Beispiel #1
0
def test_base_bmodel_no_hold():
    """Test the no hold option"""
    n_nodes = 12
    n_runs_pert = 16
    bmodel = Bmodel(J=random_interaction_matrix(N=n_nodes))
    bmodel.runs(16)
    hold = False
    for config in bmodel.steady_states.values:
        for node_to_switch in bmodel.node_labels:
            for switch_to in ["ON", "OFF"]:
                bmodel.perturbe(initial_condition=config,
                                node_to_switch=node_to_switch,
                                switch_to=switch_to,
                                n_runs=n_runs_pert,
                                hold=hold)

    # if node is not holded, then final state can or cannot be what we asked for
    # this is difficult to test
    checks = []
    for switched_node in bmodel.node_labels:
        for switch_to in ["ON", "OFF"]:
            perturbations = bmodel.get_perturbations(
                switched_node=switched_node, switch_to=switch_to, hold=hold)
            checks.append((perturbations[switched_node] == {
                "ON": -1,
                "OFF": 1
            }[switch_to]).values)
    checks = list(np.concatenate(checks))
    checks = sorted(list(set(checks)))
    assert checks == [False, True]
Beispiel #2
0
def test_base_bmodel_get_perturbations():
    """Test that we retrieve the right number of perturbations"""
    n_nodes = 16
    n_runs_pert = 5
    bmodel = Bmodel(J=random_interaction_matrix(N=n_nodes), maxT=4)
    bmodel.runs(20)
    # do the perturbations
    for config in bmodel.steady_states.values:
        for hold in [True, False]:
            for node_to_switch in bmodel.node_labels:
                for switch_to in ["ON", "OFF"]:
                    bmodel.perturbe(initial_condition=config,
                                    node_to_switch=node_to_switch,
                                    switch_to=switch_to,
                                    n_runs=n_runs_pert,
                                    hold=hold)
    # count the perturbations
    for hold in [True, False]:
        for switched_node in bmodel.node_labels:
            for switch_to in ["ON", "OFF"]:
                perturbations = bmodel.get_perturbations(
                    switched_node=switched_node,
                    switch_to=switch_to,
                    hold=hold)
                n_ics = (bmodel.steady_states[switched_node] == {
                    "ON": -1,
                    "OFF": 1
                }[switch_to]).sum()
                assert perturbations.shape == (n_ics * n_runs_pert, n_nodes)
Beispiel #3
0
def test_base_bmodel_hold():
    """Test the hold option"""
    n_nodes = 12
    n_runs_pert = 4
    bmodel = Bmodel(J=random_interaction_matrix(N=n_nodes))
    bmodel.runs(16)
    hold = True
    for config in bmodel.steady_states.values:
        for node_to_switch in bmodel.node_labels:
            for switch_to in ["ON", "OFF"]:
                bmodel.perturbe(initial_condition=config,
                                node_to_switch=node_to_switch,
                                switch_to=switch_to,
                                n_runs=n_runs_pert,
                                hold=hold)

    # If node is holded, its final state must be what we asked for
    for switched_node in bmodel.node_labels:
        for switch_to in ["ON", "OFF"]:
            perturbations = bmodel.get_perturbations(
                switched_node=switched_node, switch_to=switch_to, hold=hold)
            assert np.all(perturbations[switched_node] == {
                "ON": 1,
                "OFF": -1
            }[switch_to])
Beispiel #4
0
def test_base_bmodel_indicator_can_fail():
    n_nodes = 16
    J = random_interaction_matrix(N=n_nodes)
    node_labels = ["node_%d" % i for i in range(n_nodes)]
    indicator_nodes = ["node_a", "node_b"]
    with pytest.raises(IndicatorError):
        _ = Bmodel(J=J,
                   node_labels=node_labels,
                   indicator_nodes=indicator_nodes)
Beispiel #5
0
def test_base_bmodel_indicator_unique():
    """Test that we cannot pass non-unique indicators"""
    n_nodes = 16
    J = random_interaction_matrix(N=n_nodes)
    node_labels = ["node_%d" % i for i in range(n_nodes)]
    indicator_nodes = ["node_0", "node_1", "node_0"]
    with pytest.raises(IndicatorError):
        _ = Bmodel(J=J,
                   node_labels=node_labels,
                   indicator_nodes=indicator_nodes)
def test_generate_random_interaction_matrix_avk5_N100():
    """Test that the generate matrix has right avk."""
    N = 100
    avk = 5
    avks = [
        np.abs(random_interaction_matrix(N=N, avk=avk)).mean() * N
        for _ in range(1000)
    ]
    rel_err = np.abs(np.mean(avks) / avk - 1)
    assert rel_err < 0.05
def test_generate_random_interaction_matrix_mu04():
    """Test that the generate matrix has right mu."""
    N = 40
    avk = 3
    mu = 0.4
    mus = []
    for _ in range(1000):
        J = random_interaction_matrix(N=N, avk=avk, mu=mu)
        mus.append(np.sum(J == 1) / np.sum(J != 0))
    rel_err = np.abs(np.mean(mus) / mu - 1)
    assert rel_err < 0.01
Beispiel #8
0
def test_base_bmodel_indicator_is_set():
    n_nodes = 16
    node_labels = ["node_%d" % i for i in range(n_nodes)]
    # let us get at least two indicator nodes
    num_indicators = 0
    while num_indicators <= 1:
        J = random_interaction_matrix(N=n_nodes)
        indicator_nodes = [
            node for i, node in enumerate(node_labels) if np.all(J[:, i] == 0)
        ]
        num_indicators = len(indicator_nodes)
    bmodel = Bmodel(J=J,
                    node_labels=node_labels,
                    indicator_nodes=indicator_nodes)
    assert bmodel.indicator_nodes == list(indicator_nodes)
def test_generate_random_interaction_matrix_connected_N100():
    """Test that the generate matrix is connected."""
    J = random_interaction_matrix(N=100, avk=3, mu=0.8, connected=True)
    n, _ = connected_components(np.abs(J))
    assert n == 1
def test_generate_random_interaction_matrix_N():
    """Test that the generate matrix has right N."""
    J = random_interaction_matrix(N=100, avk=3, mu=0.8, connected=True)
    assert J.shape == (100, 100)
def random_small():
    N = 10
    J = random_interaction_matrix(N=N).astype(float)
    J_pseudo = np.identity(N) + 2 * J
    return N, J, J_pseudo