def run_pipeline(
            with_dask,
            score_writer=None,
        ):
            database = DummyDatabase()

            transformer = _make_transformer(dir_name)

            biometric_algorithm = BioAlgCheckpointWrapper(
                Distance(), base_dir=dir_name
            )

            pipeline_simple = PipelineSimple(
                transformer, biometric_algorithm, score_writer
            )

            if with_dask:
                pipeline_simple = dask_bio_pipeline(
                    pipeline_simple, npartitions=2
                )

            scores = pipeline_simple(
                database.background_model_samples(),
                database.references(),
                database.probes(),
                score_all_vs_all=database.score_all_vs_all,
            )

            if pipeline_simple.score_writer is None:
                if with_dask:
                    scores = scores.compute(scheduler="single-threaded")

                assert len(scores) == 10
                for sset in scores:
                    if isinstance(sset[0], DelayedSample):
                        for s in sset:
                            assert len(s.data) == 10
                    else:
                        assert len(sset) == 10
            else:
                writed_scores = pipeline_simple.write_scores(scores)
                scores_dev_path = os.path.join(dir_name, "scores-dev")
                concatenated_scores = pipeline_simple.post_process(
                    writed_scores, scores_dev_path
                )

                if with_dask:
                    concatenated_scores = concatenated_scores.compute(
                        scheduler="single-threaded"
                    )

                if isinstance(
                    pipeline_simple.score_writer, FourColumnsScoreWriter
                ):
                    assert len(open(scores_dev_path).readlines()) == 100
                else:
                    assert (
                        len(open(scores_dev_path).readlines()) == 101
                    )  # Counting the header.
def _make_pipeline_simple():
    transformer = make_pipeline(FunctionTransformer(func=_do_nothing_fn))
    biometric_algorithm = Distance("euclidean", factor=1)
    pipeline_simple = PipelineSimple(transformer,
                                     biometric_algorithm,
                                     score_writer=None)
    return pipeline_simple
def _run_with_failure(score_all_vs_all, sporadic_fail):

    with tempfile.TemporaryDirectory() as dir_name:

        database = DummyDatabase(
            some_fta=sporadic_fail, all_fta=not sporadic_fail
        )

        transformer = _make_transformer(dir_name)

        biometric_algorithm = Distance()

        pipeline_simple = PipelineSimple(
            transformer,
            biometric_algorithm,
            None,
        )

        scores = pipeline_simple(
            database.background_model_samples(),
            database.references(),
            database.probes(),
            score_all_vs_all=score_all_vs_all,
        )

        assert len(scores) == 10
        for sample_scores in scores:
            assert len(sample_scores) == 10
            for score in sample_scores:
                assert isinstance(score.data, float)
        def run_pipeline(with_dask, score_all_vs_all):
            database = DummyDatabase()

            transformer = _make_transformer(dir_name)

            biometric_algorithm = Distance()

            pipeline_simple = PipelineSimple(
                transformer,
                biometric_algorithm,
                None,
            )

            if with_dask:
                pipeline_simple = dask_bio_pipeline(
                    pipeline_simple, npartitions=2
                )

            scores = pipeline_simple(
                database.background_model_samples(),
                database.references(),
                database.probes(),
                score_all_vs_all=score_all_vs_all,
            )

            if with_dask:
                scores = scores.compute(scheduler="single-threaded")

            assert len(scores) == 10
            for sample_scores in scores:
                assert len(sample_scores) == 10
                for score in sample_scores:
                    assert isinstance(score.data, float)
Beispiel #5
0
def arcface_template(embedding, annotation_type, fixed_positions=None):
    # DEFINE CROPPING
    cropped_image_size = (112, 112)

    if annotation_type == "eyes-center" or annotation_type == "bounding-box":
        # Hard coding eye positions for backward consistency
        # cropped_positions = {
        cropped_positions = cropped_positions_arcface()
        if annotation_type == "bounding-box":
            # This will allow us to use `BoundingBoxAnnotatorCrop`
            cropped_positions.update(
                {"topleft": (0, 0), "bottomright": cropped_image_size}
            )

    elif isinstance(annotation_type, list):
        cropped_positions = cropped_positions_arcface(annotation_type)
    else:
        cropped_positions = dnn_default_cropping(
            cropped_image_size, annotation_type
        )

    annotator = MTCNN(min_size=40, factor=0.709, thresholds=(0.1, 0.2, 0.2))
    transformer = embedding_transformer(
        cropped_image_size=cropped_image_size,
        embedding=embedding,
        cropped_positions=cropped_positions,
        fixed_positions=fixed_positions,
        color_channel="rgb",
        annotator=annotator,
    )

    algorithm = Distance()

    return PipelineSimple(transformer, algorithm)
        def run_pipeline(
            with_dask,
            score_writer=None,
        ):
            database = DummyDatabase()

            transformer = _make_transformer(dir_name)

            biometric_algorithm = BioAlgCheckpointWrapper(
                DistanceWithTags(), base_dir=dir_name
            )

            pipeline_simple = PipelineSimple(
                transformer, biometric_algorithm, score_writer
            )

            if with_dask:
                pipeline_simple = dask_bio_pipeline(
                    pipeline_simple, npartitions=2
                )

            scores = pipeline_simple(
                database.background_model_samples(),
                database.references(),
                database.probes(),
                score_all_vs_all=database.score_all_vs_all,
            )

            written_scores = pipeline_simple.write_scores(scores)
            scores_dev_path = os.path.join(dir_name, "scores-dev")
            concatenated_scores = pipeline_simple.post_process(
                written_scores, scores_dev_path
            )

            if with_dask:
                concatenated_scores = concatenated_scores.compute(
                    scheduler="single-threaded"
                )

            assert os.path.isfile(
                dir_name
                + "/biometric_references/"
                + database.references()[0].key
                + "_with_custom_f.hdf5"
            )
def test_pipeline_simple_passthrough():
    """Ensure that PipelineSimple accepts a passthrough Estimator."""
    passthrough = make_pipeline(None)
    pipeline = PipelineSimple(passthrough, Distance())
    assert isinstance(pipeline, PipelineSimple)

    pipeline_with_passthrough = make_pipeline("passthrough")
    pipeline = PipelineSimple(pipeline_with_passthrough, Distance())
    assert isinstance(pipeline, PipelineSimple)
    db = DummyDatabase()
    scores = pipeline(
        db.background_model_samples(), db.references(), db.probes()
    )
    assert len(scores) == 10
    for sample_scores in scores:
        assert len(sample_scores) == 10
        for score in sample_scores:
            assert isinstance(score.data, float)
Beispiel #8
0
def facenet_template(embedding, annotation_type, fixed_positions=None):
    """
    Facenet baseline template.
    This one will crop the face at :math:`160 \\times 160`

    Parameters
    ----------

      embedding: obj
         Transformer that takes a cropped face and extract the embeddings

      annotation_type: str
         Type of the annotations (e.g. `eyes-center')

      fixed_positions: dict
         Set it if in your face images are registered to a fixed position in the image
    """
    # DEFINE CROPPING
    cropped_image_size = (160, 160)

    if annotation_type == "eyes-center" or annotation_type == "bounding-box":
        # Hard coding eye positions for backward consistency
        # cropped_positions = {
        cropped_positions = dnn_default_cropping(cropped_image_size,
                                                 annotation_type="eyes-center")
        if annotation_type == "bounding-box":
            # This will allow us to use `BoundingBoxAnnotatorCrop`
            cropped_positions.update({
                "topleft": (0, 0),
                "bottomright": cropped_image_size
            })

    else:
        cropped_positions = dnn_default_cropping(cropped_image_size,
                                                 annotation_type)

    annotator = MTCNN(min_size=40, factor=0.709, thresholds=(0.1, 0.2, 0.2))

    # ASSEMBLE TRANSFORMER
    transformer = embedding_transformer(
        cropped_image_size=cropped_image_size,
        embedding=embedding,
        cropped_positions=cropped_positions,
        fixed_positions=fixed_positions,
        color_channel="rgb",
        annotator=annotator,
    )

    algorithm = Distance()

    return PipelineSimple(transformer, algorithm)
Beispiel #9
0
def oxford_vgg2_resnets(
    model_name, annotation_type, fixed_positions=None, memory_demanding=False
):
    """
    Get the pipeline for the resnet based models from Oxford.
    All these models were training the the VGG2 dataset.

    Models taken from: https://www.robots.ox.ac.uk/~albanie

    Parameters
    ----------
      model_name: str
         One of the 4 models available (`resnet50_scratch_dag`, `resnet50_ft_dag`, `senet50_ft_dag`, `senet50_scratch_dag`).

      annotation_type: str
         Type of the annotations (e.g. `eyes-center')

      fixed_positions: dict
         Set it if in your face images are registered to a fixed position in the image
    """

    # DEFINE CROPPING
    cropped_image_size = (224, 224)

    if annotation_type == "eyes-center":
        # Coordinates taken from : https://www.merlin.uzh.ch/contributionDocument/download/14240
        cropped_positions = {"leye": (100, 159), "reye": (100, 65)}
    else:
        cropped_positions = dnn_default_cropping(
            cropped_image_size, annotation_type
        )

    transformer = embedding_transformer(
        cropped_image_size=cropped_image_size,
        embedding=OxfordVGG2Resnets(
            model_name=model_name, memory_demanding=memory_demanding
        ),
        cropped_positions=cropped_positions,
        fixed_positions=fixed_positions,
        color_channel="rgb",
        annotator="mtcnn",
    )

    algorithm = Distance()
    from bob.bio.base.pipelines import PipelineSimple

    return PipelineSimple(transformer, algorithm)
Beispiel #10
0
def vgg16_oxford_baseline(annotation_type, fixed_positions=None):
    """
    Get the VGG16 pipeline which will crop the face :math:`224 \\times 224`
    use the :py:class:`VGG16_Oxford`

    Parameters
    ----------

      annotation_type: str
         Type of the annotations (e.g. `eyes-center')

      fixed_positions: dict
         Set it if in your face images are registered to a fixed position in the image
    """

    # DEFINE CROPPING
    cropped_image_size = (224, 224)

    if annotation_type == "eyes-center" or annotation_type == "bounding-box":
        # Hard coding eye positions for backward consistency
        # cropped_positions = {
        cropped_positions = {"reye": (112, 82), "leye": (112, 142)}
        if annotation_type == "bounding-box":
            # This will allow us to use `BoundingBoxAnnotatorCrop`
            cropped_positions.update(
                {"topleft": (0, 0), "bottomright": cropped_image_size}
            )
    else:
        cropped_positions = dnn_default_cropping(
            cropped_image_size, annotation_type
        )

    annotator = MTCNN(min_size=40, factor=0.709, thresholds=(0.1, 0.2, 0.2))
    transformer = embedding_transformer(
        cropped_image_size=cropped_image_size,
        embedding=VGG16_Oxford(),
        cropped_positions=cropped_positions,
        fixed_positions=fixed_positions,
        color_channel="rgb",
        annotator=annotator,
    )

    algorithm = Distance()

    return PipelineSimple(transformer, algorithm)
Beispiel #11
0
def afffe_baseline(
    annotation_type,
    fixed_positions=None,
    memory_demanding=False,
    device=torch.device("cpu"),
):
    """
    Get the AFFFE pipeline which will crop the face :math:`224 \\times 224`
    use the :py:class:`AFFFE_2021`

    Parameters
    ----------

      annotation_type: str
         Type of the annotations (e.g. `eyes-center')

      fixed_positions: dict
         Set it if in your face images are registered to a fixed position in the image
    """

    # DEFINE CROPPING
    cropped_image_size = (224, 224)

    if annotation_type == "eyes-center":
        # Hard coding eye positions for backward consistency
        cropped_positions = {"leye": (110, 144), "reye": (110, 96)}
    else:
        cropped_positions = dnn_default_cropping(
            cropped_image_size, annotation_type
        )

    transformer = embedding_transformer(
        cropped_image_size=cropped_image_size,
        embedding=AFFFE_2021(memory_demanding=memory_demanding, device=device),
        cropped_positions=cropped_positions,
        fixed_positions=fixed_positions,
        color_channel="rgb",
        annotator="mtcnn",
    )

    algorithm = Distance()
    from bob.bio.base.pipelines import PipelineSimple

    return PipelineSimple(transformer, algorithm)
Beispiel #12
0
def load(annotation_type, fixed_positions=None):

    transform_extra_arguments = (("annotations", "annotations"), )

    transformer = make_pipeline(
        wrap(
            ["sample"],
            ToGray(),
            transform_extra_arguments=transform_extra_arguments,
        ),
        wrap(
            ["sample"],
            FunctionTransformer(lambda X: [x.flatten() for x in X]),
        ),
    )

    algorithm = Distance()

    return PipelineSimple(transformer, algorithm)
# Kmeans machine used for GMM initialization
kmeans_trainer = KMeansMachine(
    n_clusters=n_gaussians,
    max_iter=25,
    convergence_threshold=0.0,
    init_max_iter=5,
    oversampling_factor=64,
)

# Algorithm used for enrollment and scoring, trained first as a Transformer.
bioalgorithm = GMM(
    n_gaussians=n_gaussians,
    max_fitting_steps=25,
    enroll_iterations=1,
    convergence_threshold=
    0.0,  # Maximum number of iterations as stopping criterion
    k_means_trainer=kmeans_trainer,
    random_state=2,
)

# Transformer part of PipelineSimple
transformer = Pipeline([
    ("annotator", wrap(["sample"], Energy_2Gauss())),
    ("extractor", wrap(["sample"], Cepstral())),
    ("algorithm_trainer", wrap(["sample"], bioalgorithm)),
])

# PipelineSimple instance used by `execute_pipeline_simple` or the `pipeline simple` command
pipeline = PipelineSimple(transformer, bioalgorithm)
        def run_pipeline(with_dask, score_writer=None):

            database = DummyDatabase(one_d=False)

            transformer = _make_transformer(dir_name)

            biometric_algorithm = Distance()

            pipeline_simple = PipelineSimple(transformer, biometric_algorithm,
                                             score_writer)

            z_norm_postprocessor = ZNormScores()

            z_pipeline_simple = PipelineScoreNorm(pipeline_simple,
                                                  z_norm_postprocessor)

            # Checkpointing everything

            pipeline_simple = checkpoint_pipeline_simple(pipeline_simple,
                                                         base_dir=dir_name)

            if with_dask:
                z_pipeline_simple = dask_bio_pipeline(z_pipeline_simple,
                                                      npartitions=2)

            (raw_scores, z_scores) = z_pipeline_simple(
                database.background_model_samples(),
                database.references(),
                database.probes(),
                database.zprobes(),
                score_all_vs_all=database.score_all_vs_all,
            )

            def _concatenate(pipeline, scores, path):
                writed_scores = pipeline.write_scores(scores)
                concatenated_scores = pipeline.post_process(
                    writed_scores, path)
                return concatenated_scores

            if isinstance(score_writer, CSVScoreWriter):
                raw_scores = _concatenate(
                    z_pipeline_simple,
                    raw_scores,
                    os.path.join(dir_name, "scores-dev", "raw_scores"),
                )
                z_scores = _concatenate(
                    z_pipeline_simple,
                    z_scores,
                    os.path.join(dir_name, "scores-dev", "z_scores"),
                )
                """
                t_scores = _concatenate(
                    z_pipeline_simple,
                    t_scores,
                    os.path.join(dir_name, "scores-dev", "t_scores"),
                )

                zt_scores = _concatenate(
                    vanilla_biometrics_pipeline,
                    zt_scores,
                    os.path.join(dir_name, "scores-dev", "zt_scores"),
                )

                s_scores = _concatenate(
                    vanilla_biometrics_pipeline,
                    s_scores,
                    os.path.join(dir_name, "scores-dev", "s_scores"),
                )
                """

            if with_dask:
                raw_scores = raw_scores.compute(scheduler="single-threaded")
                z_scores = z_scores.compute(scheduler="single-threaded")
                # t_scores = t_scores.compute(scheduler="single-threaded")
                # zt_scores = zt_scores.compute(scheduler="single-threaded")
                # s_scores = s_scores.compute(scheduler="single-threaded")

            if isinstance(score_writer, CSVScoreWriter):

                assert (len(
                    open(
                        os.path.join(dir_name, "scores-dev", "raw_scores"),
                        "r",
                    ).readlines()) == 101)
                assert (len(
                    open(
                        os.path.join(dir_name, "scores-dev", "z_scores"),
                        "r",
                    ).readlines()) == 101)
                """
                assert (
                    len(
                        open(
                            os.path.join(dir_name, "scores-dev", "t_scores"), "r"
                        ).readlines()
                    )
                    == 101
                )
                assert (
                    len(
                        open(
                            os.path.join(dir_name, "scores-dev", "zt_scores"), "r"
                        ).readlines()
                    )
                    == 101
                )
                assert (
                    len(
                        open(
                            os.path.join(dir_name, "scores-dev", "s_scores"), "r"
                        ).readlines()
                    )
                    == 101
                )
                """

            else:
                assert len(raw_scores) == 10
                assert len(z_scores) == 10
from sklearn.pipeline import make_pipeline

from bob.bio.base.algorithm import Distance
from bob.bio.base.pipelines import PipelineSimple
from bob.bio.spear.extractor import SpeechbrainEmbeddings

# from bob.bio.spear.transformer import Resample
from bob.pipelines import wrap

transformer_pipeline = make_pipeline(
    # wrap(["sample"], Resample(target_sample_rate=16000)),
    wrap(["sample"], SpeechbrainEmbeddings()), )

pipeline = PipelineSimple(transformer_pipeline,
                          Distance(average_on_enroll=True))