Beispiel #1
0
def build_hippocampus():

    net = NetworkBuilder('CA3')
    net.add_nodes(N=1,
                  pop_name='CA3e',
                  model_type='biophysical',
                  model_template='hoc:Spikingcell',
                  morphology='blank.swc')

    inputnet = NetworkBuilder('input')
    inputnet.add_nodes(N=1, model_type='virtual', pat='pat1', pop_name='virt')
    conn = inputnet.add_edges(
        target=net.nodes(pop_name='CA3e'),
        source={'pat': 'pat1'},
        connection_rule=1,
        dynamics_params='stsp.json',
        model_template='Exp2Syn1_STSP',
        delay=0,
        syn_weight=.5,
        target_sections=['soma'],  # target soma
        distance_range=[0.0, 300])
    conn.add_properties(['sec_id', 'sec_x'],
                        rule=(0, 0.9),
                        dtypes=[np.int32, np.float])

    net.build()
    net.save_nodes(output_dir='network')
    net.save_edges(output_dir='network')

    inputnet.build()
    inputnet.save(output_dir='network')
Beispiel #2
0
def build_tw():
    if not os.path.exists('output'):
        os.makedirs('output')

    TW = NetworkBuilder("TW")
    TW.add_nodes(N=3000, pop_name='TW', ei='e', location='TW', level_of_detail='filter')

    # Save cells.csv and cell_types.csv
    TW.save_nodes(nodes_file_name='output/tw_nodes.h5', node_types_file_name='output/tw_node_types.csv')

    VL4 = NetworkBuilder('V1/L4')
    VL4.import_nodes(nodes_file_name='output/v1_nodes.h5', node_types_file_name='output/v1_node_types.csv')
    VL4.add_edges(source=TW.nodes(), target={'pop_name': 'Rorb'},
                  connection_rule=lambda trg, src: 5,
                  **({'weight_max': 0.00015, 'weight_function': 'wmax', 'distance_range': [30.0, 150.0],
                      'target_sections': ['basal', 'apical'], 'delay': 2.0, 'params_file': 'AMPA_ExcToExc.json',
                      'set_params_function': 'exp2syn'}))

    VL4.add_edges(source=TW.nodes(), target={'pop_name': 'Scnn1a'},
                  connection_rule=lambda trg, src: 5,
                  **({'weight_max': 0.00019, 'weight_function': 'wmax', 'distance_range': [30.0, 150.0],
                      'target_sections': ['basal', 'apical'], 'delay': 2.0, 'params_file': 'AMPA_ExcToExc.json',
                      'set_params_function': 'exp2syn'}))

    VL4.add_edges(source=TW.nodes(), target={'pop_name': 'Nr5a1'},
                  connection_rule=lambda trg, src: 5,
                  **({'weight_max': 0.00019, 'weight_function': 'wmax', 'distance_range': [30.0, 150.0],
                      'target_sections': ['basal', 'apical'], 'delay': 2.0, 'params_file': 'AMPA_ExcToExc.json',
                      'set_params_function': 'exp2syn'}))

    VL4.add_edges(source=TW.nodes(), target={'pop_name': 'PV1'},
                  connection_rule=lambda trg, src: 5,
                  **({'weight_max': 0.0022, 'weight_function': 'wmax', 'distance_range': [0.0, 1.0e+20],
                      'target_sections': ['somatic', 'basal'], 'delay': 2.0, 'params_file': 'AMPA_ExcToInh.json',
                      'set_params_function': 'exp2syn'}))

    VL4.add_edges(source=TW.nodes(), target={'pop_name': 'PV2'},
                  connection_rule=lambda trg, src: 5,
                  **({'weight_max': 0.0013, 'weight_function': 'wmax', 'distance_range': [0.0, 1.0e+20],
                      'target_sections': ['somatic', 'basal'], 'delay': 2.0, 'params_file': 'AMPA_ExcToInh.json',
                      'set_params_function': 'exp2syn'}))

    VL4.add_edges(source=TW.nodes(), target={'pop_name': 'LIF_exc'},
                  connection_rule=lambda trg, src: 5,
                  **({'weight_max': 0.015, 'weight_function': 'wmax', 'delay': 2.0,
                      'params_file': 'instanteneousExc.json', 'set_params_function': 'exp2syn'}))

    VL4.add_edges(source=TW.nodes(), target={'pop_name': 'LIF_inh'},
                  connection_rule=lambda trg, src: 5,
                  **({'weight_max': 0.05, 'weight_function': 'wmax', 'delay': 2.0,
                      'params_file': 'instanteneousExc.json', 'set_params_function': 'exp2syn'}))

    VL4.build()
    VL4.save_edges(edges_file_name='output/tw_v1_edges.h5', edge_types_file_name='output/tw_v1_edge_types.csv')
Beispiel #3
0
                   syn_weight=20.0e-03,
                   target_sections=['somatic'],
                   delay=2.0,
                   distance_range=[0.0, 300.0],
                   dynamics_params='AMPA_ExcToExc.json',
                   model_template='Exp2Syn')

####################################################################################
########################## Build and save network ##################################
####################################################################################

print("\nBuilding network and saving to directory \"" + output_dir + "\"")
net.build()
Blad_aff_virt.build()
EUS_aff_virt.build()
PAG_aff_virt.build()

net.save_nodes(output_dir=output_dir)
net.save_edges(output_dir=output_dir)

Blad_aff_virt.save_nodes(output_dir=output_dir)
Blad_aff_virt.save_edges(output_dir=output_dir)

EUS_aff_virt.save_nodes(output_dir=output_dir)
EUS_aff_virt.save_edges(output_dir=output_dir)

PAG_aff_virt.save_nodes(output_dir=output_dir)
PAG_aff_virt.save_edges(output_dir=output_dir)

print("Done")
Beispiel #4
0
            

                        
net1.add_edges(source={'cell_name': 'HCOCell1'}, target={'cell_name':'HCOCell2'},
              connection_rule=1,
              syn_weight=40.0e-02,
              dynamics_params='GABA_InhToInh.json',
              model_template='Exp2Syn',
              delay=0.0,
              target_sections=["soma"],
              distance_range=[0,999])
              
net1.add_edges(source={'cell_name': 'HCOCell2'}, target={'cell_name':'HCOCell1'},
              connection_rule=1,
              syn_weight=40.0e-02,
              dynamics_params='GABA_InhToInh.json',
              model_template='Exp2Syn',
              delay=0.0,
              target_sections=["soma"],
              distance_range=[0,999])

net1.build()
net1.save_nodes(output_dir='network')             
              
net1.build()
net1.save_edges(output_dir='network')


#from bmtk.analyzer import node_types_table
#node_types_table(node_types_file='network/mcortex_node_types.csv', population='mcortex')
Beispiel #5
0
                 potental='exc',
                 level_of_detail='biophysical',
                 params_file='472363762_fit.json',
                 morphology_file='Scnn1a.swc',
                 set_params_function='Biophys1')

cortex.build()
cortex.save_nodes(output_dir='network')

thalamus = NetworkBuilder('mthalamus')
thalamus.add_nodes(N=10,
                   pop_name='tON',
                   potential='exc',
                   level_of_detail='filter')

thalamus.add_edges(source={'pop_name': 'tON'},
                   target=cortex.nodes(),
                   connection_rule=5,
                   weight_max=5e-05,
                   weight_function='wmax',
                   distance_range=[0.0, 150.0],
                   target_sections=['basal', 'apical'],
                   delay=2.0,
                   params_file='AMPA_ExcToExc.json',
                   set_params_function='exp2syn')

thalamus.build()
thalamus.save_nodes(output_dir='network')
thalamus.save_edges(output_dir='network')
#thalamus.save_edges(edges_file_name='thalamus_cortex_edges.h5', edge_types_file_name='thalamus_cortex_edge_types.h5')
Beispiel #6
0
              delay=2.0,
              dynamics_params='ExcToInh.json',
              model_template='static_synapse')


net.add_edges(source={'ei': 'e'}, target={'pop_name': 'LIF_inh'},
              connection_rule=distance_connector,
              connection_params={'d_weight_min': 0.0, 'd_weight_max': 0.26, 'd_max': 300.0, 'nsyn_min': 3, 'nsyn_max': 7},
              syn_weight=5.0,
              delay=2.0,
              dynamics_params='instanteneousExc.json',
              model_template='static_synapse')

net.build()
net.save_nodes(output_dir='network')
net.save_edges(output_dir='network')



lgn = NetworkBuilder('LGN')
lgn.add_nodes(N=500,
              pop_name='tON',
              potential='exc',
              model_type='virtual')


def select_source_cells(sources, target, nsources_min=10, nsources_max=30, nsyns_min=3, nsyns_max=12):
    total_sources = len(sources)
    nsources = np.random.randint(nsources_min, nsources_max)
    selected_sources = np.random.choice(total_sources, nsources, replace=False)
    syns = np.zeros(total_sources)
Beispiel #7
0
def build_l4():
    if not os.path.exists('output/network/VisL4'):
        os.makedirs('output/network/VisL4')

    net = NetworkBuilder("V1/L4")
    net.add_nodes(N=2,
                  pop_name='Scnn1a',
                  node_type_id='395830185',
                  position='points',
                  position_params={
                      'location': [(28.753, -364.868, -161.705),
                                   (48.753, -344.868, -141.705)]
                  },
                  array_params={"tuning_angle": [0.0, 25.0]},
                  location='VisL4',
                  ei='e',
                  gaba_synapse='y',
                  params_file='472363762_point.json',
                  model_type='iaf_psc_alpha')

    net.add_nodes(N=2,
                  pop_name='Rorb',
                  node_type_id='314804042',
                  position='points',
                  position_params={
                      'location': [(241.092, -349.263, 146.916),
                                   (201.092, -399.263, 126.916)]
                  },
                  array_params={"tuning_angle": [50.0, 75.0]},
                  location='VisL4',
                  ei='e',
                  gaba_synapse='y',
                  params_file='473863510_point.json',
                  model_type='iaf_psc_alpha')

    net.add_nodes(N=2,
                  pop_name='Nr5a1',
                  node_type_id='318808427',
                  position='points',
                  position_params={
                      'location': [(320.498, -351.259, 20.273),
                                   (310.498, -371.259, 10.273)]
                  },
                  array_params={"tuning_angle": [100.0, 125.0]},
                  location='VisL4',
                  ei='e',
                  gaba_synapse='y',
                  params_file='473863035_point.json',
                  model_type='iaf_psc_alpha')

    net.add_nodes(N=2,
                  pop_name='PV1',
                  node_type_id='330080937',
                  position='points',
                  position_params={
                      'location': [(122.373, -352.417, -216.748),
                                   (102.373, -342.417, -206.748)]
                  },
                  array_params={'tuning_angle': ['NA', 'NA']},
                  location='VisL4',
                  ei='i',
                  gaba_synapse='y',
                  params_file='472912177_fit.json',
                  model_type='iaf_psc_alpha')

    net.add_nodes(N=2,
                  pop_name='PV2',
                  node_type_id='318331342',
                  position='points',
                  position_params={
                      'location': [(350.321, -372.535, -18.282),
                                   (360.321, -371.535, -12.282)]
                  },
                  array_params={'tuning_angle': ['NA', 'NA']},
                  location='VisL4',
                  ei='i',
                  gaba_synapse='y',
                  params_file='473862421_point.json',
                  model_type='iaf_psc_alpha')

    net.add_nodes(N=2,
                  pop_name='LIF_exc',
                  node_type_id='100000101',
                  position='points',
                  position_params={
                      'location': [(-243.04, -342.352, -665.666),
                                   (-233.04, -332.352, -675.666)]
                  },
                  array_params={'tuning_angle': ['NA', 'NA']},
                  location='VisL4',
                  ei='e',
                  gaba_synapse='n',
                  params_file='IntFire1_exc_1.json',
                  model_type='iaf_psc_alpha')

    net.add_nodes(N=2,
                  pop_name='LIF_inh',
                  node_type_id='100000102',
                  position='points',
                  position_params={
                      'location': [(211.04, -321.333, -631.593),
                                   (218.04, -327.333, -635.593)]
                  },
                  array_params={'tuning_angle': [150.0, 175.0]},
                  location='VisL4',
                  ei='i',
                  gaba_synapse='n',
                  params_file='IntFire1_inh_1.json',
                  model_type='iaf_psc_alpha')

    print("Setting connections...")
    net.connect(source={'ei': 'i'},
                target={
                    'ei': 'i',
                    'gaba_synapse': 'y'
                },
                connector=lambda trg, src: 5,
                edge_params={
                    'weight_max': -1.8,
                    'weight_function': 'wmax',
                    'delay': 2.0,
                    'params_file': 'InhToInh.json',
                    'synapse_model': 'static_synapse'
                })

    net.connect(source={'ei': 'i'},
                target={
                    'ei': 'e',
                    'gaba_synapse': 'y'
                },
                connector=lambda trg, src: 5,
                edge_params={
                    'weight_max': -12.6,
                    'weight_function': 'wmax',
                    'delay': 2.0,
                    'params_file': 'InhToExc.json',
                    'synapse_model': 'static_synapse'
                })

    net.connect(source={'ei': 'i'},
                target={'pop_name': 'LIF_inh'},
                connector=lambda trg, src: 5,
                edge_params={
                    'weight_max': -1.125,
                    'weight_function': 'wmax',
                    'delay': 2.0,
                    'params_file': 'InhToInh.json',
                    'synapse_model': 'static_synapse'
                })

    net.connect(source={'ei': 'i'},
                target={'pop_name': 'LIF_exc'},
                connector=lambda trg, src: 5,
                edge_params={
                    'weight_max': -6.3,
                    'weight_function': 'wmax',
                    'delay': 2.0,
                    'params_file': 'ExcToInh.json',
                    'synapse_model': 'static_synapse'
                })

    net.connect(source={'ei': 'e'},
                target={'pop_name': 'PV1'},
                connector=lambda trg, src: 5,
                edge_params={
                    'weight_max': 7.7,
                    'weight_function': 'wmax',
                    'delay': 2.0,
                    'params_file': 'ExcToInh.json',
                    'synapse_model': 'static_synapse'
                })

    net.connect(source={'ei': 'e'},
                target={'pop_name': 'PV2'},
                connector=lambda trg, src: 5,
                edge_params={
                    'weight_max': 5.4,
                    'weight_function': 'wmax',
                    'delay': 2.0,
                    'params_file': 'ExcToInh.json',
                    'synapse_model': 'static_synapse'
                })

    net.connect(source={'ei': 'e'},
                target={'pop_name': 'LIF_inh'},
                connector=lambda trg, src: 5,
                edge_params={
                    'weight_max': 3.44,
                    'weight_function': 'wmax',
                    'delay': 2.0,
                    'params_file': 'ExcToInh.json',
                    'synapse_model': 'static_synapse'
                })

    print("Generating E-to-E connections.")
    net.connect(source={'ei': 'e'},
                target={'pop_name': 'Scnn1a'},
                connector=lambda trg, src: 5,
                edge_params={
                    'weight_max': 8.448,
                    'weight_function': 'gaussianLL',
                    'weight_sigma': 50.0,
                    'delay': 2.0,
                    'params_file': 'ExcToExc.json',
                    'synapse_model': 'static_synapse'
                })

    net.connect(source={'ei': 'e'},
                target={'pop_name': 'Rorb'},
                connector=lambda trg, src: 5,
                edge_params={
                    'weight_max': 4.292,
                    'weight_function': 'gaussianLL',
                    'weight_sigma': 50.0,
                    'delay': 2.0,
                    'params_file': 'ExcToExc.json',
                    'synapse_model': 'static_synapse'
                })

    net.connect(source={'ei': 'e'},
                target={'pop_name': 'Nr5a1'},
                connector=lambda trg, src: 5,
                edge_params={
                    'weight_max': 5.184,
                    'weight_function': 'gaussianLL',
                    'weight_sigma': 50.0,
                    'delay': 2.0,
                    'params_file': 'ExcToExc.json',
                    'synapse_model': 'static_synapse'
                })

    net.connect(source={'ei': 'e'},
                target={'pop_name': 'LIF_exc'},
                connector=lambda trg, src: 5,
                edge_params={
                    'weight_max': 1.995,
                    'weight_function': 'gaussianLL',
                    'weight_sigma': 50.0,
                    'delay': 2.0,
                    'params_file': 'ExcToExc.json',
                    'synapse_model': 'static_synapse'
                })

    net.build()
    net.save_cells(
        filename='output/network/VisL4/nodes.csv',
        columns=['node_id', 'node_type_id', 'position', 'tuning_angle'],
        position_labels=['x', 'y', 'z'])

    net.save_types(filename='output/network/VisL4/node_types.csv',
                   columns=[
                       'node_type_id', 'pop_name', 'ei', 'gaba_synapse',
                       'location', 'model_type', 'params_file'
                   ])

    net.save_edge_types('output/network/VisL4/edge_types.csv',
                        opt_columns=[
                            'weight_max', 'weight_function', 'weight_sigma',
                            'delay', 'params_file', 'synapse_model'
                        ])
    net.save_edges(filename='output/network/VisL4/edges.h5')
    return net
Beispiel #8
0
                 distance_range=[0.0, 1.0e+20],
                 target_sections=['somatic', 'basal'],
                 delay=2.0,
                 params_file='AMPA_ExcToInh.json',
                 set_params_function='exp2syn')

v1_net.add_edges(sources=lgn_net.nodes(),
                 targets={'name': 'LIF_exc'},
                 iterator='all_to_one',
                 func=select_source_cells,
                 func_params=cparams,
                 weight_max=0.0045,
                 weight_function='wmax',
                 delay=2.0,
                 params_file='instanteneousExc.json',
                 set_params_function='exp2syn')

v1_net.add_edges(sources=lgn_net.nodes(),
                 targets={'pop_name': 'LIF_inh'},
                 iterator='all_to_one',
                 func=select_source_cells,
                 func_params=cparams,
                 weight_max=0.002,
                 weight_function='wmax',
                 delay=2.0,
                 params_file='instanteneousExc.json',
                 set_params_function='exp2syn')

v1_net.build()
v1_net.save_edges('lgn_v1_edges.h5', 'lgn_v1_edge_types.csv')
Beispiel #9
0
def build_l4():
    net = NetworkBuilder("V1/L4")
    net.add_nodes(N=2, pop_name='Scnn1a',
                  positions=[(28.753, -364.868, -161.705), (48.753, -344.868, -141.705)],
                  tuning_angle=[0.0, 25.0],
                  rotation_angle_yaxis=[3.55501, 3.55501],
                  location='VisL4',
                  ei='e',
                  level_of_detail='biophysical',
                  params_file='472363762_fit.json',
                  morphology_file='Scnn1a-Tg3-Cre_Ai14_IVSCC_-177300.01.02.01_473845048_m.swc',
                  rotation_angle_zaxis=-3.646878266,
                  set_params_function='Biophys1')

    net.add_nodes(N=2, pop_name='Rorb',
                  positions=[(241.092, -349.263, 146.916), (201.092, -399.263, 126.916)],
                  tuning_angle=[50.0, 75.0],
                  rotation_angle_yaxis=[3.50934, 3.50934],
                  location='VisL4',
                  ei='e',
                  level_of_detail='biophysical',
                  params_file='473863510_fit.json',
                  morphology_file='Rorb-IRES2-Cre-D_Ai14_IVSCC_-168053.05.01.01_325404214_m.swc',
                  rotation_angle_zaxis=-4.159763785,
                  set_params_function='Biophys1')

    net.add_nodes(N=2, pop_name='Nr5a1',
                  positions=[(320.498, -351.259, 20.273), (310.498, -371.259, 10.273)],
                  tuning_angle=[100.0, 125.0],
                  rotation_angle_yaxis=[0.72202, 0.72202],
                  location='VisL4',
                  ei='e',
                  level_of_detail='biophysical',
                  params_file='473863035_fit.json',
                  morphology_file='Nr5a1-Cre_Ai14_IVSCC_-169250.03.02.01_471087815_m.swc',
                  rotation_angle_zaxis=-2.639275277,
                  set_params_function='Biophys1')

    net.add_nodes(N=2, pop_name='PV1',
                  positions=[(122.373, -352.417, -216.748), (102.373, -342.417, -206.748)],
                  tuning_angle=['NA', 'NA'],
                  rotation_angle_yaxis=[2.92043, 2.92043],
                  location='VisL4',
                  ei='i',
                  level_of_detail='biophysical',
                  params_file='472912177_fit.json',
                  morphology_file='Pvalb-IRES-Cre_Ai14_IVSCC_-176847.04.02.01_470522102_m.swc',
                  rotation_angle_zaxis=-2.539551891,
                  set_params_function='Biophys1')

    net.add_nodes(N=2, pop_name='PV2',
                  positions=[(350.321, -372.535, -18.282), (360.321, -371.535, -12.282)],
                  tuning_angle=['NA', 'NA'],
                  rotation_angle_yaxis=[5.043336, 5.043336],
                  location='VisL4',
                  ei='i',
                  level_of_detail='biophysical',
                  params_file='473862421_fit.json',
                  morphology_file='Pvalb-IRES-Cre_Ai14_IVSCC_-169125.03.01.01_469628681_m.swc',
                  rotation_angle_zaxis=-3.684439949,
                  set_params_function='Biophys1')

    net.add_nodes(N=2, pop_name='LIF_exc',
                  positions=[(-243.04, -342.352, -665.666), (-233.04, -332.352, -675.666)],
                  tuning_angle=['NA', 'NA'],
                  #rotation_angle_yaxis=[5.11801, 5.11801],
                  location='VisL4',
                  ei='e',
                  level_of_detail='intfire',
                  params_file='IntFire1_exc_1.json',
                  set_params_function='IntFire1')

    net.add_nodes(N=2, pop_name='LIF_inh',
                  positions=[(211.04, -321.333, -631.593), (218.04, -327.333, -635.593)],
                  tuning_angle=[150.0, 175.0],
                  #rotation_angle_yaxis=[4.566091, 4.566091],
                  location='VisL4',
                  ei='i',
                  level_of_detail='intfire',
                  params_file='IntFire1_inh_1.json',
                  set_params_function='IntFire1')

    print("Setting connections...")
    print("Generating I-to-I connections.")
    net.add_edges(source={'ei': 'i'}, target={'ei': 'i', 'level_of_detail': 'biophysical'},
                  connection_rule=5,
                  weight_max=0.0002,
                  weight_function='wmax',
                  distance_range=[0.0, 1e+20],
                  target_sections=['somatic', 'basal'],
                  delay=2.0,
                  params_file='GABA_InhToInh.json',
                  set_params_function='exp2syn')

    net.add_edges(source={'ei': 'i'}, target={'ei': 'i', 'level_of_detail': 'intfire'},
                  connection_rule=5,
                  weight_max=0.00225,
                  weight_function='wmax',
                  delay=2.0,
                  params_file='instanteneousInh.json',
                  set_params_function='exp2syn')

    print("Generating I-to-E connections.")
    net.add_edges(source={'ei': 'i'}, target={'ei': 'e', 'level_of_detail': 'biophysical'},
                  connection_rule=lambda trg, src: 5,
                  weight_max=0.00018,
                  weight_function='wmax',
                  distance_range=[0.0, 50.0],
                  target_sections=['somatic', 'basal', 'apical'],
                  delay=2.0,
                  params_file='GABA_InhToExc.json',
                  set_params_function='exp2syn')

    net.add_edges(source={'ei': 'i'}, target={'ei': 'e', 'level_of_detail': 'intfire'},
                  connection_rule=5,
                  weight_max=0.009,
                  weight_function='wmax',
                  delay=2.0,
                  params_file='instanteneousInh.json',
                  set_params_function='exp2syn')

    print("Generating E-to-I connections.")
    net.add_edges(source={'ei': 'e'}, target={'pop_name': 'PV1'},
                  connection_rule=5,
                  weight_max=0.00035,
                  weight_function='wmax',
                  distance_range=[0.0, 1e+20],
                  target_sections=['somatic', 'basal'],
                  delay=2.0,
                  params_file='AMPA_ExcToInh.json',
                  set_params_function='exp2syn')

    net.add_edges(source={'ei': 'e'}, target={'pop_name': 'PV2'},
                  connection_rule=5,
                  weight_max=0.00027,
                  weight_function='wmax',
                  distance_range=[0.0, 1e+20],
                  target_sections=['somatic', 'basal'],
                  delay=2.0,
                  params_file='AMPA_ExcToInh.json',
                  set_params_function='exp2syn')

    net.add_edges(source={'ei': 'e'}, target={'pop_name': 'LIF_inh'},
                  connection_rule=5,
                  weight_max=0.0043,
                  weight_function='wmax',
                  delay=2.0,
                  params_file='instanteneousExc.json',
                  set_params_function='exp2syn')

    print("Generating E-to-E connections.")
    net.add_edges(source={'ei': 'e'}, target={'pop_name': 'Scnn1a'},
                  connection_rule=5,
                  weight_max=6.4e-05,
                  weight_function='gaussianLL',
                  weight_sigma=50.0,
                  distance_range=[30.0, 150.0],
                  target_sections=['basal', 'apical'],
                  delay=2.0,
                  params_file='AMPA_ExcToExc.json',
                  set_params_function='exp2syn')

    net.add_edges(source={'ei': 'e'}, target={'pop_name': 'Rorb'},
                  connection_rule=5,
                  weight_max=5.5e-05,
                  weight_function='gaussianLL',
                  weight_sigma=50.0,
                  distance_range=[30.0, 150.0],
                  target_sections=['basal', 'apical'],
                  delay=2.0,
                  params_file='AMPA_ExcToExc.json',
                  set_params_function='exp2syn')

    net.add_edges(source={'ei': 'e'}, target={'pop_name': 'Nr5a1'},
                  connection_rule=5,
                  weight_max=7.2e-05,
                  weight_function='gaussianLL',
                  weight_sigma=50.0,
                  distance_range=[30.0, 150.0],
                  target_sections=['basal', 'apical'],
                  delay=2.0,
                  params_file='AMPA_ExcToExc.json',
                  set_params_function='exp2syn')

    net.add_edges(source={'ei': 'e'}, target={'pop_name': 'LIF_exc'},
                  connection_rule=5,
                  weight_max=0.0019,
                  weight_function='gaussianLL',
                  weight_sigma=50.0,
                  delay=2.0,
                  params_file='instanteneousExc.json',
                  set_params_function='exp2syn')


    net.build()
    net.save_nodes(nodes_file_name='output/v1_nodes.h5', node_types_file_name='output/v1_node_types.csv')
    net.save_edges(edges_file_name='output/v1_v1_edges.h5', edge_types_file_name='output/v1_v1_edge_types.csv')

    assert(os.path.exists('output/v1_node_types.csv'))
    node_types_csv = pd.read_csv('output/v1_node_types.csv', sep=' ')
    assert(len(node_types_csv) == 7)
    assert(set(node_types_csv.columns) == {'node_type_id', 'location', 'ei', 'level_of_detail', 'params_file',
                                           'pop_name', 'set_params_function', 'rotation_angle_zaxis',
                                           'morphology_file'})

    assert(os.path.exists('output/v1_nodes.h5'))
    nodes_h5 = h5py.File('output/v1_nodes.h5')
    assert(len(nodes_h5['/nodes/node_gid']) == 14)
    assert(len(nodes_h5['/nodes/node_type_id']) == 14)
    assert(len(nodes_h5['/nodes/node_group']) == 14)
    assert(len(nodes_h5['/nodes/node_group_index']) == 14)
    assert(set(nodes_h5['/nodes/0'].keys()) == {'positions', 'rotation_angle_yaxis', 'tuning_angle'})
    assert(len(nodes_h5['/nodes/0/positions']) == 10)
    assert(len(nodes_h5['/nodes/1/positions']) == 4)

    assert(os.path.exists('output/v1_v1_edge_types.csv'))
    edge_types_csv = pd.read_csv('output/v1_v1_edge_types.csv', sep=' ')
    assert(len(edge_types_csv) == 11)
    assert(set(edge_types_csv.columns) == {'weight_max', 'edge_type_id', 'target_query', 'params_file',
                                           'set_params_function', 'delay', 'target_sections', 'weight_function',
                                           'weight_sigma', 'source_query', 'distance_range'})

    assert(os.path.exists('output/v1_v1_edges.h5'))
    edges_h5 = h5py.File('output/v1_v1_edges.h5')
    assert(len(edges_h5['/edges/index_pointer']) == 14+1)
    assert(len(edges_h5['/edges/target_gid']) == 14*14)
    assert(len(edges_h5['/edges/source_gid']) == 14*14)
    assert(len(edges_h5['/edges/0/nsyns']) == 14*14)

    return net
Beispiel #10
0
from bmtk.builder.networks import NetworkBuilder


def crule(src, trg):
    # print src.node_id, trg.node_id
    return 2


net1 = NetworkBuilder('NET1')
net1.add_nodes(N=100,
               position=[(0.0, 1.0, -1.0)] * 100,
               cell_type='Scnna1',
               ei='e')
net1.add_edges(source={'ei': 'e'}, target={'ei': 'e'}, connection_rule=5)
net1.build()

net2 = NetworkBuilder('NET2')
net2.add_nodes(N=10, position=[(0.0, 1.0, -1.0)] * 10, cell_type='PV1', ei='i')
net2.add_edges(connection_rule=10)
net2.add_edges(source=net1.nodes(), connection_rule=1)
net2.add_edges(target=net1.nodes(), connection_rule=crule)
net2.build()

#net1.save_edges(output_dir='tmp_output')
net2.save_edges(output_dir='tmp_output')
Beispiel #11
0
def build_ext5_nodes():
    if not os.path.exists('network'):
        os.makedirs('network')

    EXT = NetworkBuilder("EXT")
    # need 5 cells to stimulate at 5 different frequencies
    EXT.add_nodes(N=5,
                  pop_name='EXT',
                  model_type='virtual',
                  firing_rate=firing_rate)

    # Save cells.csv and cell_types.csv
    EXT.save_nodes(nodes_file_name='network/ext_nodes.h5',
                   node_types_file_name='network/ext_node_types.csv')

    net = NetworkBuilder('slice')
    net.import_nodes(nodes_file_name='network/slice_nodes.h5',
                     node_types_file_name='network/slice_node_types.csv')

    net.add_edges(source=EXT.nodes(firing_rate=10),
                  target=net.nodes(firing_rate=10, synapse_model='a'),
                  connection_rule=5,
                  **({
                      'syn_weight': 0.002,
                      'weight_function': 'wmax',
                      'distance_range': [0.0, 50.0],
                      'target_sections': ['somatic', 'basal', 'apical'],
                      'delay': 2.0,
                      'dynamics_params': 'AMPA_ExcToExc.json',
                      'model_template': 'expsyn'
                  }))

    net.add_edges(source=EXT.nodes(firing_rate=20),
                  target=net.nodes(firing_rate=20, synapse_model='a'),
                  connection_rule=5,
                  **({
                      'syn_weight': 0.002,
                      'weight_function': 'wmax',
                      'distance_range': [0.0, 50.0],
                      'target_sections': ['somatic', 'basal', 'apical'],
                      'delay': 2.0,
                      'dynamics_params': 'AMPA_ExcToExc.json',
                      'model_template': 'expsyn'
                  }))

    net.add_edges(source=EXT.nodes(firing_rate=50),
                  target=net.nodes(firing_rate=50, synapse_model='a'),
                  connection_rule=5,
                  **({
                      'syn_weight': 0.002,
                      'weight_function': 'wmax',
                      'distance_range': [0.0, 50.0],
                      'target_sections': ['somatic', 'basal', 'apical'],
                      'delay': 2.0,
                      'dynamics_params': 'AMPA_ExcToExc.json',
                      'model_template': 'expsyn'
                  }))

    net.add_edges(source=EXT.nodes(firing_rate=100),
                  target=net.nodes(firing_rate=100, synapse_model='a'),
                  connection_rule=5,
                  **({
                      'syn_weight': 0.002,
                      'weight_function': 'wmax',
                      'distance_range': [0.0, 50.0],
                      'target_sections': ['somatic', 'basal', 'apical'],
                      'delay': 2.0,
                      'dynamics_params': 'AMPA_ExcToExc.json',
                      'model_template': 'expsyn'
                  }))

    net.add_edges(source=EXT.nodes(firing_rate=200),
                  target=net.nodes(firing_rate=200, synapse_model='a'),
                  connection_rule=5,
                  **({
                      'syn_weight': 0.002,
                      'weight_function': 'wmax',
                      'distance_range': [0.0, 50.0],
                      'target_sections': ['somatic', 'basal', 'apical'],
                      'delay': 2.0,
                      'dynamics_params': 'AMPA_ExcToExc.json',
                      'model_template': 'expsyn'
                  }))

    net.add_edges(source=EXT.nodes(firing_rate=10),
                  target=net.nodes(firing_rate=10, synapse_model='b'),
                  connection_rule=5,
                  **({
                      'syn_weight': 0.002,
                      'weight_function': 'wmax',
                      'distance_range': [0.0, 50.0],
                      'target_sections': ['somatic', 'basal', 'apical'],
                      'delay': 2.0,
                      'dynamics_params': 'pvalb_pvalb.json',
                      'model_template': 'stp2syn'
                  }))

    net.add_edges(source=EXT.nodes(firing_rate=20),
                  target=net.nodes(firing_rate=20, synapse_model='b'),
                  connection_rule=5,
                  **({
                      'syn_weight': 0.002,
                      'weight_function': 'wmax',
                      'distance_range': [0.0, 50.0],
                      'target_sections': ['somatic', 'basal', 'apical'],
                      'delay': 2.0,
                      'dynamics_params': 'pvalb_pvalb.json',
                      'model_template': 'stp2syn'
                  }))

    net.add_edges(source=EXT.nodes(firing_rate=50),
                  target=net.nodes(firing_rate=50, synapse_model='b'),
                  connection_rule=5,
                  **({
                      'syn_weight': 0.002,
                      'weight_function': 'wmax',
                      'distance_range': [0.0, 50.0],
                      'target_sections': ['somatic', 'basal', 'apical'],
                      'delay': 2.0,
                      'dynamics_params': 'pvalb_pvalb.json',
                      'model_template': 'stp2syn'
                  }))

    net.add_edges(source=EXT.nodes(firing_rate=100),
                  target=net.nodes(firing_rate=100, synapse_model='b'),
                  connection_rule=5,
                  **({
                      'syn_weight': 0.002,
                      'weight_function': 'wmax',
                      'distance_range': [0.0, 50.0],
                      'target_sections': ['somatic', 'basal', 'apical'],
                      'delay': 2.0,
                      'dynamics_params': 'pvalb_pvalb.json',
                      'model_template': 'stp2syn'
                  }))

    net.add_edges(source=EXT.nodes(firing_rate=200),
                  target=net.nodes(firing_rate=200, synapse_model='b'),
                  connection_rule=5,
                  **({
                      'syn_weight': 0.002,
                      'weight_function': 'wmax',
                      'distance_range': [0.0, 50.0],
                      'target_sections': ['somatic', 'basal', 'apical'],
                      'delay': 2.0,
                      'dynamics_params': 'pvalb_pvalb.json',
                      'model_template': 'stp2syn'
                  }))

    net.build()
    net.save_edges(edges_file_name='network/ext_to_slice_edges.h5',
                   edge_types_file_name='network/ext_to_slice_edge_types.csv')
Beispiel #12
0
def build_lgn():
    def generate_positions(N, x0=0.0, x1=300.0, y0=0.0, y1=100.0):
        X = np.random.uniform(x0, x1, N)
        Y = np.random.uniform(y0, y1, N)
        return np.column_stack((X, Y))

    def select_source_cells(src_cell, trg_cell, n_syns_exc, n_syns_inh):
        #if trg_cell['tuning_angle'] is not None:
        #    synapses = [n_syns if src['pop_name'] == 'tON' or src['pop_name'] == 'tOFF' else 0 for src in src_cells]
        #else:
        #    synapses = [n_syns if src['pop_name'] == 'tONOFF' else 0 for src in src_cells]

        # will always give synapse number depending on type
        if n_syns_exc > 0:
            n_synapses = n_syns_exc
        if n_syns_inh > 0:
            n_synapses = n_syns_inh

        return n_synapses

        # varible number of synapses
        #return np.random.randint(n_syns_min, n_syns_max)
        #return synapses

    if not os.path.exists('output'):
        os.makedirs('output')

    LGN = NetworkBuilder("LGN")
    LGN.add_nodes(N=1000,
                  positions=generate_positions(1000),
                  location='LGN',
                  level_of_detail='filter',
                  pop_name='ExcIN',
                  ei='e')

    LGN.add_nodes(N=1,
                  positions=generate_positions(1),
                  location='LGN',
                  level_of_detail='filter',
                  pop_name='InhIN',
                  ei='i')
  


    VL4 = NetworkBuilder('V1/L4')
    VL4.import_nodes(nodes_file_name='output/v1_nodes.h5', node_types_file_name='output/v1_node_types.csv')
    cm = VL4.add_edges(source=LGN.nodes(ei='e'), #target={'pop_name': 'DG_GC'},
                  connection_rule=select_source_cells,
                  connection_params={'n_syns_exc': 1, 'n_syns_inh': 0},
                  weight_max=10e-03,
                  weight_function='wmax',
                  distance_range=[1, 1e+20],
                  target_sections=['apical'],
                  delay=2.0,
                  params_file='AMPA_ExcToExc.json',
                  set_params_function='exp2syn')



    VL4.build()
    LGN.save_nodes(nodes_file_name='output/lgn_nodes.h5', node_types_file_name='output/lgn_node_types.csv')
    VL4.save_edges(edges_file_name='output/lgn_v1_edges.h5', edge_types_file_name='output/lgn_v1_edge_types.csv')
Beispiel #13
0
def build_lgn():
    def generate_positions(N, x0=0.0, x1=300.0, y0=0.0, y1=100.0):
        X = np.random.uniform(x0, x1, N)
        Y = np.random.uniform(y0, y1, N)
        return np.column_stack((X, Y))

    def select_source_cells(src_cells, trg_cell, n_syns):
        if trg_cell['tuning_angle'] is not None:
            synapses = [n_syns if src['pop_name'] == 'tON' or src['pop_name'] == 'tOFF' else 0 for src in src_cells]
        else:
            synapses = [n_syns if src['pop_name'] == 'tONOFF' else 0 for src in src_cells]

        return synapses

    if not os.path.exists('output'):
        os.makedirs('output')

    LGN = NetworkBuilder("LGN")
    LGN.add_nodes(N=3000,
                  positions=generate_positions(3000),
                  location='LGN',
                  level_of_detail='filter',
                  pop_name='tON',
                  ei='e')

    LGN.add_nodes(N=3000,
                  positions=generate_positions(3000),
                  location='LGN',
                  level_of_detail='filter',
                  pop_name='tOFF',
                  ei='e')

    LGN.add_nodes(N=3000,
                  positions=generate_positions(3000),
                  location='LGN',
                  level_of_detail='filter',
                  pop_name='tONOFF',
                  ei='e')

    VL4 = NetworkBuilder('V1/L4')
    VL4.import_nodes(nodes_file_name='output/v1_nodes.h5', node_types_file_name='output/v1_node_types.csv')
    VL4.add_edges(source=LGN.nodes(), target={'pop_name': 'Rorb'},
                  iterator='all_to_one',
                  connection_rule=select_source_cells,
                  connection_params={'n_syns': 10},
                  weight_max=5e-05,
                  weight_function='wmax',
                  distance_range=[0.0, 150.0],
                  target_sections=['basal', 'apical'],
                  delay=2.0,
                  params_file='AMPA_ExcToExc.json',
                  set_params_function='exp2syn')

    VL4.add_edges(source=LGN.nodes(), target={'pop_name': 'Nr5a1'},
                  iterator='all_to_one',
                  connection_rule=select_source_cells,
                  connection_params={'n_syns': 10},
                  weight_max=5e-05,
                  weight_function='wmax',
                  distance_range=[0.0, 150.0],
                  target_sections=['basal', 'apical'],
                  delay=2.0,
                  params_file='AMPA_ExcToExc.json',
                  set_params_function='exp2syn')

    VL4.add_edges(source=LGN.nodes(), target={'pop_name': 'Scnn1a'},
                  iterator='all_to_one',
                  connection_rule=select_source_cells,
                  connection_params={'n_syns': 10},
                  weight_max=4e-05,
                  weight_function='wmax',
                  distance_range=[0.0, 150.0],
                  target_sections=['basal', 'apical'],
                  delay=2.0,
                  params_file='AMPA_ExcToExc.json',
                  set_params_function='exp2syn')

    VL4.add_edges(source=LGN.nodes(), target={'pop_name': 'PV1'},
                  iterator='all_to_one',
                  connection_rule=select_source_cells,
                  connection_params={'n_syns': 10},
                  weight_max=0.0001,
                  weight_function='wmax',
                  distance_range=[0.0, 1.0e+20],
                  target_sections=['somatic', 'basal'],
                  delay=2.0,
                  params_file='AMPA_ExcToInh.json',
                  set_params_function='exp2syn')

    VL4.add_edges(source=LGN.nodes(), target={'pop_name': 'PV2'},
                  iterator='all_to_one',
                  connection_rule=select_source_cells,
                  connection_params={'n_syns': 10},
                  weight_max=9e-05,
                  weight_function='wmax',
                  distance_range=[0.0, 1.0e+20],
                  target_sections=['somatic', 'basal'],
                  delay=2.0,
                  params_file='AMPA_ExcToInh.json',
                  set_params_function='exp2syn')

    VL4.add_edges(source=LGN.nodes(), target={'pop_name': 'LIF_exc'},
                  iterator='all_to_one',
                  connection_rule=select_source_cells,
                  connection_params={'n_syns': 10},
                  weight_max=0.0045,
                  weight_function='wmax',
                  delay=2.0,
                  params_file='instanteneousExc.json',
                  set_params_function='exp2syn')

    VL4.add_edges(source=LGN.nodes(), target={'pop_name': 'LIF_inh'},
                  iterator='all_to_one',
                  connection_rule=select_source_cells,
                  connection_params={'n_syns': 10},
                  weight_max=0.002,
                  weight_function='wmax',
                  delay=2.0,
                  params_file='instanteneousExc.json',
                  set_params_function='exp2syn')

    VL4.build()
    LGN.save_nodes(nodes_file_name='output/lgn_nodes.h5', node_types_file_name='output/lgn_node_types.csv')
    VL4.save_edges(edges_file_name='output/lgn_v1_edges.h5', edge_types_file_name='output/lgn_v1_edge_types.csv')

    assert(os.path.exists('output/lgn_node_types.csv'))
    node_types_csv = pd.read_csv('output/lgn_node_types.csv', sep=' ')
    assert(len(node_types_csv) == 3)
    assert(set(node_types_csv.columns) == {'node_type_id', 'location', 'ei', 'level_of_detail', 'pop_name'})


    assert(os.path.exists('output/lgn_nodes.h5'))
    nodes_h5 = h5py.File('output/lgn_nodes.h5')
    assert(len(nodes_h5['/nodes/node_gid']) == 9000)
    assert(len(nodes_h5['/nodes/node_type_id']) == 9000)
    assert(len(nodes_h5['/nodes/node_group']) == 9000)
    assert(len(nodes_h5['/nodes/node_group_index']) == 9000)
    assert(set(nodes_h5['/nodes/0'].keys()) == {'positions'})
    assert(len(nodes_h5['/nodes/0/positions']) == 9000)

    assert(os.path.exists('output/lgn_v1_edge_types.csv'))
    edge_types_csv = pd.read_csv('output/lgn_v1_edge_types.csv', sep=' ')
    assert(len(edge_types_csv) == 7)
    assert(set(edge_types_csv.columns) == {'weight_max', 'edge_type_id', 'target_query', 'params_file',
                                           'set_params_function', 'delay', 'target_sections', 'weight_function',
                                           'source_query', 'distance_range'})

    assert(os.path.exists('output/lgn_v1_edges.h5'))
    edges_h5 = h5py.File('output/lgn_v1_edges.h5')
    assert(len(edges_h5['/edges/index_pointer']) == 14+1)
    assert(len(edges_h5['/edges/target_gid']) == 6000*14)
    assert(len(edges_h5['/edges/source_gid']) == 6000*14)
    assert(len(edges_h5['/edges/0/nsyns']) == 6000*14)
Beispiel #14
0
                   dynamics_params='AMPA_ExcToExc.json',
                   model_template='Exp2Syn')

conn = net.add_edges(source=net.nodes(pop_name='PMC'), target=net.nodes(pop_name='IND'),
                   connection_rule=one_to_one,
                   delay=0.5,
                   syn_weight = 0.033,
                   target_sections=['somatic'],
                   distance_range=[0.0, 300.0],
                   dynamics_params='AMPA_ExcToExc.json',
                   model_template='Exp2Syn')


net.build()
net.save_nodes(output_dir=output_dir)
net.save_edges(output_dir=output_dir)

#inp = NetworkBuilder('INPUT') # Virtual cells delivering input to PUD
#inp.add_nodes(N=1, pop_name = 'Pel_aff_virt', model_type='virtual', potential='exc')
#inp.add_edges(source=inp.nodes(pop_name='Pel_aff_virt'), target=net.nodes(pop_name='SPN'),
#                   connection_rule=1,
#                   syn_weight=0.06,
#                   target_sections=['somatic'],
#				   delay=0.5,
#                   distance_range=[0.0, 300.0],
#                   dynamics_params='AMPA_ExcToExc.json',
#                   model_template='Exp2Syn')
#
#inp.build()
#inp.save_nodes(output_dir=output_dir)
#inp.save_edges(output_dir=output_dir)
Beispiel #15
0
              target_sections=['basal', 'apical'],
              delay=2.0,
              params_file='AMPA_ExcToExc.json',
              set_params_function='exp2syn')

net.add_edges(sources={'ei': 'e'}, targets={'name': 'Nr5a1'},
              func=distance_tuning_connection_handler,
              func_params=cparameters,
              weight_max=7.2e-05,
              weight_function='gaussianLL',
              weight_sigma=50.0,
              distance_range=[30.0, 150.0],
              target_sections=['basal', 'apical'],
              delay=2.0,
              params_file='AMPA_ExcToExc.json',
              set_params_function='exp2syn')

net.add_edges(sources={'ei': 'e'}, targets={'name': 'LIF_exc'},
              func=distance_tuning_connection_handler,
              func_params=cparameters,
              weight_max=0.0019,
              weight_function='gaussianLL',
              weight_sigma=50.0,
              delay=2.0,
              params_file='instanteneousExc.json',
              set_params_function='exp2syn')

net.build()
net.save_nodes('v1_nodes.h5', 'v1_node_types.csv')
net.save_edges('v1_edges.h5', 'v1_edge_types.csv')
Beispiel #16
0
import numpy as np
import random


cortex = NetworkBuilder('mcortex')
cortex.add_nodes(N=100,
                 pop_name='Scnn1a',
                 positions=positions_columinar(N=100, center=[0, 50.0, 0], max_radius=30.0, height=100.0),
                 rotation_angle_yaxis=xiter_random(N=100, min_x=0.0, max_x=2*np.pi),
                 rotation_angle_zaxis=3.646878266,
                 potental='exc',
                 model_type='biophysical',
                 model_template='ctdb:Biophys1.hoc',
                 model_processing='aibs_perisomatic',
                 dynamics_params='472363762_fit.json',
                 morphology='Scnn1a_473845048_m.swc')

cortex.add_edges(source={'pop_name': 'Scnn1a'}, target={'pop_name': 'Scnn1a'},
                 connection_rule=distance_connector,
                 connection_params={'d_weight_min': 0.0, 'd_weight_max': 0.34, 'd_max': 50.0, 'nsyn_min': 0, 'nsyn_max': 10},
                 syn_weight=2.0e-04,
                 distance_range=[30.0, 150.0],
                 target_sections=['basal', 'apical', 'soma'],
                 delay=2.0,
                 dynamics_params='AMPA_ExcToExc.json',
                 model_template='exp2syn')

cortex.build()
cortex.save_nodes(output_dir='network')
cortex.save_edges(output_dir='network')
Beispiel #17
0
    # connection_rule = 5, # how many synapses exists between every source/target pair
    syn_weight=0.001,
    delay=2.0,  # ms
    weight_function=None,  # used to adjust the weights before runtime
    # Determine where on the post-synaptic cell to place the synapse
    target_sections=['basal', 'apical'],
    distance_range=[0.0, 150.0],
    # Set the parameters of the synpases
    dynamics_params=
    'AMPA_ExcToExc.json',  # AMPA type synaptic model with an Excitatory connection
    model_template='exp2syn')

# Build thalamus (saving nodes and edges)
thalamus.build()
thalamus.save_nodes(output_dir='%s/network' % (savedir))
thalamus.save_edges(output_dir='%s/network' % (savedir))

# Set spike trains
from bmtk.utils.reports.spike_trains import PoissonSpikeGenerator

spikesFilename = '%s/inputs/mthalamus_spikes.h5' % (savedir)
psg = PoissonSpikeGenerator(population='mthalamus')
psg.add(
    node_ids=range(10),  # Have 10 nodes to match mthalamus
    firing_rate=
    15.0,  # 10 Hz, we can also pass in a nonhomoegenous function/array
    times=(0.0, 3.0))  # Firing starts at 0 s up to 3 s
if not (os.path.isfile(spikesFilename)):
    psg.to_sonata(spikesFilename)

# ----------------------------------------------------