size = (256, 256)
    output_size = 2
    learningRate = 0.001
    drop_prob = 0.5
    weight_noise = 0.75
    num_epochs = 250
    num_batches = None
    host_plot = "http://*****:*****@ %s" % (graph_name, datetime.datetime.now(), socket.gethostname()),
                    channels=[["train_error_rate", "valid_error_rate"], ["train_total_gradient_norm"]],
                    after_epoch=True,
                    server_url=host_plot,
                )
            )
            PLOT_AVAILABLE = True
        except ImportError:
            PLOT_AVAILABLE = False
        extensions.append(Checkpoint(save_to, after_epoch=True, after_training=True, save_separately=["log"]))

    logger.info("Building the model")

    model = Model(cost)

    ########### Loading images #####################
    main_loop = MainLoop(algorithm, stream_data_train, model=model, extensions=extensions)

    main_loop.run()
Beispiel #5
0
def build_and_run(label, config):
    ############## CREATE THE NETWORK ###############
    #Define the parameters
    num_epochs, num_batches, num_channels, image_shape, filter_size, num_filter, pooling_sizes, mlp_hiddens, output_size, batch_size, activation, mlp_activation  = config['num_epochs'], config['num_batches'], config['num_channels'], config['image_shape'], config['filter_size'], config['num_filter'], config['pooling_sizes'], config['mlp_hiddens'], config['output_size'], config['batch_size'], config['activation'], config['mlp_activation']
#    print(num_epochs, num_channels, image_shape, filter_size, num_filter, pooling_sizes, mlp_hiddens, output_size, batch_size, activation, mlp_activation)
    lambda_l1 = 0.000025
    lambda_l2 = 0.000025

    print("Building model")
    #Create the symbolics variable
    x = T.tensor4('image_features')
    y = T.lmatrix('targets')

    #Get the parameters
    conv_parameters = zip(filter_size, num_filter)

    #Create the convolutions layers
    conv_layers = list(interleave([(Convolutional(
                                      filter_size=filter_size,
                                      num_filters=num_filter,
                                      name='conv_{}'.format(i))
                    for i, (filter_size, num_filter)
                    in enumerate(conv_parameters)),
                  (activation),
            (MaxPooling(size, name='pool_{}'.format(i)) for i, size in enumerate(pooling_sizes))]))
        #    (AveragePooling(size, name='pool_{}'.format(i)) for i, size in enumerate(pooling_sizes))]))

    #Create the sequence
    conv_sequence = ConvolutionalSequence(conv_layers, num_channels, image_size=image_shape, weights_init=Uniform(width=0.2), biases_init=Constant(0.))
    #Initialize the convnet
    conv_sequence.initialize()
    #Add the MLP
    top_mlp_dims = [np.prod(conv_sequence.get_dim('output'))] + mlp_hiddens + [output_size]
    out = Flattener().apply(conv_sequence.apply(x))
    mlp = MLP(mlp_activation, top_mlp_dims, weights_init=Uniform(0, 0.2),
              biases_init=Constant(0.))
    #Initialisze the MLP
    mlp.initialize()
    #Get the output
    predict = mlp.apply(out)

    cost = CategoricalCrossEntropy().apply(y.flatten(), predict).copy(name='cost')
    error = MisclassificationRate().apply(y.flatten(), predict)

    #Little trick to plot the error rate in two different plots (We can't use two time the same data in the plot for a unknow reason)
    error_rate = error.copy(name='error_rate')
    error_rate2 = error.copy(name='error_rate2')

    ########### REGULARIZATION ##################
    cg = ComputationGraph([cost])
    weights = VariableFilter(roles=[WEIGHT])(cg.variables)
    biases = VariableFilter(roles=[BIAS])(cg.variables)
  # # l2_penalty_weights = T.sum([i*lambda_l2/len(weights) * (W ** 2).sum() for i,W in enumerate(weights)]) # Gradually increase penalty for layer
    l2_penalty = T.sum([lambda_l2 * (W ** 2).sum() for i,W in enumerate(weights+biases)]) # Gradually increase penalty for layer
  # # #l2_penalty_bias = T.sum([lambda_l2*(B **2).sum() for B in biases])
  # # #l2_penalty = l2_penalty_weights + l2_penalty_bias
    l2_penalty.name = 'l2_penalty'
    l1_penalty = T.sum([lambda_l1*T.abs_(z).sum() for z in weights+biases])
  #  l1_penalty_weights = T.sum([i*lambda_l1/len(weights) * T.abs_(W).sum() for i,W in enumerate(weights)]) # Gradually increase penalty for layer    
  #  l1_penalty_biases = T.sum([lambda_l1 * T.abs_(B).sum() for B in biases])
  #  l1_penalty = l1_penalty_biases + l1_penalty_weights
    l1_penalty.name = 'l1_penalty'
    costreg = cost + l2_penalty + l1_penalty
    costreg.name = 'costreg'
    
    ########### DEFINE THE ALGORITHM #############
  #  algorithm = GradientDescent(cost=cost, parameters=cg.parameters, step_rule=Momentum())
    algorithm = GradientDescent(cost=costreg, parameters=cg.parameters, step_rule=Adam())

    ########### GET THE DATA #####################
    istest = 'test' in config.keys()
    train_stream, valid_stream, test_stream = get_stream(batch_size,image_shape,test=istest)
    

    ########### INITIALIZING EXTENSIONS ##########
    checkpoint = Checkpoint('models/best_'+label+'.tar')
    checkpoint.add_condition(['after_epoch'],
                         predicate=OnLogRecord('valid_error_rate_best_so_far'))
    #Adding a live plot with the bokeh server
    plot = Plot(label,
        channels=[['train_error_rate', 'valid_error_rate'],
                  ['valid_cost', 'valid_error_rate2'],
                 # ['train_costreg','train_grad_norm']], #  
                 ['train_costreg','train_total_gradient_norm','train_l2_penalty','train_l1_penalty']],
                  server_url="http://hades.calculquebec.ca:5042")  
   
    grad_norm = aggregation.mean(algorithm.total_gradient_norm)
    grad_norm.name = 'grad_norm'

    extensions = [Timing(),
                  FinishAfter(after_n_epochs=num_epochs,
                  after_n_batches=num_batches),
                  DataStreamMonitoring([cost, error_rate, error_rate2], valid_stream, prefix="valid"),
                  TrainingDataMonitoring([costreg, error_rate, error_rate2,
                    grad_norm,l2_penalty,l1_penalty],
                     prefix="train", after_epoch=True),
                  plot,
                  ProgressBar(),
                  Printing(),
                  TrackTheBest('valid_error_rate',min), #Keep best
                  checkpoint,  #Save best
                  FinishIfNoImprovementAfter('valid_error_rate_best_so_far', epochs=4)] # Early-stopping                  
    model = Model(cost)
    main_loop = MainLoop(algorithm,data_stream=train_stream,model=model,extensions=extensions)
    main_loop.run()