def mass_plotting(self, filename):


		data_dict = self.data_generation(filename)
		self.data_test(data_dict)
		name_check = data_dict["gen_info"]["DATA FILES"]
		attr_id = name_check[1][4][:-3] + "_" + name_check[2][2]

		TOOLS="pan,wheel_zoom,box_zoom,reset, hover, previewsave"
		figure_obj = figure(plot_width = 1000, plot_height = 800, y_axis_type = "log",
			title = attr_id, tools = TOOLS)

		figure_obj.yaxis.axis_label = data_dict["data"][0]["y_unit"]
		figure_obj.xaxis.axis_label = data_dict["data"][0]["x_unit"]

		hover = figure_obj.select(dict(type = HoverTool))
		hover.tooltips=[("Value:", "$top")]

		hist, edges = np.histogram(data_dict["data"][0]["y"],  bins = data_dict["data"][0]["x"])
		source = ColumnDataSource(data = dict(top = hist, left = edges[:-1], right = edges[1:], 
					x_unit = data_dict["data"][0]["x_unit"], y_unit = data_dict["data"][0]["y_unit"],
					edges = edges))
		#hist = figure_obj.Histogram(source )
		figure_obj.quad(top = "top", bottom = 0, left = "left" , right = "right", source = source)

		matplot_button = Button(label = "create matplotlib plot")

		matplot_button.on_click(lambda source_list = source:
							self.matplotlib_export_ms(source_list))


		return Panel(child = hplot(figure_obj, matplot_button), title = attr_id)
Beispiel #2
0
    def read_file_tab(self):

        """Lets the user choose a data file to read"""

        # Drop down list
        self.file_select = Select(name='Data files',
                                  value='',
                                  options=[],
                                  title='Data files')
        # Status text
        self.file_status = Div(text='', width=self.page_width)

        # Update the file_select and file_status controls with scan data
        self.scan_folder()

        # This line is here deliberately. The scan_folder would trigger
        # the on-change function and we don't want that first time around.
        self.file_select.on_change('value', self.file_changed)

        # Re-scan button
        file_rescan = Button(label="Rescan folder", button_type="success")
        file_rescan.on_click(self.scan_folder)

        # Layout
        c = column(self.file_select,
                   self.file_status,
                   file_rescan)

        return Panel(child=c, title="Read from file")
Beispiel #3
0
    def run(self):
        """ Start the CLI logic creating the input source, data conversions,
        chart instances to show and all other niceties provided by CLI
        """
        try:
            self.limit_source(self.source)

            children = []
            if self.smart_filters:
                copy_selection = Button(label="copy current selection")
                copy_selection.on_click(self.on_copy)
                children.append(copy_selection)

            self.chart = create_chart(
                self.series, self.source, self.index, self.factories,
                self.map_options, children=children, **self.chart_args
            )
            self.chart.show()

            self.has_ranged_x_axis = 'ranged_x_axis' in self.source.columns
            self.columns = [c for c in self.source.columns if c != 'ranged_x_axis']

            if self.smart_filters:
                for chart in self.chart.charts:
                    chart.source.on_change('selected', self, 'on_selection_changed')
                self.chart.session.poll_document(self.chart.doc)

        except TypeError:
            if not self.series:
                series_list = ', '.join(self.chart.values.keys())
                print(hm.ERR_MSG_TEMPL % series_list)
                raise

        if self.sync_with_source:
            keep_source_input_sync(self.input, self.update_source, self.last_byte)
Beispiel #4
0
class Offsets_Panel(object):

    def __init__(self, ut330):

        self.ut330 = ut330

        self.t_current = TextInput(title="Temperature current")
        self.h_current = TextInput(title="Humidity current")
        self.p_current = TextInput(title="Pressure current")

        self.t_offset = TextInput(title="Temperature offset")
        self.h_offset = TextInput(title="Humidity offset")
        self.p_offset = TextInput(title="Pressure offset")

        self.read_offsets = Button(label='Read offsets')
        self.write_offsets = Button(label='Write offsets')

    def _layout_(self):
        return VBox(HBox(self.t_current, self.t_offset, width=500),
                    HBox(self.h_current, self.h_offset, width=500),
                    HBox(self.p_current, self.p_offset, width=500),
                    HBox(self.read_offsets, self.write_offsets, width=500))

    def panel(self):

        return Panel(child=self._layout_(), title="Offsets")

    def _read_(self):

        offsets = self.ut330.read_offsets()

        self.t_current.value = str(offsets['temperature'])
        self.h_current.value = str(offsets['humidity'])
        self.p_current.value = str(offsets['pressure'])

        self.t_offset.value = str(offsets['temperature offset'])
        self.h_offset.value = str(offsets['humidity offset'])
        self.p_offset.value = str(offsets['pressure offset'])

    def _write_(self):

        offsets = {'temperature offset': float(self.t_offset.value),
                   'humidity offset': float(self.h_offset.value),
                   'pressure offset': float(self.p_offset.value)}

        self.ut330.write_offsets(offsets)

    def callbacks(self):

        self.read_offsets.on_click(self._read_)
        self.write_offsets.on_click(self._write_)

    def device_read(self):

        self._read_()
Beispiel #5
0
def make_layout():
    plot, source = make_plot()
    columns = [
        TableColumn(field="dates", title="Date"),
        TableColumn(field="downloads", title="Downloads"),
    ]
    data_table = DataTable(source=source, columns=columns, width=400, height=400)
    button = Button(label="Randomize data", type="success")
    button.on_click(click_handler)
    buttons = VBox(children=[button])
    vbox = VBox(children=[buttons, plot, data_table])
    return vbox
Beispiel #6
0
def make_layout():
    plot, source = make_plot()
    columns = [
        TableColumn(field="dates", title="Date", editor=DateEditor(), formatter=DateFormatter()),
        TableColumn(field="downloads", title="Downloads", editor=IntEditor()),
    ]
    data_table = DataTable(source=source, columns=columns, width=400, height=400, editable=True)
    button = Button(label="Randomize data", button_type="success")
    button.on_click(click_handler)
    buttons = WidgetBox(children=[button],width=800)
    column = Column(children=[buttons, plot, data_table])
    return column
Beispiel #7
0
    def time_tab(self):

        """The date and time setting and getting tab"""

        self.time_status = Div(text="", width=self.page_width)

        time_connect = Button(label='Connect to UT330',
                              button_type="success")

        time_disconnect = Button(label='Disconnect from UT330',
                                 button_type="success")

        time_get = Button(label='Get UT330 date and time',
                          button_type="success")

        self.time_compare = Div(text="", width=self.page_width)

        time_set = Button(label='Set the UT330 date and time',
                          button_type="success")

        time_connect.on_click(self.time_connect)
        time_disconnect.on_click(self.time_disconnect)
        time_get.on_click(self.time_get)
        time_set.on_click(self.time_set)

        l = layout([self.time_status],
                   [time_connect, time_disconnect],
                   [time_get, self.time_compare],
                   [time_set])

        return Panel(child=l, title="Date and time setting")
Beispiel #8
0
    def device_data_tab(self):

        """Reading device data"""
        self.data_status = Div(text="", width=self.page_width)

        data_connect = Button(label='Connect to UT330',
                              button_type="success")
        data_read = Button(label='Read data',
                           button_type="success")
        data_write = Button(label='Write data to disk',
                            button_type="success")
        data_erase = Button(label='Erase data',
                            button_type="success")
        data_disconnect = Button(label='Disconnect from UT330',
                                 button_type="success")

        data_connect.on_click(self.data_connect)
        data_read.on_click(self.data_read)
        data_write.on_click(self.data_write)
        data_erase.on_click(self.data_erase)
        data_disconnect.on_click(self.data_disconnect)

        if self.device_connected:
            self.data_status.text = ('UT330 device connected. The Read, '
                                     'Write, Erase, and Disconnect buttons '
                                     'will work.')
        else:
            self.data_status.text = ('UT330 device is <strong>NOT</strong> '
                                     'connected. The '
                                     'Read, Write, Erase, and Disconnect '
                                     'buttons will <strong>not work</strong>. '
                                     'Press the '
                                     'Connect button if the UT330 is '
                                     'connected on a USB port.')

        # Layout
        l = layout([[self.data_status],
                    [data_connect, data_disconnect],
                    [data_read, data_write, data_erase]],
                   width=self.page_width)

        return Panel(child=l,
                     title="Read from device")
class SqlConfig:
    def __init__(self):
        self.config = {}
        self.load(update_widgets=False)
        self.input_types = ['host', 'port', 'dbname', 'user', 'password']
        self.input_widget = {key: TextInput for key in self.input_types}
        self.input_widget['password'] = PasswordInput

        div_sql = Div(text="<b>SQL Settings</b>")

        title = {
            'host': 'Host',
            'port': 'Port',
            'dbname': 'Database Name',
            'user': '******',
            'password': '******'
        }

        self.input = {
            key: self.input_widget[key](value=self.config[key],
                                        title=title[key],
                                        width=300)
            for key in self.input_types
        }
        for key in self.input_types:
            self.input[key].on_change('value', self.save_needed)

        self.check_tables_button = Button(label='Check Tables',
                                          button_type='primary',
                                          width=100)
        self.check_tables_button.on_click(self.check_tables)

        self.create_tables_button = Button(label='Create Tables',
                                           button_type='primary',
                                           width=100)
        self.create_tables_button.on_click(self.create_tables)

        self.clear_tables_button = Button(label='Clear Tables',
                                          button_type='primary',
                                          width=100)
        self.clear_tables_button.on_click(self.clear_tables)

        self.reload_button = Button(label='Reload',
                                    button_type='primary',
                                    width=100)
        self.reload_button.on_click(self.load)

        self.save_button = Button(label='Save',
                                  button_type='default',
                                  width=100)
        self.save_button.on_click(self.save)

        self.echo_button = Button(label="Echo",
                                  button_type='primary',
                                  width=100)
        self.echo_button.on_click(self.echo)

        self.layout = column(
            div_sql, row(self.input['host'], self.input['port']),
            row(self.input['user'], self.input['password']),
            self.input['dbname'],
            row(self.reload_button, self.echo_button, self.save_button),
            row(self.check_tables_button, self.create_tables_button,
                self.clear_tables_button))

    def load(self, update_widgets=True):
        self.config = load_sql_settings()
        if not is_sql_connection_defined():
            write_sql_connection_settings(self.config)

        if update_widgets:
            for key in self.input_types:
                self.input[key].value = self.config[key]

            self.save_button.button_type = 'default'
            self.save_button.label = 'Save'

    def save(self):
        self.update_config()
        write_sql_connection_settings(self.config)
        self.load()
        self.save_button.button_type = 'default'
        self.save_button.label = 'Save'

    def update_config(self):
        for key in self.input_types:
            self.config[key] = self.input[key].value

    def echo(self):
        self.update_config()
        initial_button_type = self.echo_button.button_type
        initial_label = self.echo_button.label
        if validate_sql_connection(config=self.config, verbose=False):
            self.echo_button.button_type = 'success'
            self.echo_button.label = 'Success'
        else:
            self.echo_button.button_type = 'warning'
            self.echo_button.label = 'Fail'

        time.sleep(1.5)
        self.echo_button.button_type = initial_button_type
        self.echo_button.label = initial_label

    def check_tables(self):

        initial_label = self.check_tables_button.label
        initial_button_type = self.check_tables_button.button_type

        try:
            table_result = {
                table: DVH_SQL().check_table_exists(table)
                for table in ['dvhs', 'plans', 'beams', 'rxs']
            }

            if all(table_result.values()):
                self.check_tables_button.button_type = 'success'
                self.check_tables_button.label = 'Success'
            else:
                self.check_tables_button.button_type = 'warning'
                self.check_tables_button.label = 'Fail'

        except:
            self.check_tables_button.button_type = 'warning'
            self.check_tables_button.label = 'No Connection'

        time.sleep(1.5)
        self.check_tables_button.button_type = initial_button_type
        self.check_tables_button.label = initial_label

    def create_tables(self):
        initial_label = self.create_tables_button.label
        initial_button_type = self.create_tables_button.button_type
        if initial_label == 'Cancel':
            self.create_tables_button.button_type = 'primary'
            self.create_tables_button.label = 'Create Tables'
            self.clear_tables_button.button_type = 'primary'
            self.clear_tables_button.label = 'Clear Tables'
        else:
            try:
                DVH_SQL().initialize_database()
            except:
                self.create_tables_button.button_type = 'warning'
                self.create_tables_button.label = 'No Connection'
                time.sleep(1.5)
                self.create_tables_button.button_type = initial_button_type
                self.create_tables_button.label = initial_label

    def clear_tables(self):

        if self.clear_tables_button.button_type == 'danger':
            try:
                DVH_SQL().reinitialize_database()
            except:
                self.clear_tables_button.button_type = 'warning'
                self.clear_tables_button.label = 'No Connection'
                time.sleep(1.5)
                self.clear_tables_button.button_type = 'primary'
                self.clear_tables_button.label = 'Clear Tables'
            self.create_tables_button.button_type = 'primary'
            self.create_tables_button.label = 'Create Tables'
            self.clear_tables_button.button_type = 'primary'
            self.clear_tables_button.label = 'Clear Tables'
        elif self.clear_tables_button.button_type == 'primary':
            self.clear_tables_button.button_type = 'danger'
            self.clear_tables_button.label = 'Are you sure?'
            self.create_tables_button.button_type = 'success'
            self.create_tables_button.label = 'Cancel'

    def save_needed(self, attr, old, new):
        self.save_button.label = 'Save Needed'
        self.save_button.button_type = 'warning'
Beispiel #10
0
    def create_interact_ui(doc):
        # The data source includes metadata for hover-over tooltips
        lc_source = prepare_lightcurve_datasource(lc)
        tpf_source = prepare_tpf_datasource(tpf, aperture_mask)

        # Create the lightcurve figure and its vertical marker
        fig_lc, vertical_line = make_lightcurve_figure_elements(
            lc, lc_source, ylim_func=ylim_func)

        # Create the TPF figure and its stretch slider
        pedestal = -np.nanmin(tpf.flux.value) + 1
        if scale == "linear":
            pedestal = 0
        fig_tpf, stretch_slider = make_tpf_figure_elements(
            tpf,
            tpf_source,
            pedestal=pedestal,
            fiducial_frame=0,
            vmin=vmin,
            vmax=vmax,
            scale=scale,
            cmap=cmap,
            tools=tools,
        )

        # Helper lookup table which maps cadence number onto flux array index.
        tpf_index_lookup = {cad: idx for idx, cad in enumerate(tpf.cadenceno)}

        # Interactive slider widgets and buttons to select the cadence number
        cadence_slider = Slider(
            start=np.min(tpf.cadenceno),
            end=np.max(tpf.cadenceno),
            value=np.min(tpf.cadenceno),
            step=1,
            title="Cadence Number",
            width=490,
        )
        r_button = Button(label=">", button_type="default", width=30)
        l_button = Button(label="<", button_type="default", width=30)
        export_button = Button(label="Save Lightcurve",
                               button_type="success",
                               width=120)
        message_on_save = Div(text=" ", width=600, height=15)

        # Callbacks
        def _create_lightcurve_from_pixels(tpf,
                                           selected_pixel_indices,
                                           transform_func=transform_func):
            """Create the lightcurve from the selected pixel index list"""
            selected_indices = np.array(selected_pixel_indices)
            selected_mask = np.isin(pixel_index_array, selected_indices)
            lc_new = tpf.to_lightcurve(aperture_mask=selected_mask)
            lc_new.meta["APERTURE_MASK"] = selected_mask
            if transform_func is not None:
                lc_transformed = transform_func(lc_new)
                if len(lc_transformed) != len(lc_new):
                    warnings.warn(
                        "Dropping cadences in `transform_func` is not "
                        "yet supported due to fixed time coordinates."
                        "Skipping the transformation...",
                        LightkurveWarning,
                    )
                else:
                    lc_new = lc_transformed
                    lc_new.meta["APERTURE_MASK"] = selected_mask
            return lc_new

        def update_upon_pixel_selection(attr, old, new):
            """Callback to take action when pixels are selected."""
            # Check if a selection was "re-clicked", then de-select
            if (sorted(old) == sorted(new)) & (new != []):
                # Trigger recursion
                tpf_source.selected.indices = new[1:]

            if new != []:
                lc_new = _create_lightcurve_from_pixels(
                    tpf, new, transform_func=transform_func)
                lc_source.data["flux"] = lc_new.flux.value

                if ylim_func is None:
                    ylims = get_lightcurve_y_limits(lc_source)
                else:
                    ylims = _to_unitless(ylim_func(lc_new))
                fig_lc.y_range.start = ylims[0]
                fig_lc.y_range.end = ylims[1]
            else:
                lc_source.data["flux"] = lc.flux.value * 0.0
                fig_lc.y_range.start = -1
                fig_lc.y_range.end = 1

            message_on_save.text = " "
            export_button.button_type = "success"

        def update_upon_cadence_change(attr, old, new):
            """Callback to take action when cadence slider changes"""
            if new in tpf.cadenceno:
                frameno = tpf_index_lookup[new]
                fig_tpf.select("tpfimg")[0].data_source.data["image"] = [
                    tpf.flux.value[frameno, :, :] + pedestal
                ]
                vertical_line.update(location=tpf.time.value[frameno])
            else:
                fig_tpf.select("tpfimg")[0].data_source.data["image"] = [
                    tpf.flux.value[0, :, :] * np.NaN
                ]
            lc_source.selected.indices = []

        def go_right_by_one():
            """Step forward in time by a single cadence"""
            existing_value = cadence_slider.value
            if existing_value < np.max(tpf.cadenceno):
                cadence_slider.value = existing_value + 1

        def go_left_by_one():
            """Step back in time by a single cadence"""
            existing_value = cadence_slider.value
            if existing_value > np.min(tpf.cadenceno):
                cadence_slider.value = existing_value - 1

        def save_lightcurve():
            """Save the lightcurve as a fits file with mask as HDU extension"""
            if tpf_source.selected.indices != []:
                lc_new = _create_lightcurve_from_pixels(
                    tpf,
                    tpf_source.selected.indices,
                    transform_func=transform_func)
                lc_new.to_fits(
                    exported_filename,
                    overwrite=True,
                    flux_column_name="SAP_FLUX",
                    aperture_mask=lc_new.meta["APERTURE_MASK"].astype(np.int),
                    SOURCE="lightkurve interact",
                    NOTE="custom mask",
                    MASKNPIX=np.nansum(lc_new.meta["APERTURE_MASK"]),
                )
                if message_on_save.text == " ":
                    text = '<font color="black"><i>Saved file {} </i></font>'
                    message_on_save.text = text.format(exported_filename)
                    export_button.button_type = "success"
                else:
                    text = '<font color="gray"><i>Saved file {} </i></font>'
                    message_on_save.text = text.format(exported_filename)
            else:
                text = (
                    '<font color="gray"><i>No pixels selected, no mask saved</i></font>'
                )
                export_button.button_type = "warning"
                message_on_save.text = text

        def jump_to_lightcurve_position(attr, old, new):
            if new != []:
                cadence_slider.value = lc.cadenceno[new[0]]

        # Map changes to callbacks
        r_button.on_click(go_right_by_one)
        l_button.on_click(go_left_by_one)
        tpf_source.selected.on_change("indices", update_upon_pixel_selection)
        lc_source.selected.on_change("indices", jump_to_lightcurve_position)
        export_button.on_click(save_lightcurve)
        cadence_slider.on_change("value", update_upon_cadence_change)

        # Layout all of the plots
        sp1, sp2, sp3, sp4 = (
            Spacer(width=15),
            Spacer(width=30),
            Spacer(width=80),
            Spacer(width=60),
        )
        widgets_and_figures = layout(
            [fig_lc, fig_tpf],
            [
                l_button, sp1, r_button, sp2, cadence_slider, sp3,
                stretch_slider
            ],
            [export_button, sp4, message_on_save],
        )
        doc.add_root(widgets_and_figures)
def start_program():

    # Set up widgets
    text = TextInput(title="HashTag", placeholder='Write a HashTag')

    columns = [
        'Today', 'From yesterday', 'Two days ago', 'Three days ago',
        'Four days ago', 'Five days ago', 'Six days ago'
    ]
    days = Select(title='Days', value='Today', options=columns)

    button = Button(label="Fetch Data", button_type="success")
    button1 = Button(label="Refresh Map", button_type="danger", disabled=True)

    message_box = Div(text="Welcome")

    # Callback function for running the program when hastag requested
    def callback(event):
        if (text.value == ""):
            layout1.children[0] = display_message(
                "HashTag should not be Empty")
            return

        # Disabled the properties for user utill data is fetched
        button.disabled = True
        button.button_type = "danger"
        sentiment.disabled = True
        continent.disabled = True
        button1.disabled = True
        button1.button_type = "danger"

        old = 0
        if (days.value == "Today"):
            old = 0
        elif (days.value == "From yesterday"):
            old = 1
        elif (days.value == "Two days ago"):
            old = 2
        elif (days.value == "Three days ago"):
            old = 3
        elif (days.value == "Four days ago"):
            old = 4
        elif (days.value == "Five days ago"):
            old = 5
        else:
            old = 6

        #Calling the main function for retriving the data
        main(hashtag=text.value,
             days=old,
             layout=layout1,
             button=button,
             sentiment=sentiment,
             continent=continent,
             button1=button1)

    # create_figure function for creating the google map onto the browser with data from output.csv
    def create_figure(event):
        conti = continent.value
        senti = sentiment.value

        if (conti == "North America"):
            map_options = GMapOptions(lat=33.465777,
                                      lng=-88.369025,
                                      map_type="roadmap",
                                      zoom=3)
        elif (conti == "South America"):
            map_options = GMapOptions(lat=-8.783195,
                                      lng=-55.491477,
                                      map_type="roadmap",
                                      zoom=3)
        elif (conti == "Africa"):
            map_options = GMapOptions(lat=-8.783195,
                                      lng=34.508523,
                                      map_type="roadmap",
                                      zoom=3)
        elif (conti == "Asia"):
            map_options = GMapOptions(lat=34.047863,
                                      lng=100.619655,
                                      map_type="roadmap",
                                      zoom=3)
        elif (conti == "Europe"):
            map_options = GMapOptions(lat=54.525961,
                                      lng=15.255119,
                                      map_type="roadmap",
                                      zoom=3)
        elif (conti == "Antartica"):
            map_options = GMapOptions(lat=-82.862752,
                                      lng=135.000000,
                                      map_type="roadmap",
                                      zoom=3)
        else:
            map_options = GMapOptions(lat=-25.274398,
                                      lng=133.775136,
                                      map_type="roadmap",
                                      zoom=3)

        # Calling the Google API Key for displaying google maps
        p = gmap("AIzaSyCJMprrXTtmUqciVaVgskmHxskLkVjrE6A",
                 map_options,
                 title="World Map",
                 width=950)

        #Ploting the legends on the map
        p.circle(None,
                 None,
                 size=5,
                 fill_color="green",
                 fill_alpha=0.7,
                 legend="Positive")
        p.circle(None,
                 None,
                 size=5,
                 fill_color="yellow",
                 fill_alpha=0.7,
                 legend="Neutral")
        p.circle(None,
                 None,
                 size=5,
                 fill_color="red",
                 fill_alpha=0.7,
                 legend="Negative")

        # Load function for extracting data from "output.csv" file
        def load(data):
            lat = []
            lon = []

            with open('output.csv') as csvfile:
                reader = csv.DictReader(csvfile)
                for row in reader:
                    x = float(row["longitude"])
                    y = float(row["latitude"])
                    z = row["sentiment"]
                    if (z == data):
                        lat.append(y)
                        lon.append(x)
            data1 = dict(lat=lat, lon=lon)
            return data1

        # pointing the data on Google Maps
        if (senti == "All"):
            source = ColumnDataSource(data=load(data="positive"))
            p.circle(x="lon",
                     y="lat",
                     size=8,
                     fill_color="green",
                     fill_alpha=1.0,
                     source=source)
            source = ColumnDataSource(data=load(data="negative"))
            p.circle(x="lon",
                     y="lat",
                     size=8,
                     fill_color="red",
                     fill_alpha=1.0,
                     source=source)
            source = ColumnDataSource(data=load(data="neutral"))
            p.circle(x="lon",
                     y="lat",
                     size=8,
                     fill_color="yellow",
                     fill_alpha=1.0,
                     source=source)
        elif (senti == "Positive"):
            source = ColumnDataSource(data=load(data="positive"))
            p.circle(x="lon",
                     y="lat",
                     size=8,
                     fill_color="green",
                     fill_alpha=1.0,
                     source=source)
        elif (senti == "Negative"):
            source = ColumnDataSource(data=load(data="negative"))
            p.circle(x="lon",
                     y="lat",
                     size=8,
                     fill_color="red",
                     fill_alpha=1.0,
                     source=source)
        else:
            source = ColumnDataSource(data=load(data="neutral"))
            p.circle(x="lon",
                     y="lat",
                     size=8,
                     fill_color="yellow",
                     fill_alpha=1.0,
                     source=source)

        return p  #End of function create_figure()

    #update function for on_change event listener
    def update(attr, old, new):
        layout.children[1] = create_figure(event=None)

    #update1 function for on_click event listener
    def update1():
        layout.children[1] = create_figure(event=None)

    # Event listner for buttons
    button.on_event(ButtonClick, callback)
    button1.on_click(update1)

    #Set all Parameters for dropdown menus
    columns = ["All", "Positive", "Neutral", "Negative"]
    sentiment = Select(title='Sentiment',
                       value='All',
                       options=columns,
                       disabled=True)
    sentiment.on_change('value', update)

    continents = [
        "North America", "South America", "Africa", "Asia", "Antartica",
        "Europe", "Australia"
    ]
    continent = Select(title='Continents',
                       value='North America',
                       options=continents,
                       disabled=True)
    continent.on_change('value', update)

    # Set up layouts and add to document
    controls = widgetbox([text, days, button, sentiment, continent, button1])
    layout1 = column(display_message("Welcome"), controls)
    layout = row(layout1, create_figure(event=None))

    #Drawing widgets onto the browser
    curdoc().add_root(layout)
    curdoc().title = "World Map"
Beispiel #12
0
bokeh_legend = Legend(items=[("", [])],
                      orientation="vertical",
                      border_line_color="black",
                      label_text_font_size={'value': '9pt'},
                      click_policy='hide',
                      visible=False)
bokeh_legend.label_width = 100
plot.add_layout(bokeh_legend, "right")
plot.y_range = Range1d(0, 100)
plot.extra_y_ranges['secondary'] = Range1d(0, 100)

# select file
file_selection_button = Button(label="Select Files",
                               button_type="success",
                               width=120)
file_selection_button.on_click(load_files_group)

files_selector_spacer = Spacer(width=10)

group_selection_button = Button(label="Select Directory",
                                button_type="primary",
                                width=140)
group_selection_button.on_click(load_directory_group)

update_files_button = Button(label="Update Files",
                             button_type="default",
                             width=50)
update_files_button.on_click(reload_all_files)

auto_update_toggle_button = Toggle(label="Auto Update",
                                   button_type="default",
    global current_topic
    if current_topic is None:
        current_topic = min_topic
    elif current_topic == max_topic:
        current_topic = min_topic
    else:
        current_topic += 1
    mdssource.selected = [current_topic-1]
    session.store_objects(mdssource)

def on_btn_clear():
    current_topic = None
    mdssource.selected = []
    session.store_objects(mdssource)

btn_prev.on_click(on_btn_prev)
btn_next.on_click(on_btn_next)
btn_clear.on_click(on_btn_clear)

slider = Slider(title="Slide to adjust relevance metric", value=0.25, start=0.0, end=1.0, step=0.01)

topics = HBox(height=50, children=[btn_prev, btn_next, btn_clear])
metric = HBox(height=50, children=[slider])

left_panel = VBox(children=[topics, intertopic_distance_map])
right_panel = VBox(children=[metric, top_R_terms])

layout = HBox(children=[left_panel, right_panel])

document.add(layout)
session.store_document(document)
Beispiel #14
0
def colorbar_slider(fig):
    '''
    Adds interactive sliders and text input boxes for the colorbar.
    Returns a layout object to be put into a gridplot
    '''
    cb = get_colorbar_renderer(fig)
    data = get_image_data(fig)
    data = reject_outliers_quick(data)
    datamin = nanmin(data)
    datamax = nanmax(data)
    im = get_glyph_renderer(fig) # Get image renderer

    from bokeh.models import CustomJS, Slider, TextInput
    from bokeh.models.widgets import Button
    from bokeh.layouts import widgetbox

    model = Slider() # trick it into letting datamin and datamax into CustomJS
    model.tags.append(datamin) # Hide these in here
    model.tags.append(datamax)

    callback_u = CustomJS(args=dict(cb=cb, im=im, model=model), code="""
        var cm = cb.color_mapper;
        var upp = upper_slider.get('value');
        upper_input.value = upp.toString()
        lower_slider.end = upp
        cm.high = upp;
        im.glyph.color_mapper.high = upp;
        if (cm.low >= cm.high){
        cm.low = upp/1.1 // to prevent limits being the same
        im.glyph.color_mapper.low = low/1.1;
        }
        if (upp > model.tags[1]){
            upper_slider.end = upp
        }
        """)

    callback_l = CustomJS(args=dict(cb=cb, im=im, model=model), code="""
        var cm = cb.color_mapper;
        var low = lower_slider.get('value');
        lower_input.value = low.toString()
        upper_slider.start = low
        cm.low = low;
        im.glyph.color_mapper.low = low;
        if (cm.high <=  cm.low){
        cm.high = low*1.1 // to prevent limits being the same
        im.glyph.color_mapper.high = low*1.1;
        }
        if (low < model.tags[0]){
            lower_slider.start = low
        }""")

    callback_ut = CustomJS(args=dict(cb=cb, im=im, model=model), code="""
        var cm = cb.color_mapper;
        var upp = parseFloat(upper_input.get('value'));
        upper_slider.value = upp
        cm.high = upp;
        im.glyph.color_mapper.high = upp;
        if (cm.low >=  cm.high){
        cm.low = upp/1.1 // to prevent limits being the same
        im.glyph.color_mapper.low = upp/1.1;
        }
        if (upp > model.tags[1]){
            upper_slider.end = upp
        }
        """)

    callback_lt = CustomJS(args=dict(cb=cb, im=im, model=model), code="""
        var cm = cb.color_mapper;
        var low = parseFloat(lower_input.get('value'));
        lower_slider.value = low
        cm.low = low;
        im.glyph.color_mapper.low = low;
        if (cm.high <=  cm.low){
        cm.high = low*1.1 // to prevent limits being the same
        im.glyph.color_mapper.high = low*1.1;
        }
        if (low < model.tags[0]){
            lower_slider.start = low
        }
        """)

    callback_reset_js = CustomJS(args=dict(cb=cb, im=im, model=model), code="""
        var cm = cb.color_mapper;
        var low = model.tags[0];
        var high = model.tags[1];
        low = parseFloat(low.toPrecision(3)) // 3 sig figs
        high = parseFloat(high.toPrecision(3)) // 3 sig figs
        lower_slider.value = low;
        lower_slider.set('step', (high-low)/50);
        cm.low = low;
        upper_slider.value = high;
        upper_slider.set('step', (high-low)/50);
        cm.high = high;
        im.glyph.color_mapper.low = low;
        im.glyph.color_mapper.high = high;
        lower_input.value = low.toString();
        upper_input.value = high.toString();
        lower_slider.start = low;
        lower_slider.end = high;
        upper_slider.start = low;
        upper_slider.end = high;
        model.trigger('change')
        cb_obj.trigger('change)')
    """)

    reset_button = Button(label='Reset', callback = callback_reset_js)

    def callback_reset(*args, **kwargs):
        from IPython.display import Javascript, display

        # display(callback_reset_js)
        # callback_reset_js.name = None
        # callback_reset_js.name = 'test'
        # display('Plot updated, press reset to rescale!')
        # cb.color_mapper.low = datamin
        # cb.color_mapper.high = datamax
        # im.glyph.color_mapper.low = datamin
        # im.glyph.color_mapper.high = datamax
        # lower_slider.start = datamin
        # lower_slider.end = datamax
        # lower_slider.value = datamin
        # upper_slider.start = datamin
        # upper_slider.end = datamax
        # lower_slider.value = datamax
        # lower_input.value = str(datamin)
        # upper_input.value = str(datamax)
        # update()
        # fig.text(x=0,y=0,text='Plot updated, press reset to rescale!')
        # reset_button.label='Reset: Data changed! Press me!'

    # reset_button.trigger('clicks',0,1)
    reset_button.on_click(callback_reset)

    # def callback_die(attr, old, new):
    #     from IPython.display import display
    #     display('yoooo')
    #     display(old)
    #     display(new)
    #     raise Exception()
    # exception_button = Button(label='KILL ME')
    # exception_button.on_click(callback_die)

    lower_slider = Slider(start=datamin, end=datamax, value=datamin, step=(datamax-datamin)/50, # smallest step is 1e-5
                        title="Lower lim", callback=callback_l)
    lower_slider.width=100

    upper_slider = Slider(start=datamin, end=datamax, value=datamax, step=(datamax-datamin)/50,
                         title="Upper lim", callback=callback_u)
    upper_slider.width=100

    lower_input = TextInput(callback=callback_lt, value = str(datamin), width=50)
    upper_input = TextInput(callback=callback_ut, value = str(datamax), width=50)

    # add all of these widgets as arguments to the callback functions
    for callback in ['l', 'u', 'lt', 'ut', 'reset_js']:
        for widget in ['lower_slider', 'upper_slider','lower_input','upper_input', 'reset_button']:
            exec('callback_%s.args["%s"] = %s' %(callback, widget, widget))

    wb = widgetbox([upper_slider, upper_input, lower_slider, lower_input, reset_button], width=100, sizing_mode = 'stretch_both')
    return wb
def plot():

    # INPUT WIDGETS
    collection_list = ['bugaboo']
    #collection_list = util.CONN[util.DB].collection_names(include_system_collections=False)
    gliders = sorted([platformID for platformID in collection_list if len(platformID)>2])
    gliders = Select(title = 'PlatformID', value = gliders[0], options = gliders)
    prev_glider = Button(label = '<')
    next_glider = Button(label = '>')
    glider_controlbox = HBox(children = [gliders, prev_glider, next_glider])

    control_box = HBox(glider_controlbox)

    # DATA VARS
    heatdata = dict(x=[1.5,2],y=[2,1.5],values=[0,10])
    t = 1000*util.time()
    heatdata = dict(x=[t-4*60*1000,t-3*60*1000,t-2*60*1000,t-1*60*1000],
                    y=[1,1,2,2], values=[1,2,3,4])

    # FIGURES AND AXIS
    fig1 = HeatMap(data=heatdata, x='x', y='y', values='values', title = 'SUPERHOT')

    # LEGEND
    #TODO
    """
    legend = Figure(tools=None)
    legend.toolbar_location=None
    legend.rect(x=0.5, y='value', fill_color='color', width=1, height=1, source=heatdata)
    layout = hplot(main, legend)
    """

    # CALLBACK FUNCS
    def update_data(attrib,old,new):
        g = gliders.value
        #depth   = load_sensor(g, 'm_depth')
        #celcius = load_sensor(g, 'sci_water_temp')
        t = 1000*util.time()
        ego = dict(x=[t-4*60*1000,t-3*60*1000,t-2*60*1000,t-1*60*1000],
                        y=[1,1,2,2], values=[1,2,3,4])
        fig1.pprint_props()


    #GLIDER SELECTS
    def glider_buttons(increment):
        ops = gliders.options
        new_index = ops.index(gliders.value) + increment
        if new_index >= len(ops):
            new_index = 0
        elif new_index < 0:
            new_index = len(ops)-1
        gliders.value = ops[new_index]
    def next_glider_func():
        glider_buttons(1)
    def prev_glider_func():
        glider_buttons(-1)

    gliders.on_change('value', update_data)
    next_glider.on_click(next_glider_func)
    prev_glider.on_click(prev_glider_func)

    update_data(None,None,None)

    return vplot(control_box, fig1)
Beispiel #16
0
# import libraries
from bokeh.io import output_file, show
from bokeh.models.widgets import TextInput, Button, Paragraph
from bokeh.layouts import layout

# prepare the bokeh output file
output_file('simple_bokeh.html')

# create widgets
text_input = TextInput(value='Bryan')
button = Button(label='Generate Text')
output = Paragraph()


# create a function to update
def update():

    output.text = 'Hello, ' + text_input


button.on_click(update)
lo = layout([[button, text_input], [output]])

show(lo)
Beispiel #17
0
    def offset_tab(self):

        """Reading/writing device offsets"""

        # True if the offset device data has been read, false otherwise
        self.offset_device_read = False

        offset_status_h = Div(text="<strong>Status</strong>")
        self.offset_status = Div(text="", width=self.page_width)

        # Connect to device button
        # ========================
        offset_controls_h = Div(text="<strong>Device controls</strong>")
        offset_connect = Button(label='Connect to UT330',
                                button_type="success")
        offset_read = Button(label='Read offset', button_type="success")
        offset_write = Button(label='Write offset', button_type="success")
        offset_disconnect = Button(label='Disconnect from UT330',
                                   button_type="success")

        offset_connect.on_click(self.offset_connect)
        offset_read.on_click(self.offset_read)
        offset_write.on_click(self.offset_write)
        offset_disconnect.on_click(self.offset_disconnect)

        # Offsets
        # =======
        offset_offsets_h = Div(text="<strong>Offsets</strong>")
        self.offset_t_current = TextInput(title="Temperature current")
        self.offset_h_current = TextInput(title="Humidity current")
        self.offset_p_current = TextInput(title="Pressure current")

        self.offset_t = TextInput(title="Temperature offset")
        self.offset_h = TextInput(title="Humidity offset")
        self.offset_p = TextInput(title="Pressure offset")

        # Values to widgets
        # =================
        if self.device_connected:
            self.offset_connected()
        else:
            self.offset_not_connected()

        if self.device_connected:
            self.offset_status.text = ('UT330 device connected. The Read, '
                                       'Write, and Disconnect buttons '
                                       'will work.')
        else:
            self.offset_status.text = ('UT330 device is <strong>NOT</strong> '
                                       'connected. The '
                                       'Read, Write, and Disconnect buttons '
                                       'will <strong>not work</strong>. '
                                       'Click the '
                                       'Connect button if the UT330 is '
                                       'connected on a USB port.')
        # Layout
        # ======
        l = layout([[offset_status_h],
                    [self.offset_status],
                    [offset_controls_h],
                    [offset_connect,
                     offset_read,
                     offset_write,
                     offset_disconnect],
                    [offset_offsets_h],
                    [self.offset_t_current,
                     self.offset_h_current,
                     self.offset_p_current],
                    [self.offset_t,
                     self.offset_h,
                     self.offset_p]],
                   width=self.page_width)

        return Panel(child=l,
                     title="Read/write offset")
Beispiel #18
0
    def config_tab(self):

        """Reading/writing device configuration"""

        # True if the config device data has been read, false otherwise
        self.config_device_read = False

        # Device connectivity
        # ===================
        config_conn_head = Div(text="<strong>Connectivity</strong>")
        self.config_status = Div(text="", width=self.page_width)
        config_connect = Button(label='Connect to UT330',
                                button_type="success")
        config_read = Button(label='Read config', button_type="success")
        config_write = Button(label='Write config', button_type="success")
        config_disconnect = Button(label='Disconnect from UT330',
                                   button_type="success")

        config_connect.on_click(self.config_connect)
        config_read.on_click(self.config_read)
        config_write.on_click(self.config_write)
        config_disconnect.on_click(self.config_disconnect)

        # Show the configuration data
        # ===========================
        # Set up the widgets
        config_device_head = Div(text="<strong>Configuration</strong>")
        self.config_device_name = TextInput(title="Device name")
        self.config_device_time = TextInput(title="Device time")
        self.config_computer_time = TextInput(title="Computer time")
        self.config_t_high = TextInput(title="High temperature alarm (C)")
        self.config_t_low = TextInput(title="Low temperature alarm (C)")
        self.config_h_high = TextInput(title="High humidity alarm (%RH)")
        self.config_h_low = TextInput(title="Low humidity alarm (%RH)")
        self.config_p_high = TextInput(title="High pressure alarm")
        self.config_p_low = TextInput(title="Low pressure alarm")
        self.config_sampling = TextInput(title="Sampling interval (s)")
        self.config_overwrite_records = Select(title="Overwrite records",
                                               options=['False', 'True'])
        self.config_delay_start = Select(title="Delay start",
                                         options=['No delay', 'Delay'])
        self.config_delay = TextInput(title="Delay (s)")

        # Status data
        # ===========
        config_status_head = Div(text="<strong>Status</strong>")
        self.config_power = TextInput(title="Battery power (%)")
        self.config_readings = TextInput(title="Readings")

        # Disable user input for these widgets
        self.config_power.disabled = True
        self.config_readings.disabled = True

        # Values to widgets
        # =================
        if self.device_connected:
            self.config_connected()
        else:
            self.config_not_connected()

        # Set up the display
        layout = column(row(config_conn_head),
                        row(self.config_status),
                        row(config_connect,
                            config_read,
                            config_write,
                            config_disconnect),
                        row(config_device_head),
                        row(self.config_device_name,
                            self.config_device_time,
                            self.config_computer_time),
                        row(self.config_t_low,
                            self.config_h_low,
                            self.config_p_low),
                        row(self.config_t_high,
                            self.config_h_high,
                            self.config_p_high),
                        row(self.config_sampling),
                        row(self.config_overwrite_records,
                            self.config_delay_start,
                            self.config_delay),
                        row(config_status_head),
                        row(self.config_power, self.config_readings))

        return Panel(child=layout,
                     title="Read/write configuration")
Beispiel #19
0
date_slider.on_change("value", update)
time_slider.on_change("value", update)
type_button.on_change("active", update)

def on_selection_change(attr, old, new):
    print("on_selection_change")
    indices = new["1d"]["indices"]
    if indices:
        sector_id = geo_sectors.loc[indices[0]]["sector_id"]
        sector_select.value = str(sector_id) # Calls update in chain
        #update_sources(sector_id=sector_id)
map_plot.get_data_source().on_change("selected", on_selection_change)

def close_session():
    session.close()
button.on_click(close_session)


# Page build
inputs = VBoxForm(children=[sector_select, date_slider, time_slider,
                            type_button])
map_box = HBox(children=[map_colorbar.get_plot(), map_plot.get_plot()])
plots = VBox(children=[map_box, conso_plot.get_plot()])
root_element = HBox(children=[inputs, plots])

update(None, None, None) # Init data


# Session
print("Starting server")
curdoc().add_root(root_element)
Beispiel #20
0
from __future__ import print_function

from bokeh.client import push_session
from bokeh.io import curdoc
from bokeh.models import CustomJS
from bokeh.models.layouts import WidgetBox
from bokeh.models.widgets import (
    Button, Toggle, Dropdown, CheckboxGroup, RadioGroup,
    CheckboxButtonGroup, RadioButtonGroup,
)

button = Button(label="Button (enabled) - has click event", button_type="primary")
button.on_click(lambda: print('button: click'))
button.js_on_click(CustomJS(code="console.log('button: click', this.toString())"))

button_disabled = Button(label="Button (disabled) - no click event", button_type="primary", disabled=True)
button_disabled.on_click(lambda: print('button_disabled: click'))
button_disabled.js_on_click(CustomJS(code="console.log('button_disabled: click', this.toString())"))

toggle_inactive = Toggle(label="Toggle button (initially inactive)", button_type="success")
toggle_inactive.on_click(lambda value: print('toggle_inactive: %s' % value))
toggle_inactive.js_on_click(CustomJS(code="console.log('toggle_inactive: ' + this.active, this.toString())"))

toggle_active = Toggle(label="Toggle button (initially active)", button_type="success", active=True)
toggle_active.on_click(lambda value: print('toggle_active: %s' % value))
toggle_active.js_on_click(CustomJS(code="console.log('toggle_active: ' + this.active, this.toString())"))

menu = [("Item 1", "item_1_value"), ("Item 2", "item_2_value"), None, ("Item 3", "item_3_value")]

dropdown = Dropdown(label="Dropdown button", button_type="warning", menu=menu)
dropdown.on_click(lambda value: print('dropdown: %s' % value))
Beispiel #21
0
            auth_button.button_type = 'danger'
            time.sleep(3)
            auth_button.label = 'Authenticate'
            auth_button.button_type = 'warning'


######################################################
# Layout objects
######################################################
# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# Custom authorization
# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
auth_user = TextInput(value='', title='User Name:', width=150)
auth_pass = PasswordInput(value='', title='Password:'******'inbox'], title="Inbox", width=600)
input_inbox.on_change('value', update_inbox)
input_imported = TextInput(value=directories['imported'],
                           title="Imported",
                           width=600)
input_imported.on_change('value', update_imported)
Beispiel #22
0
    i = i + 1
    source.callback = CustomJS(args=dict(colors=colors, clusters=i),
                               code="""
	 var inds = cb_obj.getv('selected')['1d'].indices;
         var d1 = cb_obj.data;
	 if (inds.length == 0) { return; }
	 for (i = 0; i < inds.length; i++) {
             d1['cluster'][inds[i]] = clusters;
             d1['color'][inds[i]] = colors[clusters];
	 }
         cb_obj.change.emit();
    """)
    source.selected.indices = []


cluster_button.on_click(callback)
run_button.on_click(run_task)

source.callback = CustomJS(args=dict(colors=colors, clusters=i),
                           code="""
	 var inds = cb_obj.getv('selected')['1d'].indices;
         var d1 = cb_obj.data;
	 if (inds.length == 0) { return; }
	 for (i = 0; i < inds.length; i++) {
             d1['cluster'][inds[i]] = clusters;
             d1['color'][inds[i]] = colors[clusters];
	 }
         cb_obj.change.emit();
    """)

xdr = Range1d(start=0, end=300)
    v0_value = v0.value
    v1_value = v1.value
    v2_value = v2.value
    v3_value = v3.value

    # Generate the new curve
    m_projection = [v0_value, v1_value, v2_value, v3_value]
    rec = get_reconstruction(m_eigs_t, m_projection, m_mean_vector)
    x = [i for i in xrange(np.shape(rec)[0])]
    y = [v for v in rec]

    source.data = dict(x=x, y=y)

def on_click(*args):
    m_projection = [0., 0., 0., 0.]
    rec = get_reconstruction(m_eigs_t, m_projection, m_mean_vector)
    x = [i for i in xrange(np.shape(rec)[0])]
    y = [v for v in rec]

    source.data = dict(x=x, y=y)


for w in [v0, v1, v2, v3]:
    w.on_change('value', update_data)
button.on_click(on_click)

# Set up layouts and add to document
inputs = HBox(children=[v0, v1, v2, v3, button])

curdoc().add_root(VBox(children=[inputs, plot], width=1200))
Beispiel #24
0
class Config_Panel(object):

    def __init__(self, ut330):

        self.ut330 = ut330

        self.device_name = TextInput(title="Device name")

        self.device_time = TextInput(title="Device time")
        self.computer_time = TextInput(title="Computer time")

        self.t_high = TextInput(title="High temperature alarm (C)")
        self.t_low = TextInput(title="Low temperature alarm (C)")
        self.h_high = TextInput(title="High humidity alarm (%RH)")
        self.h_low = TextInput(title="Low humidity alarm (%RH)")
        self.p_high = TextInput(title="High pressure alarm")
        self.p_low = TextInput(title="Low pressure alarm")

        self.sampling = TextInput(title="Sampling interval (s)")
        self.overwrite_records = Select(title="Overwrite records",
                                        options=['False', 'True'])

        self.delay_start = Select(title="Delay start",
                                  options=['No delay', 'Delay'])
        self.delay = TextInput(title="Delay (s)")

        self.power = TextInput(title="Battery power (%)")
        self.readings = TextInput(title="Readings")

        self.read_config = Button(label='Read config')
        self.write_config = Button(label='Write config')

    def _layout_(self):

        return VBox(HBox(self.device_name,
                         self.device_time,
                         self.computer_time,
                         width=700),
                    HBox(self.t_low,
                         self.h_low,
                         self.p_low,
                         width=700),
                    HBox(self.t_high,
                         self.h_high,
                         self.p_high,
                         width=700),
                    HBox(self.sampling, width=700),
                    HBox(self.overwrite_records,
                         self.delay_start,
                         self.delay,
                         width=700),
                    HBox(self.power,
                         self.readings,
                         width=700),
                    HBox(self.read_config,
                         self.write_config,
                         width=700))

    def panel(self):

        return Panel(child=self._layout_(), title="Configuration")

    def callbacks(self):

        self.read_config.on_click(self._read_)
        self.write_config.on_click(self._write_)

    def device_read(self):

        self._read_()

    def _read_(self):

        now = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        config = self.ut330.read_config()

        self.device_name.value = config['device name']
        self.device_time.value = config['timestamp'].strftime("%Y-%m-%d "
                                                              "%H:%M:%S")
        self.computer_time.value = now
        self.t_high.value = str(config['high temperature alarm'])
        self.t_low.value = str(config['low temperature alarm'])
        self.h_high.value = str(config['high humidity alarm'])
        self.h_low.value = str(config['low humidity alarm'])
        self.p_high.value = 'None'
        self.p_low.value = 'None'
        self.sampling.value = str(config['sampling interval'])
        self.overwrite_records.value = 'True' if config['overwrite records'] \
                                       else 'False'
        self.delay_start.value = 'Delay' if config['delay start'] \
                                 else 'No delay'
        self.delay.value = str(config['delay timing'])
        self.power.value = str(config['battery power'])
        self.readings.value = "{0}/{1}".format(config['readings count'],
                                               config['readings limit'])

    def _write_(self):

        config = {'device name': self.device_name.value,
                  'sampling interval': int(self.sampling.value),
                  'overwrite records': self.overwrite_records.value == 'True',
                  'delay timing': int(self.delay.value),
                  'delay start': self.delay_start.value == 'Delay',
                  'high temperature alarm': int(self.t_high.value),
                  'low temperature alarm': int(self.t_low.value),
                  'high humidity alarm': int(self.h_high.value),
                  'low humidity alarm': int(self.h_low.value)}

        self.ut330.write_config(config)
Beispiel #25
0
                     title=u'业绩时间窗口',
                     width=200,
                     options=time_selections)
time_select.on_change('value', lambda attr, old, new: update_data())
comp_stock_hold_select = Select(value=u'全部',
                                title=u'公募基金重仓持股',
                                width=200,
                                options=comp_holds)
comp_stock_hold_select.on_change('value',
                                 lambda attr, old, new: update_comp_hold())
# today = datetime.datetime.today()
# time_start = TextInput(label=(today - datetime.timedelta(365)).strftime('%Y-%m-%d'), title=u'开始日期', width=200)
# time_end = TextInput(label=today.strftime('%Y-%m-%d'), title=u'结束日期', width=200)
# time_end.on_change('value', lambda attr, old, new: update_data())
fund_button = Button(label=u"筛选基金", button_type="success", width=200)
fund_button.on_click(select_fund)
update_button = Button(label=u'更新数据', button_type='success', width=200)
update_button.on_click(update_new_data)
fund_text = TextInput(value='000088.OF', title=u'基金Wind代码', width=200)
fund_text.on_change('value', lambda attr, old, new: update_data())
comp_select = Select(value=u'嘉实基金管理有限公司',
                     title=u'基金公司',
                     width=200,
                     options=comps)
comp_select.on_change('value', lambda attr, old, new: update_comp())

columns = [
    TableColumn(field='sec_name', title=u'基金简称'),
    TableColumn(field='wind_code', title=u'万得代码'),
    TableColumn(field='fundmanager', title=u'基金经理'),
    TableColumn(field='netasset',
	print 'After: ' + str(undefinedSource.data) + '\n'

###########################################################################
# Setup figure, glyphs, and a datasource

glyphDict = create_glyphs()
undefinedSource = bkM.ColumnDataSource(data=dict(x=[0,4,8], y=[0,0,0], width=[0.25,0.25,0.25], height=[2,2,2]))
fig = create_fig()

###########################################################################
# Add widgets and their callbacks

from bokeh.models.widgets import Button, TextInput

changeA_button = Button(label='UpdateFig A')
changeA_button.on_click(update_figure_A)

changeB_button = Button(label='UpdateFig B')
changeB_button.on_click(update_figure_B)

widgets = [changeA_button, changeB_button]

from bokeh.layouts import widgetbox
widgetBox = widgetbox(*widgets, sizing_mode='fixed')

# Add figure and widgets to a layout
###########################################################################
from bokeh.layouts import layout
layout = layout( [[fig], [widgetBox]], sizing_mode='fixed')

###########################################################################
Beispiel #27
0
def index():

    #    CODA_export_file = '//longbasp0005/D/Documents/Qlik/Sense/Content/Text Analytics/Data/CODA_Export.csv'

    CODA_export_file = 'data/CODA_Export.csv'

    issues_df = load_issues_fast(CODA_export_file)

    dend_threshold = 3.2

    number_of_clusters = 14

    # universe_issues_list = issues_df['CASE_NUMBER'].head(100).tolist()
    # issues_list = ['572', '204', '3191', '202', '709', '626', '858', '98']
    issues_dict = dict(issues_list=[""], issues_membership=[""])

    # creat a list for the all issues interesterd called universe issues
    # removing rejected and remediated issues
    universe_issues_list = \
        issues_df.CASE_NUMBER[~issues_df.DETAILED_DESCRIPTION.isin(["Rejected", "Remediated"])].tolist()

    df_tfidf = pd.DataFrame()

    # set the color palette to be used for assigning denrogram colors
    set_link_color_palette(Category20_20)

    # =============================================================================
    # Create a new figure with a needed tools
    # =============================================================================
    p = figure(
        tools="pan,wheel_zoom,box_zoom,box_select,save,reset",
        plot_width=1000,
        plot_height=800,
    )
    # =============================================================================
    # Create source data containing and making the plot
    # =============================================================================
    # adding the threshold line as an exrta line in the last entry
    dend_source = ColumnDataSource(data=dict(x=[], y=[], leg_color=[]))
    leaves_source = ColumnDataSource(data=dict(leaves_x=[],
                                               leaves_y=[],
                                               leaves_names=[],
                                               leaves_color=[],
                                               leaves_size=[],
                                               clusters=[]))
    image_source = ColumnDataSource(
        data=dict(url=["static/static_dend.png", "", ""],
                  text=["", "Enter your issues IDs", ""],
                  text_x=[0, 40, 100],
                  text_y=[0, 40, 80]))
    # making fake source data for dend slider
    source_for_slider = ColumnDataSource(data=dict(value=[]))

    # add the static dend
    p.image_url(url="url",
                x=0,
                y=0,
                w=100,
                h=80,
                anchor="bottom_left",
                source=image_source)
    p.text(x="text_x", y="text_y", text="text", source=image_source)

    # Plot dendrogram U shapes using multi_line function
    p.multi_line("x", "y", color="leg_color", source=dend_source)

    # remove the x axis tickers by setting them to empty
    p.xaxis.ticker = []

    # Add label to axex
    p.yaxis.axis_label = "Distance"
    p.xaxis.axis_label = "Issue ID"

    # creating corcles at the end of each leaf
    p.circle(x="leaves_x",
             y="leaves_y",
             fill_alpha=0.7,
             size="leaves_size",
             fill_color="leaves_color",
             source=leaves_source)
    # Adding lables to plot
    labels = LabelSet(x="leaves_x",
                      y="leaves_y",
                      text="leaves_names",
                      angle=-60,
                      angle_units="deg",
                      y_offset=-10,
                      x_offset=-5,
                      source=leaves_source,
                      render_mode='canvas')
    p.add_layout(labels)

    # =============================================================================
    # Set up widgets
    # =============================================================================
    # using the fake data source method for CustumJS callback
    # look at https://stackoverflow.com/questions/38375961/throttling-in-bokeh-application/38379136
    dend_threshold_slider = Slider(title="Dendrogram Threshold over distance",
                                   value=2.0,
                                   start=0.0,
                                   end=10,
                                   step=0.05,
                                   callback_policy='mouseup',
                                   callback=CustomJS(
                                       args=dict(source=source_for_slider),
                                       code="""
                                           source.data = { value: [cb_obj.value] }
                                           """))
    issues_list_input = TextInput(title="Enter issues IDs")
    clipboard_text = TextInput(title="Selected issues IDs")
    columns = [
        TableColumn(field="leaves_names", title="Issue ID"),
        TableColumn(field="clusters", title="Cluster"),
    ]
    data_table = DataTable(source=leaves_source, columns=columns, width=280)
    submit_button = Button(label="Submit", button_type="success")
    universe_checkbox = CheckboxGroup(
        labels=["Universe issues dendrogram (please allow 30s to complete)"])

    # =============================================================================
    # Set up callbacks
    # =============================================================================

    def update_issue_list():
        """
        Callback function that updates issues_list dict, tfidf and Z
        """
        global issues_dict
        global Z
        global dend_threshold
        change_dend = False
        # get new input issues list
        issues_list = issues_list_input.value.strip()
        issues_list = issues_list.replace('\n', ',').replace('|', ',').replace(
            '\t', ',').replace(' ', ',').replace(',,', ',').split(",")
        # universe is selected
        if (0 in universe_checkbox.active):
            # set issues membership to work for node color
            # all universe nodes turns to light blue first
            issues_dict["issues_membership"] = \
                ["lightblue"] * len(universe_issues_list)
            # if there is any user list, turn their membership to black
            for x in match(issues_list, universe_issues_list):
                issues_dict["issues_membership"][x] = "black"
            issues_dict["issues_list"] = universe_issues_list
            Z = create_universe_Z(CODA_export_file, issues_df,
                                  universe_issues_list, number_of_clusters)
            # the epsilon (1e-10) was added for correct collering of dendrogram
            # The exact Z[-k,2] value results in an extra cluster colored
            dend_threshold = Z[-number_of_clusters, 2] + 1e-10
            change_dend = True
        elif (issues_list != [""]):
            issues_dict["issues_list"] = issues_list
            # if there is only user list, all of them have black memebership
            issues_dict["issues_membership"] = ["black"] * len(issues_list)
            # use match function to find the input issue list in the universe list
            # avoid using pandas isin as it keep the reference df order not the
            # input issues list order
            df_tfidf = make_tfidf(issues_df.iloc[match(
                issues_dict['issues_list'], issues_df.CASE_NUMBER.tolist()), ])
            Z = make_Z(df_tfidf)
            # arbitrary dend threshold for non-unverse dednrigrams
            dend_threshold = max(Z[:, 2]) / 1.7
            change_dend = True
        if change_dend:
            # clearing the static image
            image_source.data = dict(url=[], text=[], text_x=[], text_y=[])
            # change slider end point
            dend_threshold_slider.update(
                end=max(Z[:, 2]),
                value=dend_threshold,
            )
            # update the dnedrogram
            update_dend()

    def update_dend():
        """
        Callback function that change the dendrogram by calling make_R

        Updates whole dendrogram, including legs colors
        Updates the leaves, including leaves colors, clusters and membership
        """
        # Use the unpdated dend_threshold
        # Creat new dendrogram
        R = make_R(Z, dend_threshold, issues_dict["issues_list"])
        # Generate the new curve
        dend_source.data = dict(x=R['icoord'] + [[0, max(max(R['icoord']))]],
                                y=R['dcoord'] +
                                [[dend_threshold, dend_threshold]],
                                leg_color=R['color_list'] + ["#FF0000"])
        # find the correct order of nodes for the membership assignment
        membership_index = match(R['ivl'], issues_dict["issues_list"])
        # use the membership_index to find correct color and size for nodes
        # base on their universe or user list membership
        leaves_color = \
            [issues_dict["issues_membership"][x] for x in membership_index]
        # if the node color is black set size to 9 otherwise set it to 5
        leaves_size =  \
            np.where(np.array(leaves_color) == "black", 9, 5).tolist()
        leaves_source.data = dict(
            leaves_x=list(range(5,
                                len(R["ivl"]) * 10, 10)),
            leaves_y=[0] * len(R["ivl"]),
            leaves_names=R['ivl'],
            leaves_color=leaves_color,
            leaves_size=leaves_size,
            clusters=R['Clusters'],
        )

    def update_clipboard_text(attr, old, new):
        """
        Callback function that put the selected issues in the clipboard text box
        for exporting.
        """
        clipboard_df = pd.DataFrame({
            "Issues": [
                leaves_source.data['leaves_names'][i]
                for i in new['1d']['indices']
            ],
            "Clusters":
            [leaves_source.data['clusters'][i] for i in new['1d']['indices']]
        })
        # [leaves_source.data['leaves_names'][i] for i in new['1d']['indices']]
        clipboard_text.value = " ".join(clipboard_df['Issues'])
        clipboard_df.to_csv("clipboard_df.csv", sep=',', encoding='utf-8')

    # use an intermidiate function to pass new threshold to dend update

    def slider_delay(attr, old, new):
        global dend_threshold
        dend_threshold = source_for_slider.data["value"][0]
        update_dend()

    source_for_slider.on_change("data", slider_delay)

    # calling call back function upon changes in interactive widgets
    issues_list_input.on_change('value',
                                lambda attr, old, new: update_issue_list())
    submit_button.on_click(update_issue_list)
    #dend_threshold_slider.on_change('value', lambda attr, old, new: update_dend())
    leaves_source.on_change('selected', update_clipboard_text)
    universe_checkbox.on_change('active',
                                lambda attr, old, new: update_issue_list())
    # =============================================================================
    # Set up layouts and add to document
    # =============================================================================
    # making the descrption for the page
    page_header = Div(text="""<h1>Data Quality Issue Clustering</h1>
                      Start creating your issues dendrogram by entering your issues
                      IDs. Fine tune your clusters by changing the <b>Dendrogram
                      Threshold</b>. (Click on the link for more information about
                      <a href="https://en.wikipedia.org/wiki/Dendrogram" target="_blank">dendrograms</a>).
                      The following DQ Direct fields were used for
                      this clustering: <b>Source System, Issue Detection Point,
                      Issue Summary, Detailed Description</b> and <b>Attribute Document
                      Header</b>. Check the tick box for <b>Universe issues
                      dendrogram</b> if you want to compare your issues list with
                      all other non-rejected and non-remediated issues.
                      """,
                      width=1300)
    # have to move to directory file system to use static images
    link_to_qlik = Div(text="""
                       <a href="https://www.google.com" target="_blank">
                           <img float:right src="static/qlik_link.png" alt="DQ Direct MI Dashboard" height="50" width="70", align="right">
                           <h3>DQ Direct MI Dashboard</h3>
                       </a>
                        """)
    page_footer = Div(text="""Developed by
                      <a href="https://www.google.com">DQ Analytics</a>.
                      Any questions please contact \
                      <a href="https://www.google.com" target="_blank">Andrew McGeough</a> or
                      """,
                      width=1200)

    # laying out widgets and figure
    page_layout = column(
        page_header,
        row(
            column(
                widgetbox(
                    [issues_list_input, submit_button, universe_checkbox],
                    width=300), dend_threshold_slider,
                Spacer(width=300, height=20), data_table,
                Spacer(width=300, height=20), clipboard_text, link_to_qlik),
            p), page_footer)

    # Determine the selected feature

    # Embed plot into HTML via Flask Render
    script, div = components(page_layout)
    return render_template("bokeh.html", script=script, div=div)
)
cluster_stats.width = 500
cluster_stats.height = 100

cluster_commonality = Div(
    render_as_text=False,
    text=generate_display_string("")
)
cluster_commonality.width = 500
cluster_commonality.height = 300

split_button = Button(label="Split", button_type="success", width=150)
no_split_button = Button(label="Keep", button_type="success", width=150)
start_button = Button(label="Start", button_type="success", width=150)

split_button.on_click(lambda: _fit_util(1))
no_split_button.on_click(lambda: _fit_util(0))
start_button.on_click(lambda: _fit_util(2))

inputs = widgetbox(text_input, cluster_stats, cluster_commonality)

clusters = _fixed_clusters
l = layout(
    [
        [
            column(p_title, row(start_button, no_split_button, split_button), inputs),
            p
        ]
    ]
)
curdoc().add_root(l)
def plot():

    # FIGURES AND X-AXIS
    fig1 = Figure(title = 'Energy',  plot_width = WIDTH, plot_height = HEIGHT, tools = TOOLS)

    timeticks = DatetimeTickFormatter(formats=dict(seconds =["%b%d %H:%M:%S"],
                                                   minutes =["%b%d %H:%M"],
                                                   hours =["%b%d %H:%M"],
                                                   days  =["%b%d %H:%M"],
                                                   months=["%b%d %H:%M"],
                                                   years =["%b%d %H:%M %Y"]))
    fig1.xaxis.formatter = timeticks

    # INPUT WIDGETS
    collection_list = CONN[DB].collection_names(include_system_collections=False)
    gliders = sorted([platformID for platformID in collection_list if len(platformID)>2])
    gliders = Select(title = 'PlatformID', value = gliders[0], options = gliders)
    prev_glider = Button(label = '<')
    next_glider = Button(label = '>')
    glider_controlbox = HBox(children = [gliders, prev_glider, next_glider])

    max_amphr = TextInput(title='Max AmpHrs', value='1040')
    deadby_date = TextInput(title='Deadby Date', value='')
    data_controlbox = HBox(max_amphr, deadby_date,  width = 300)

    control_box = HBox(glider_controlbox,
                       data_controlbox)

    # DATA VARS
    coulombs_raw = ColumnDataSource(dict(x=[],y=[]))
    coulombs_ext = ColumnDataSource(dict(x=[],y=[]))
    coulombs_per = ColumnDataSource(dict(x=[],y=[]))

    # AXIS setup
    fig1.yaxis.axis_label = 'Coulombs (AmpHr)'
    fig1.extra_y_ranges = {'usage': Range1d(start=0, end=1200)}


    # PLOT OBJECTS
    fig1.line(  'x', 'y', source = coulombs_raw, legend = 'm_coulombs_amphr_total', color = 'blue')
    fig1.circle('x', 'y', source = coulombs_raw, legend = 'm_coulombs_amphr_total', color = 'blue')
    fig1.line(  'x', 'y', source = coulombs_ext, legend = 'projected',              color = 'red')
    #fig1.cross('x', 'y', source = coulombs_ext, legend = 'projected',  size=10,     color = 'red')
    fig1.renderers.append(Span(name = 'maxamp_span',      location = int(max_amphr.value),  dimension = 'width',  line_color= 'green', line_dash='dashed', line_width=2))
    fig1.renderers.append(Span(name = 'maxamp_intersect', location = 1000*time.time(),      dimension = 'height', line_color= 'green', line_dash='dashed', line_width=2))

    fig1.legend[0].location = 'top_left'
    fig1.legend[0].legend_padding = 30

    # CALLBACK FUNCS
    def update_coulombs(attrib,old,new):
        g = gliders.value

        coulombs_raw.data   = load_sensor(g, 'm_coulomb_amphr_total')
        #coulombs_per.data  = moving_usage(coulombs_raw.data)
        update_projection(None,None,None)


    def update_projection(attrib,old,new):
        g = gliders.value
        try:
            fig1.select('maxamp_span')[0].location = int(max_amphr.value)
            coulombs_ext.data, deadby_date.value = calc_deadby_date(g, int(max_amphr.value))
            fig1.select('maxamp_intersect')[0].location = coulombs_ext.data['x'][-1]
        except Exception as e:
            print('update_projection error',type(e),e)

    #GLIDER SELECTS
    def glider_buttons(increment):
        ops = gliders.options
        new_index = ops.index(gliders.value) + increment
        if new_index >= len(ops):
            new_index = 0
        elif new_index < 0:
            new_index = len(ops)-1
        gliders.value = ops[new_index]
    def next_glider_func():
        glider_buttons(1)
    def prev_glider_func():
        glider_buttons(-1)

    gliders.on_change('value', update_coulombs)
    next_glider.on_click(next_glider_func)
    prev_glider.on_click(prev_glider_func)

    max_amphr.on_change('value', update_projection)

    update_coulombs(None,None,None)

    return vplot(control_box, fig1)
	def plotting(self):

		if self.debug:
			self.debug_file = open("debug_output.txt", "w")
			self.debug_file.write("Initialized plotting subroutine \n")
			 

		TOOLS="pan,wheel_zoom,box_zoom,reset,hover,previewsave"

		tab_plots = []
		self.all_elements = []
		self.elements_comparison = []

		for filename in self.filenames:
			if "ITO" in filename:
				tab_plots.append(self.mass_plotting(filename))
				continue
	
			data_dict = self.data_generation(filename)
			self.data_test(data_dict)

			name_check = data_dict["gen_info"]["DATA FILES"]
			attr_id = name_check[1][4][:-3] + "_" + name_check[2][2]
			self.attribute_ids.append(attr_id)

			attr_extra_y_ranges = False
			attr_extra_x_ranges = False

			local_source_line = []

			"""
			create plots for each datafile and put them in a tab.
			"""

			y_axis_units = [x["y_unit"] for x in data_dict["data"]]
			x_axis_units = [x["x_unit"] for x in data_dict["data"]]

			figure_obj = figure(plot_width = 1000, plot_height = 800, y_axis_type = "log",
			title = attr_id, tools = TOOLS)
			#figure_obj.axes.major_label_text_font_size("12pt")
			#figure_obj.major_label_text_font_size("12pt")

			hover = figure_obj.select(dict(type = HoverTool))
			hover.tooltips = [
							("Element:", "@element"),
							("(x, y):", "($x, $y)")]

			self.figure_data.append((figure_obj, data_dict))
		
			figure_obj.yaxis.axis_label = y_axis_units[0]
			figure_obj.xaxis.axis_label = x_axis_units[0]

			if not all(x == y_axis_units[0] for x in y_axis_units):
				for unit, dataset in zip(y_axis_units, data_dict["data"]): 
					if not unit == y_axis_units[0]:
						
						extra_y_ranges_exists = attr_extra_y_ranges
						extra_y_ranges_exists = True

						if self.debug:
							  
							self.debug_file.write("Added extra y-axis for file_id: %s, element: %s | New length %g \n" 
								%(attr_id, dataset["sample_element"], len(figure_obj.yaxis)))
							 

						figure_obj.extra_y_ranges =  {"foo": Range1d(start = np.amin(dataset["y"]),
						end = np.amax(dataset["y"]))}
						figure_obj.add_layout(LogAxis(y_range_name = "foo", axis_label = unit), "right")
						break

			if not all(x == x_axis_units[0] for x in x_axis_units):
				for unit, dataset in zip(x_axis_units, data_dict["data"]): 
					if not unit == x_axis_units[0]:
						
						extra_x_ranges_exists = attr_extra_x_ranges
						extra_x_ranges_exists = True
						
						if self.debug:
							  
							self.debug_file.write("Added extra x-axis for file_id: %s, element: %s. | New length %g \n" 
								%(attr_id, dataset["sample_element"], len(figure_obj.yaxis)))
							 
			
						figure_obj.extra_x_ranges =  {"bar": Range1d(start = np.amin(dataset["x"]),
						end = np.amax(dataset["x"]))}
						figure_obj.add_layout(LinearAxis(x_range_name = "bar", axis_label = unit), "above")
						break

			figure_obj.xaxis.axis_label = x_axis_units[0]
			colour_list = Spectral11 + RdPu9 + Oranges9
			colour_indices = [0, 2, 8, 10, 12, 14, 20, 22, 1, 3, 9, 11, 13, 15]


			list_of_elements = []
			source_list = []
			line_list = []

			for dataset, color_index in zip(data_dict["data"], colour_indices):

				self.all_elements.append(dataset["sample_element"]) #strip isotope number 
				color = colour_list[color_index]

				source = ColumnDataSource(data = dataset) #Datastructure for source of plotting

				self.source_test(source)

				list_of_elements.append(dataset["sample_element"])
				line_glyph = figure_obj.line("x", "y", source = source, 
							line_width = 2,
							line_color = color, 
							legend = dataset["sample_element"])

				if self.debug:
					self.debug_file.write("Create line object on figure %s  at %s \n" %(id(figure_obj), id(line_glyph)))
					 

				line_list.append(line_glyph)
				source_list.append(source)

			local_source_line.append([[source, line] for source, line in zip(source_list, line_list)])
			self.source_line.append(local_source_line)

			#Calculations on the dataset
			text_input_rsf = TextInput(value = "default", title = "RSF or SF (at/cm^3): ")
			do_integral_button = Button(label = "Calibration integral")
			smoothing_button = Button(label = "smth selct elem")
			matplot_button = Button(label = "Create matplotlib fig")

			text_input_sputter = TextInput(value = "default", title = "Sputter speed: number unit")
			text_input_crater_depth = TextInput(value = "default", title = "Depth of crater in: number unit")
			


			radio_group = RadioGroup(labels = list_of_elements, active=0)


			text_input_xval_integral = TextInput(value = "0", title = "x-delimiter ")
			text_input_dose = TextInput(value = "0", title = "Dose[cm^-2] ")

			#Save files for later use
			save_flexDPE_button = Button(label = "Save element for FlexPDE")
			save_all_flexDPE_button = Button(label = "Save all elements for FlexPDE")
			save_textfile_button = Button(label = "Sava Data in textfile")

			#Pointers to methods on click / change handlers
			radio_group.on_change("active", lambda attr, old, new: None)

			matplot_button.on_click(lambda source_list = source_list:
										self.matplotlib_export(source_list))
			
			do_integral_button.on_click(lambda 
											source_list = source_list, 
											line_list = line_list, 
											source_line = self.source_line,
											figure_data = self.figure_data,
											data_dict = data_dict,
											radio = radio_group,
											x_box = text_input_xval_integral, 
											dose = text_input_dose,
											extra_y_ranges = attr_extra_y_ranges: 
										self.integrate(data_dict, source_list, line_list, source_line, figure_data, radio, x_box, dose, extra_y_ranges))

			smoothing_button.on_click(lambda 
										source_list = source_list,
										radio = radio_group, 
										data_dict = data_dict,
										x_box = text_input_xval_integral: 
									self.smoothing(source_list, data_dict, radio, x_box) )

			save_flexDPE_button.on_click(lambda 
											source_list = source_list,
											attrname = attr_id,
											radio = radio_group: 
										self.write_to_flexPDE(source_list, attrname, radio))

			save_all_flexDPE_button.on_click(lambda 
												source_list = source_list, 
												attrname = attr_id:
												self.write_all_to_flexPDE(source_list, attrname))

			save_textfile_button.on_click(lambda 
											data_dict = data_dict, 
											source_list = source_list,
											attrname = attr_id,
											radio = radio_group:
											self.write_new_datafile(data_dict, source_list, attrname,radio))


			text_input_rsf.on_change("value", lambda attr, old, new, 
												radio = radio_group, 
												data_dict = data_dict,
												figure = figure_obj,
												source_list = source_list,
												text_input = text_input_rsf,
												line_list = line_list,
												which = "rsf":
												self.update_data(line_list, data_dict, source_list, figure, radio, text_input, new, which))


			text_input_sputter.on_change("value", lambda attr, old, new, 
													radio = radio_group, 
													data_dict = data_dict,
													figure = figure_obj,
													source_list = source_list, 
													text_input = text_input_sputter,
													which = "sputter":
													self.update_data(data_dict, source_list, figure, radio, text_input, new, which))

			text_input_crater_depth.on_change("value", lambda attr, old, new, 
														radio = radio_group, 
														data_dict = data_dict,
														source_list = source_list,
														figure = figure_obj,
														text_input = text_input_crater_depth, 
														which = "crater_depth":
														self.update_data(data_dict, source_list, figure, radio, text_input, new, which))


			#Initialization of actual plotting. 
			tab_plots.append(Panel(child = hplot(figure_obj, 
										   vform(
										   vform(radio_group, save_flexDPE_button, save_all_flexDPE_button, save_textfile_button, matplot_button), 
										   vform(text_input_rsf, smoothing_button, text_input_sputter, text_input_crater_depth)
										   ),
										   vform(text_input_xval_integral, text_input_dose, do_integral_button)),
										   title = attr_id))



		"""
		Check to see if one or more element exists in the samples and creat a comparison plot for each 
		of those elements.
		"""
		
		for element in self.all_elements:
			checkers = list(self.all_elements)
			checkers.remove(element)
			if element in checkers and not element in self.elements_comparison:
				self.elements_comparison.append(element)

		"""create plots for each element that is to be compared """
	
		for comparison_element in self.elements_comparison: 

			figure_obj = figure(plot_width = 1000, plot_height = 800, y_axis_type = "log", title = comparison_element, tools = TOOLS)
			#figure_obj.xaxis.major_label_text_font_size("12pt")
			#figure_obj.yaxis.major_label_text_font_size("12pt")
			
			y_axis_units = []
			x_axis_units = []

			comparison_datasets = []

			for data_dict_iter in self.column(self.figure_data, 1):

				for dataset in data_dict_iter["data"]:

					if dataset["sample_element"] == comparison_element:
						comparison_datasets.append(dataset)
						y_axis_units.append(dataset["y_unit"])
						x_axis_units.append(dataset["x_unit"])

			figure_obj.xaxis.axis_label = comparison_datasets[-1]["x_unit"]
			figure_obj.yaxis.axis_label = comparison_datasets[-1]["y_unit"]

			if not all(x == y_axis_units[-1] for x in y_axis_units):
				for unit, data in zip(y_axis_units, comparison_datasets): 
					if not unit == y_axis_units[-1]:
						figure_obj.extra_y_ranges =  {"foo": Range1d(start = np.amin(data["y"]),
						end = np.amax(data["y"]))}
						figure_obj.add_layout(LogAxis(y_range_name = "foo", axis_label = unit), "right")
						break

			if not all(x == x_axis_units[-1] for x in x_axis_units):
				for unit, data in zip(x_axis_units, comparison_datasets): 
					if not unit == x_axis_units[-1]:
						figure_obj.extra_x_ranges =  {"bar": Range1d(start = np.amin(data["x"]),
						end = np.amax(data["x"]))}
						figure_obj.add_layout(LinearAxis(x_range_name = "bar", axis_label = unit), "above")
						break

			active_sources = []
			for data_dict, source_line_nested, attr_id, color_index  in zip(self.column(self.figure_data, 1), self.source_line,  self.attribute_ids,  colour_indices):

				for dataset, source_lis_coup, in zip(data_dict["data"], source_line_nested[0]):
					
					source_local = source_lis_coup[0]
					active_sources.append(source_local)

					self.source_test(source_local)
					self.source_dataset_test(source_local, dataset)

					if dataset["sample_element"] == comparison_element:
						color = colour_list[color_index]

						"""
						Logic that ensures that plots get put with correspoinding axes. 
						"""
						if dataset["x_unit"] != x_axis_units[-1] or dataset["y_unit"] != y_axis_units[-1]:

							if dataset["x_unit"] != x_axis_units[-1] and dataset["y_unit"] != y_axis_units[-1]:
								name_check = data_dict["gen_info"]["DATA FILES"]
								attr_id = name_check[1][4][:-3] + "_" + name_check[2][2]

								figure_obj.line("x", "y", source = source_local,
								line_width = 2, 
								line_color = color, 
								legend = attr_id,
								x_range_name = "bar", 
								y_range_name = "foo")

							elif dataset["x_unit"] != x_axis_units[-1]:

								figure_obj.line("x", "y", source = source_local,
								line_width = 2, 
								line_color = color, 
								legend = attr_id, 
								x_range_name = "bar")

							else: 

								figure_obj.line("x", "y", source = source_local,
								line_width = 2, 
								line_color = color, 
								legend = attr_id, 
								y_range_name = "foo")

						else: 
							figure_obj.line("x", "y", source = source_local,
							line_width = 2, 
							line_color = color, 
							legend = attr_id)


			matplot_button = Button(label = "Create matplotlib fig")
			save_all_flexDPE_button = Button(label = "Save all elements for FlexPDE")

			matplot_button.on_click(lambda source_list = active_sources:
							self.matplotlib_export(source_list))	

			save_all_flexDPE_button.on_click(lambda 
									source_list = active_sources, 
									attrname = comparison_element:
									self.write_all_to_flexPDE(source_list, attrname))


			tab_plots.append(Panel(child = hplot(figure_obj, vform(save_all_flexDPE_button, matplot_button)), 
				title = comparison_element))	


		tabs = Tabs(tabs = tab_plots)
		#curdoc().add_root(tabs)
		session = push_session(curdoc())
		session.show()
		session.loop_until_closed()
Beispiel #31
0
def make_tab():
    # Slider to select width of bin
    pastdays_select = RangeSlider(start=0,
                                  end=999,
                                  value=(0, 999),
                                  step=1,
                                  title='Past Days',
                                  sizing_mode="stretch_both")
    # Slider to select buffer size
    bufferdays_select = Slider(start=.01,
                               end=9,
                               value=0.01,
                               step=.1,
                               title='Buffer Size (days)',
                               sizing_mode="stretch_both")
    # Re-read
    refresh_button = Button(label="Time window and buffer are up to date",
                            button_type="success",
                            sizing_mode="stretch_both")
    refresh_button.disabled = True

    # read data
    flights, available_carriers = read(pastdays_select, bufferdays_select)

    # CheckboxGroup to select carrier to display
    locationcodes = np.unique(
        ['.'.join(seedid.split('.')[:3]) for seedid in available_carriers])
    selections = []
    for locationcode in locationcodes[:maxnstation]:
        matching = [s for s in available_carriers if locationcode in s]
        active = [i for i, m in enumerate(matching)]  # if "Z" == m[-1]]
        selections += [
            CheckboxButtonGroup(labels=matching,
                                active=active,
                                sizing_mode="stretch_both")
        ]
        #selections += [MultiSelect(#title="Option:",
        #                           value=matching,
        #                           active=active)

    # Find the initially selected carrieres
    initial_carriers = [s.labels[i] for s in selections for i in s.active]

    # Slider to select width of bin
    binwidth_select = Slider(start=16,
                             end=160,
                             step=16,
                             value=80,
                             title='Bin number',
                             sizing_mode="stretch_both")

    # RangeSlider control to select start and end of plotted delays
    range_select = RangeSlider(start=-1,
                               end=999,
                               value=(-.2, 99),
                               step=.1,
                               title='Range (sec)',
                               sizing_mode="stretch_both")

    # Switch from lines to hists
    type_switch = RadioButtonGroup(labels=["Histogram", "Cumulated dist."],
                                   active=0,
                                   sizing_mode="stretch_both")

    # Find the initially selected carrieres
    plottype = type_switch.labels[type_switch.active]

    src = {}
    for output in ['Latencies', 'Delays', 'PSD']:
        src[output] = make_dataset(flights,
                                   initial_carriers,
                                   range_start=range_select.value[0],
                                   range_end=range_select.value[1],
                                   bin_width=binwidth_select.value,
                                   output=output,
                                   plottype=plottype)

    callback = partial(update,
                       output='Delays',
                       type_switch=type_switch,
                       flights=flights,
                       src=src,
                       selections=selections,
                       range_select=range_select,
                       binwidth_select=binwidth_select)

    callbacklat = partial(update,
                          output='Latencies',
                          type_switch=type_switch,
                          flights=flights,
                          src=src,
                          range_select=range_select,
                          selections=selections,
                          binwidth_select=binwidth_select)

    callbackpsd = partial(update,
                          output='PSD',
                          type_switch=type_switch,
                          flights=flights,
                          src=src,
                          range_select=range_select,
                          selections=selections,
                          binwidth_select=binwidth_select)

    callbackneedsread = partial(needsreadupdate, refresh_button=refresh_button)

    callbackread = partial(readupdate,
                           src=src,
                           selections=selections,
                           range_select=range_select,
                           type_switch=type_switch,
                           binwidth_select=binwidth_select,
                           pastdays_select=pastdays_select,
                           bufferdays_select=bufferdays_select,
                           refresh_button=refresh_button)

    [
        s.on_change('active', callback, callbacklat, callbackpsd)
        for s in selections
    ]
    type_switch.on_change('active', callback, callbacklat, callbackpsd)
    binwidth_select.on_change('value', callback, callbacklat, callbackpsd)
    range_select.on_change('value', callback, callbacklat, callbackpsd)
    pastdays_select.on_change('value', callbackneedsread)
    bufferdays_select.on_change('value', callbackneedsread)
    refresh_button.on_click(callbackread)

    p = {}
    for output in ['PSD', 'Latencies', 'Delays']:
        p[output] = make_plot(src[output], output=output)

    # Create a row layout
    graphs = [p[k] for k in p]
    controls = [
        type_switch, binwidth_select, range_select, refresh_button,
        pastdays_select, bufferdays_select, *selections[:maxnstation]
    ]
    graphslayout = column(children=graphs, sizing_mode="stretch_both")
    controlslayout = column(
        children=controls,
        sizing_mode='fixed',  #stretch_width',
        width=400,
    )
    layout = row(children=[graphslayout, controlslayout],
                 sizing_mode='stretch_both')

    # Make a tab with the layout
    return Panel(child=layout, title='Channels')
Beispiel #32
0
session = push_session(curdoc())

def start_handler():
    global playing
    if not playing:
        curdoc().add_periodic_callback(update, 50)
        playing = True

def stop_handler():
    global playing
    if playing:
        curdoc().remove_periodic_callback(update)
        playing = False

button_start = Button(label="Start", button_type="success")
button_start.on_click(start_handler)

button_stop = Button(label="Stop", button_type="danger")
button_stop.on_click(stop_handler)

controls = hplot(button_start, button_stop)
layout = vplot(controls, p)

@cosine(w=0.03)
def update(step):
    if playing:
        r2.data_source.data["y"] = y * step
        r2.glyph.line_alpha = 1 - 0.8 * abs(step)

playing = True
curdoc().add_periodic_callback(update, 50)
Beispiel #33
0
columns = [ 
  TableColumn(field="time", title="Time"), 
  TableColumn(field="msg", title="Msg", width = 600)]
data_table = DataTable(source=textsource, columns=columns, width=600) 

button_save = Button(label="Save Run", button_type = 'warning')
def button_save_handler():
  global read_data
  print('button save worked')
  run_modes= {'bat_type':settings['bat_type'], 'chrg_type':settings['chrg_type'], 'nominal_mah':settings['nominal_mah'], 
              'DC_or_CD':settings['DC_or_CD'], 'cycles':settings['cycles'], 'cells':settings['cells'], 'run_text':settings['run_text']}
  excel_out = imax_0.write_excel_file(run_modes, settings['final_read'], read_data, settings['settings_dict'])
  msg = 'Data saved to: ' + excel_out
  print(msg)
  text_update(datetime.datetime.now().strftime("%Y-%m-%d %H:%M"), msg)     
button_save.on_click(button_save_handler)

def text_update(t, msg):
  global data_table
  print('time and msg: ', t, msg)
  new_data = dict(time=[t], msg=[msg],) 
  textsource.stream(new_data, 20) #adding the value is a scrolloff lines
  data_table.update()

import imax_0

def check_device_status():
  global device_dict
#used by startstop btn handler to determine if imax start btn was pressed, or imax running.
  #global device_dict
  EndPt_out = device_dict['EndPt_out']
Beispiel #34
0
                          value=(1, 24),
                          step=1,
                          show_value=False,
                          tooltips=False)

date_widget.on_change('value', date_function)

se_select = Select(title="Start/End Locations",
                   value="Start",
                   options=['Start', 'End'])

span_radio = RadioButtonGroup(labels=["Lock Map Area", "Auto Adjust Map Area"],
                              active=0)

bt = Button(label='Update Plot')
bt.on_click(update_click)

alpha_range_slider = Slider(start=0,
                            end=1,
                            value=0.4,
                            step=.1,
                            title="Spot Transparency")

size_range_slider = Slider(start=4, end=50, value=4, step=1, title="Spot Size")


def alpha_size(attr, old, new):
    circle_plot.glyph.size = size_range_slider.value

    circle_plot.glyph.fill_alpha = alpha_range_slider.value
Beispiel #35
0
    TableColumn(field="v", title="Value"),
]
dataTable = DataTable(source=source, columns=columns, width=800, height=600)

tab2 = Panel(child=dataTable, title="Table")
tabs = Tabs(tabs=[tab1, tab2 ])

# tabs.css_classes = ["hide"]

autoUpdateCheckbox = CheckboxGroup(
    labels=["Auto Update Data Source (every 15s)"], active=[])
autoUpdateCheckbox.disabled = True

gatewayControl.on_change('value', lambda attr, old, new: update_device())
deviceControl.on_change('value', lambda attr, old, new: update_indicator())
submitButton.on_click(lambda: callback())
autoUpdateCheckbox.on_click(lambda attr: auto_update(attr))

sizing_mode = 'fixed'  # 'scale_width' also looks nice with this example
inputs = widgetbox(*controls, sizing_mode=sizing_mode, name="widgets")
plotwidget = widgetbox([autoUpdateCheckbox, tabs], sizing_mode=sizing_mode, name="plotwidget")

mainLayout = layout(children=[
    [inputs, plotwidget]
], sizing_mode=sizing_mode, name="mainLayout")

doc.add_root(mainLayout)
doc.title = "ACME IoT Analytics"

def epoch_to_datetime(epoch):
    """
Beispiel #36
0
def modify_doc(doc):
    reset_output(state=None)
    print("Entering modify_doc ...")
    global ecg_idx, ecg_filtered, crr_idx

    df = pd.read_csv(os.path.join(
        app.config['UPLOAD_FOLDER'], app.config['CUR_FILE']))
    ecg_clean = df['P02S ECG']
    ecg_idx = [i for i in range(len(ecg_clean))]
    ecg_filtered = bandpass(ecg_clean, lf, hf, 250, 2, False)
    ecg_filtered = np.interp(
        ecg_filtered, (ecg_filtered.min(), ecg_filtered.max()), (-1, +1))
    # ecg_filtered = scale(ecg_filtered, axis=0, with_mean=True,
    #                     with_std=True, copy=True)
    min_g = min(ecg_filtered)
    max_g = max(ecg_filtered)

    file_name_div = Div(text='Processing on file: ' +
                        app.config['CUR_FILE'].split('/')[-1])

    div = Div(text="Quality")
    radio_group = RadioGroup(
        labels=["Good", "Boderline", "Poor"], active=2)
    button_nxt_unit = Button(label="Next Unit", button_type="success")
    skip_unit = RadioGroup(
        labels=["Save This Unit", "Skip This Unit"], active=0)

    marker_line_st = ColumnDataSource(data=dict(x=[0, 0], y=[min_g, max_g]))
    marker_line_en = ColumnDataSource(data=dict(x=[0, 0], y=[min_g, max_g]))
    s2 = ColumnDataSource(data=dict(x=[], y=[]))

    sx = figure(width=1300, height=300, title="ecg_filtered "+str(lf) +
                "-"+str(hf)+"Hz", x_axis_label='time', y_axis_label='acc')
    sx.line(ecg_idx, ecg_filtered, legend="ecg_filtered "+str(lf) +
            "-"+str(hf)+"Hz", line_color="red", line_width=1)
    sx.line('x', 'y', source=marker_line_st,
            legend="current unit ", line_color="blue", line_width=1)
    sx.line('x', 'y', source=marker_line_en,
            legend="current unit ", line_color="blue", line_width=1)
    sx1 = figure(width=800, height=300, title="ecg_filtered "+str(lf) +
                 "-"+str(hf)+"Hz", x_axis_label='time', y_axis_label='acc')
    sx1.line('x', 'y', source=s2, legend="ecg_filtered unit "+str(lf) +
             "-"+str(hf)+"Hz", line_color="red", line_width=1)

    peaks, _ = find_peaks(ecg_filtered, distance=150)

    crr_idx = 0
    marked_file = open(os.path.join(
        app.config['MARKED_FOLDER'], app.config['CUR_FILE'][:-4] + '_' + 
        str(datetime.datetime.now().strftime("%Y-%m-%d_%H:%M:%S")) + '.txt'), 'w')
    marked_file.write(app.config['CUR_FILE'] + '\n')
    marked_file.write('P02S ECG' + '\n')
    marked_file.write(str(len(peaks) - 1) + '\n')
    res_df = {}
    
    def my_nxt_unit_handler():
        global crr_idx, ecg_filtered

        if (crr_idx < len(peaks) - 1):

            #save unit data
            if(skip_unit.active == 0 and crr_idx > 0):
                out_fn = os.path.join(
                    app.config['MARKED_FOLDER'], radio_group.labels[radio_group.active],
                    app.config['CUR_FILE'][:-4]+'_P2SECG_'+str(crr_idx)+'.json')
                print(out_fn)
                with open(out_fn, "w") as write_file:
                    json.dump(res_df, write_file)

            st = int(max(0, peaks[crr_idx] -
                         (peaks[crr_idx + 1] - peaks[crr_idx]) / 2))
            en = int(
                min(peaks[crr_idx] + (peaks[crr_idx + 1] - peaks[crr_idx]) / 2, ecg_idx[-1]))
            unit_idx = ecg_idx[st:en]
            unit_data = ecg_filtered[st:en]
            s2.data['x'] = unit_idx
            s2.data['y'] = unit_data

            marker_line_st.data['x'] = [st, st]
            marker_line_en.data['x'] = [en, en]

            print("crr marked quality: ", radio_group.labels[radio_group.active])

            marked_file.write(str(st) + '\t' + str(en) + '\t' + str(en - st) + '\t' +
                              str(radio_group.labels[radio_group.active]) + '\n')
            
            
            res_df['file_name'] = app.config['CUR_FILE']
            res_df['unit_number'] = crr_idx
            res_df['size'] = en - st +1
            res_df['data'] = list(unit_data)
            res_df['signal_name'] = 'P02S ECG'
            res_df['quality'] = radio_group.labels[radio_group.active]

            crr_idx += 1

        if crr_idx == len(peaks)-1:
            marked_file.close()

    button_nxt_unit.on_click(my_nxt_unit_handler)
    graphs = column(
        list(itertools.chain.from_iterable([[sx, sx1, widgetbox(div)]])))

    doc.add_root(widgetbox(file_name_div))
    doc.add_root(graphs)
    doc.add_root(row(widgetbox(radio_group), widgetbox(
        button_nxt_unit), widgetbox(skip_unit)))
    doc.theme = Theme(filename=os.path.join(THIS_FILE_PATH, "theme.yaml"))
Beispiel #37
0
                                                auth_pass.value, 'generic')
        if ACCESS_GRANTED:
            auth_button.label = 'Access Granted'
            auth_button.button_type = 'success'
            curdoc().clear()
            curdoc().add_root(tabs)
        else:
            auth_button.label = 'Failed'
            auth_button.button_type = 'danger'
            time.sleep(3)
            auth_button.label = 'Authenticate'
            auth_button.button_type = 'warning'


auth_user = TextInput(value='', title='User Name:', width=150)
auth_pass = PasswordInput(value='', title='Password:', width=150)
auth_button = Button(label="Authenticate", button_type="warning", width=100)
auth_button.on_click(auth_button_click)
layout_login = row(auth_user, Spacer(width=50), auth_pass, Spacer(width=50),
                   auth_button)

# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# Create the document Bokeh server will use to generate the web page
# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
if ACCESS_GRANTED:
    curdoc().add_root(tabs)
else:
    curdoc().add_root(layout_login)

curdoc().title = "DVH Analytics"
Beispiel #38
0
def x_change(attr, old, new):
    params["x"] = new
    update_data()
    return None


def y_change(attr, old, new):
    params["y"] = new
    update_data()
    return None


file_selector.on_change("value", file_change)
x_selector.on_change("value", x_change)
y_selector.on_change("value", y_change)
record_button.on_click(print_data)
r.data_source.on_change('selected', update_lasso)

widgets = widgetbox(file_selector,
                    x_selector,
                    y_selector,
                    record_button,
                    stats,
                    width=300)
layout = column(row(p, pv, widgets), row(ph, Spacer(width=500, height=200)))

curdoc().add_root(layout)
curdoc().title = "COUNTATRON 5000"

print("BOKEH GO!")
def generate_plots(ulog, px4_ulog, db_data, vehicle_data, link_to_3d_page):
    """ create a list of bokeh plots (and widgets) to show """

    plots = []
    data = ulog.data_list

    # COMPATIBILITY support for old logs
    if any(elem.name == 'vehicle_air_data'
           or elem.name == 'vehicle_magnetometer' for elem in data):
        baro_alt_meter_topic = 'vehicle_air_data'
        magnetometer_ga_topic = 'vehicle_magnetometer'
    else:  # old
        baro_alt_meter_topic = 'sensor_combined'
        magnetometer_ga_topic = 'sensor_combined'
    for topic in data:
        if topic.name == 'system_power':
            # COMPATIBILITY: rename fields to new format
            if 'voltage5V_v' in topic.data:  # old (prior to PX4/Firmware:213aa93)
                topic.data['voltage5v_v'] = topic.data.pop('voltage5V_v')
            if 'voltage3V3_v' in topic.data:  # old (prior to PX4/Firmware:213aa93)
                topic.data['voltage3v3_v'] = topic.data.pop('voltage3V3_v')

    # initialize flight mode changes
    flight_mode_changes = get_flight_mode_changes(ulog)

    # VTOL state changes
    vtol_states = None
    try:
        cur_dataset = ulog.get_dataset('vehicle_status')
        if np.amax(cur_dataset.data['is_vtol']) == 1:
            vtol_states = cur_dataset.list_value_changes('in_transition_mode')
            # find mode after transitions (states: 1=transition, 2=FW, 3=MC)
            for i in range(len(vtol_states)):
                if vtol_states[i][1] == 0:
                    t = vtol_states[i][0]
                    idx = np.argmax(cur_dataset.data['timestamp'] >= t) + 1
                    vtol_states[i] = (t, 2 +
                                      cur_dataset.data['is_rotary_wing'][idx])
            vtol_states.append((ulog.last_timestamp, -1))
    except (KeyError, IndexError) as error:
        vtol_states = None

    # Heading
    curdoc().template_variables['title_html'] = get_heading_html(
        ulog, px4_ulog, db_data, link_to_3d_page)

    # info text on top (logging duration, max speed, ...)
    curdoc().template_variables['info_table_html'] = \
        get_info_table_html(ulog, px4_ulog, db_data, vehicle_data, vtol_states)

    curdoc().template_variables['error_labels_html'] = get_error_labels_html()

    hardfault_html = get_hardfault_html(ulog)
    if hardfault_html is not None:
        curdoc().template_variables['hardfault_html'] = hardfault_html

# FIXME: for now, we use Google maps directly without bokeh, because it's not working reliably
# GPS map
#    gps_plots = []
#    gps_titles = []
#    plot = plot_map(ulog, plot_config, map_type='google', api_key =
#            get_google_maps_api_key(), setpoints=False)
#    if plot is not None:
#        gps_plots.append(plot)
#        gps_titles.append('GPS Map: Satellite')
#
#    plot = plot_map(ulog, plot_config, map_type='plain', setpoints=True)
#    if plot is not None:
#        gps_plots.append(plot)
#        gps_titles.append('GPS Map: Plain')
#
#    data_plot = DataPlot2D(data, plot_config, 'vehicle_local_position',
#        x_axis_label = '[m]', y_axis_label='[m]', plot_height='large')
#    data_plot.add_graph('y', 'x', colors2[0], 'Estimated')
#    data_plot.change_dataset('vehicle_local_position_setpoint')
#    data_plot.add_graph('y', 'x', colors2[1], 'Setpoint')
#    if data_plot.finalize() is not None:
#        gps_plots.append(data_plot.bokeh_plot)
#        gps_titles.append('Local Position')
#
#    if len(gps_plots) >= 2:
#        tabs = []
#        for i in range(len(gps_plots)):
#            tabs.append(Panel(child=gps_plots[i], title=gps_titles[i]))
#        gps_plot_height=plot_config['plot_height']['large'] + 30
#        plots.append(Tabs(tabs=tabs, width=plot_width, height=gps_plot_height))
#    elif len(gps_plots) == 1:
#        plots.extend(gps_plots)

    if is_running_locally():
        # show the google maps plot via Bokeh, since the one in the html
        # template does not work locally (we disable it further down)
        map_plot = plot_map(ulog,
                            plot_config,
                            map_type='google',
                            api_key=get_google_maps_api_key(),
                            setpoints=False)
        if map_plot is not None:
            plots.append(map_plot)

    # Position plot
    data_plot = DataPlot2D(data,
                           plot_config,
                           'vehicle_local_position',
                           x_axis_label='[m]',
                           y_axis_label='[m]',
                           plot_height='large')
    data_plot.add_graph('y',
                        'x',
                        colors2[0],
                        'Estimated',
                        check_if_all_zero=True)
    if not data_plot.had_error:  # vehicle_local_position is required
        data_plot.change_dataset('vehicle_local_position_setpoint')
        data_plot.add_graph('y', 'x', colors2[1], 'Setpoint')
        # groundtruth (SITL only)
        data_plot.change_dataset('vehicle_groundtruth')
        data_plot.add_graph('y', 'x', color_gray, 'Groundtruth')
        # GPS + position setpoints
        plot_map(ulog,
                 plot_config,
                 map_type='plain',
                 setpoints=True,
                 bokeh_plot=data_plot.bokeh_plot)
        if data_plot.finalize() is not None:
            plots.append(data_plot.bokeh_plot)
            if not is_running_locally(
            ):  # do not enable Google Map if running locally
                curdoc().template_variables['has_position_data'] = True

    # initialize parameter changes
    changed_params = None
    if not 'replay' in ulog.msg_info_dict:  # replay can have many param changes
        if len(ulog.changed_parameters) > 0:
            changed_params = ulog.changed_parameters
            plots.append(None)  # save space for the param change button

    ### Add all data plots ###

    x_range_offset = (ulog.last_timestamp - ulog.start_timestamp) * 0.05
    x_range = Range1d(ulog.start_timestamp - x_range_offset,
                      ulog.last_timestamp + x_range_offset)

    # Altitude estimate
    data_plot = DataPlot(data,
                         plot_config,
                         'vehicle_gps_position',
                         y_axis_label='[m]',
                         title='Altitude Estimate',
                         changed_params=changed_params,
                         x_range=x_range)
    data_plot.add_graph([lambda data: ('alt', data['alt'] * 0.001)],
                        colors8[0:1], ['GPS Altitude'])
    data_plot.change_dataset(baro_alt_meter_topic)
    data_plot.add_graph(['baro_alt_meter'], colors8[1:2],
                        ['Barometer Altitude'])
    data_plot.change_dataset('vehicle_global_position')
    data_plot.add_graph(['alt'], colors8[2:3], ['Fused Altitude Estimation'])
    data_plot.change_dataset('position_setpoint_triplet')
    data_plot.add_circle(['current.alt'],
                         [plot_config['mission_setpoint_color']],
                         ['Altitude Setpoint'])
    data_plot.change_dataset('actuator_controls_0')
    data_plot.add_graph([lambda data: ('thrust', data['control[3]'] * 100)],
                        colors8[6:7], ['Thrust [0, 100]'])
    plot_flight_modes_background(data_plot, flight_mode_changes, vtol_states)

    if data_plot.finalize() is not None: plots.append(data_plot)

    # Roll/Pitch/Yaw angle & angular rate
    for axis in ['roll', 'pitch', 'yaw']:

        # angle
        axis_name = axis.capitalize()
        data_plot = DataPlot(data,
                             plot_config,
                             'vehicle_attitude',
                             y_axis_label='[deg]',
                             title=axis_name + ' Angle',
                             plot_height='small',
                             changed_params=changed_params,
                             x_range=x_range)
        data_plot.add_graph([lambda data: (axis, np.rad2deg(data[axis]))],
                            colors2[0:1], [axis_name + ' Estimated'],
                            mark_nan=True)
        data_plot.change_dataset('vehicle_attitude_setpoint')
        data_plot.add_graph(
            [lambda data: (axis + '_d', np.rad2deg(data[axis + '_d']))],
            colors2[1:2], [axis_name + ' Setpoint'],
            mark_nan=True,
            use_step_lines=True)
        data_plot.change_dataset('vehicle_groundtruth')
        data_plot.add_graph([lambda data: (axis, np.rad2deg(data[axis]))],
                            [color_gray], [axis_name + ' Groundtruth'])
        plot_flight_modes_background(data_plot, flight_mode_changes,
                                     vtol_states)

        if data_plot.finalize() is not None: plots.append(data_plot)

        # rate
        data_plot = DataPlot(data,
                             plot_config,
                             'vehicle_attitude',
                             y_axis_label='[deg/s]',
                             title=axis_name + ' Angular Rate',
                             plot_height='small',
                             changed_params=changed_params,
                             x_range=x_range)
        data_plot.add_graph(
            [lambda data: (axis + 'speed', np.rad2deg(data[axis + 'speed']))],
            colors3[0:1], [axis_name + ' Rate Estimated'],
            mark_nan=True)
        data_plot.change_dataset('vehicle_rates_setpoint')
        data_plot.add_graph([lambda data: (axis, np.rad2deg(data[axis]))],
                            colors3[1:2], [axis_name + ' Rate Setpoint'],
                            mark_nan=True,
                            use_step_lines=True)
        axis_letter = axis[0].upper()
        rate_int_limit = '(*100)'
        # this param is MC/VTOL only (it will not exist on FW)
        rate_int_limit_param = 'MC_' + axis_letter + 'R_INT_LIM'
        if rate_int_limit_param in ulog.initial_parameters:
            rate_int_limit = '[-{0:.0f}, {0:.0f}]'.format(
                ulog.initial_parameters[rate_int_limit_param] * 100)
        data_plot.change_dataset('rate_ctrl_status')
        data_plot.add_graph(
            [lambda data: (axis, data[axis + 'speed_integ'] * 100)],
            colors3[2:3], [axis_name + ' Rate Integral ' + rate_int_limit])
        data_plot.change_dataset('vehicle_groundtruth')
        data_plot.add_graph(
            [lambda data: (axis + 'speed', np.rad2deg(data[axis + 'speed']))],
            [color_gray], [axis_name + ' Rate Groundtruth'])
        plot_flight_modes_background(data_plot, flight_mode_changes,
                                     vtol_states)

        if data_plot.finalize() is not None: plots.append(data_plot)

    # Local position
    for axis in ['x', 'y', 'z']:
        data_plot = DataPlot(data,
                             plot_config,
                             'vehicle_local_position',
                             y_axis_label='[m]',
                             title='Local Position ' + axis.upper(),
                             plot_height='small',
                             changed_params=changed_params,
                             x_range=x_range)
        data_plot.add_graph([axis],
                            colors2[0:1], [axis.upper() + ' Estimated'],
                            mark_nan=True)
        data_plot.change_dataset('vehicle_local_position_setpoint')
        data_plot.add_graph([axis],
                            colors2[1:2], [axis.upper() + ' Setpoint'],
                            mark_nan=True,
                            use_step_lines=True)
        plot_flight_modes_background(data_plot, flight_mode_changes,
                                     vtol_states)

        if data_plot.finalize() is not None: plots.append(data_plot)

    # Velocity
    data_plot = DataPlot(data,
                         plot_config,
                         'vehicle_local_position',
                         y_axis_label='[m/s]',
                         title='Velocity',
                         plot_height='small',
                         changed_params=changed_params,
                         x_range=x_range)
    data_plot.add_graph(['vx', 'vy', 'vz'], colors8[0:3], ['X', 'Y', 'Z'])
    data_plot.change_dataset('vehicle_local_position_setpoint')
    data_plot.add_graph(['vx', 'vy', 'vz'],
                        [colors8[5], colors8[4], colors8[6]],
                        ['X Setpoint', 'Y Setpoint', 'Z Setpoint'],
                        use_step_lines=True)
    plot_flight_modes_background(data_plot, flight_mode_changes, vtol_states)

    if data_plot.finalize() is not None: plots.append(data_plot)

    # Visual Odometry (only if topic found)
    if any(elem.name == 'vehicle_visual_odometry' for elem in data):
        # Vision position
        data_plot = DataPlot(data,
                             plot_config,
                             'vehicle_visual_odometry',
                             y_axis_label='[m]',
                             title='Visual Odometry Position',
                             plot_height='small',
                             changed_params=changed_params,
                             x_range=x_range)
        data_plot.add_graph(['x', 'y', 'z'],
                            colors3, ['X', 'Y', 'Z'],
                            mark_nan=True)
        plot_flight_modes_background(data_plot, flight_mode_changes,
                                     vtol_states)

        data_plot.change_dataset('vehicle_groundtruth')
        data_plot.add_graph(
            ['x', 'y', 'z'], colors8[2:5],
            ['Groundtruth X', 'Groundtruth Y', 'Groundtruth Z'])

        if data_plot.finalize() is not None: plots.append(data_plot)

        # Vision velocity
        data_plot = DataPlot(data,
                             plot_config,
                             'vehicle_visual_odometry',
                             y_axis_label='[m]',
                             title='Visual Odometry Velocity',
                             plot_height='small',
                             changed_params=changed_params,
                             x_range=x_range)
        data_plot.add_graph(['vx', 'vy', 'vz'],
                            colors3, ['X', 'Y', 'Z'],
                            mark_nan=True)
        plot_flight_modes_background(data_plot, flight_mode_changes,
                                     vtol_states)

        data_plot.change_dataset('vehicle_groundtruth')
        data_plot.add_graph(
            ['vx', 'vy', 'vz'], colors8[2:5],
            ['Groundtruth VX', 'Groundtruth VY', 'Groundtruth VZ'])
        if data_plot.finalize() is not None: plots.append(data_plot)

        # Vision attitude
        data_plot = DataPlot(data,
                             plot_config,
                             'vehicle_visual_odometry',
                             y_axis_label='[deg]',
                             title='Visual Odometry Attitude',
                             plot_height='small',
                             changed_params=changed_params,
                             x_range=x_range)
        data_plot.add_graph([
            lambda data: ('roll', np.rad2deg(data['roll'])), lambda data:
            ('pitch', np.rad2deg(data['pitch'])), lambda data:
            ('yaw', np.rad2deg(data['yaw']))
        ],
                            colors3, ['Roll', 'Pitch', 'Yaw'],
                            mark_nan=True)
        plot_flight_modes_background(data_plot, flight_mode_changes,
                                     vtol_states)

        data_plot.change_dataset('vehicle_groundtruth')
        data_plot.add_graph(
            [
                lambda data: ('roll', np.rad2deg(data['roll'])), lambda data:
                ('pitch', np.rad2deg(data['pitch'])), lambda data:
                ('yaw', np.rad2deg(data['yaw']))
            ], colors8[2:5],
            ['Roll Groundtruth', 'Pitch Groundtruth', 'Yaw Groundtruth'])

        # Vision attitude rate
        data_plot = DataPlot(data,
                             plot_config,
                             'vehicle_visual_odometry',
                             y_axis_label='[deg]',
                             title='Visual Odometry Attitude Rate',
                             plot_height='small',
                             changed_params=changed_params,
                             x_range=x_range)
        data_plot.add_graph([
            lambda data:
            ('rollspeed', np.rad2deg(data['rollspeed'])), lambda data:
            ('pitchspeed', np.rad2deg(data['pitchspeed'])), lambda data:
            ('yawspeed', np.rad2deg(data['yawspeed']))
        ],
                            colors3, ['Roll Rate', 'Pitch Rate', 'Yaw Rate'],
                            mark_nan=True)
        plot_flight_modes_background(data_plot, flight_mode_changes,
                                     vtol_states)

        data_plot.change_dataset('vehicle_groundtruth')
        data_plot.add_graph([
            lambda data:
            ('rollspeed', np.rad2deg(data['rollspeed'])), lambda data:
            ('pitchspeed', np.rad2deg(data['pitchspeed'])), lambda data:
            ('yawspeed', np.rad2deg(data['yawspeed']))
        ], colors8[2:5], [
            'Roll Rate Groundtruth', 'Pitch Rate Groundtruth',
            'Yaw Rate Groundtruth'
        ])

        if data_plot.finalize() is not None: plots.append(data_plot)

    # Airspeed vs Ground speed: but only if there's valid airspeed data
    try:
        cur_dataset = ulog.get_dataset('airspeed')
        if np.amax(cur_dataset.data['indicated_airspeed_m_s']) > 0.1:
            data_plot = DataPlot(data,
                                 plot_config,
                                 'vehicle_global_position',
                                 y_axis_label='[m/s]',
                                 title='Airspeed',
                                 plot_height='small',
                                 changed_params=changed_params,
                                 x_range=x_range)
            data_plot.add_graph([
                lambda data: ('groundspeed_estimated',
                              np.sqrt(data['vel_n']**2 + data['vel_e']**2))
            ], colors3[2:3], ['Ground Speed Estimated'])
            data_plot.change_dataset('airspeed')
            data_plot.add_graph(['indicated_airspeed_m_s'], colors2[0:1],
                                ['Airspeed Indicated'])

            plot_flight_modes_background(data_plot, flight_mode_changes,
                                         vtol_states)

            if data_plot.finalize() is not None: plots.append(data_plot)
    except (KeyError, IndexError) as error:
        pass

    # manual control inputs
    # prefer the manual_control_setpoint topic. Old logs do not contain it
    if any(elem.name == 'manual_control_setpoint' for elem in data):
        data_plot = DataPlot(data,
                             plot_config,
                             'manual_control_setpoint',
                             title='Manual Control Inputs (Radio or Joystick)',
                             plot_height='small',
                             y_range=Range1d(-1.1, 1.1),
                             changed_params=changed_params,
                             x_range=x_range)
        data_plot.add_graph([
            'y', 'x', 'r', 'z', lambda data:
            ('mode_slot', data['mode_slot'] / 6), 'aux1', 'aux2', lambda data:
            ('kill_switch', data['kill_switch'] == 1)
        ], colors8, [
            'Y / Roll', 'X / Pitch', 'Yaw', 'Throttle [0, 1]', 'Flight Mode',
            'Aux1', 'Aux2', 'Kill Switch'
        ])
        # TODO: add RTL switch and others? Look at params which functions are mapped?
        plot_flight_modes_background(data_plot, flight_mode_changes,
                                     vtol_states)

        if data_plot.finalize() is not None: plots.append(data_plot)

    else:  # it's an old log (COMPATIBILITY)
        data_plot = DataPlot(data,
                             plot_config,
                             'rc_channels',
                             title='Raw Radio Control Inputs',
                             plot_height='small',
                             y_range=Range1d(-1.1, 1.1),
                             changed_params=changed_params,
                             x_range=x_range)
        num_rc_channels = 8
        if data_plot.dataset:
            max_channels = np.amax(data_plot.dataset.data['channel_count'])
            if max_channels < num_rc_channels: num_rc_channels = max_channels
        legends = []
        for i in range(num_rc_channels):
            channel_names = px4_ulog.get_configured_rc_input_names(i)
            if channel_names is None:
                legends.append('Channel ' + str(i))
            else:
                legends.append('Channel ' + str(i) + ' (' +
                               ', '.join(channel_names) + ')')
        data_plot.add_graph(
            ['channels[' + str(i) + ']' for i in range(num_rc_channels)],
            colors8[0:num_rc_channels],
            legends,
            mark_nan=True)
        plot_flight_modes_background(data_plot, flight_mode_changes,
                                     vtol_states)

        if data_plot.finalize() is not None: plots.append(data_plot)

    # actuator controls 0
    data_plot = DataPlot(data,
                         plot_config,
                         'actuator_controls_0',
                         y_start=0,
                         title='Actuator Controls 0',
                         plot_height='small',
                         changed_params=changed_params,
                         x_range=x_range)
    data_plot.add_graph(
        ['control[0]', 'control[1]', 'control[2]', 'control[3]'],
        colors8[0:4], ['Roll', 'Pitch', 'Yaw', 'Thrust'],
        mark_nan=True)
    plot_flight_modes_background(data_plot, flight_mode_changes, vtol_states)
    if data_plot.finalize() is not None: plots.append(data_plot)

    # actuator controls (Main) FFT (for filter & output noise analysis)
    data_plot = DataPlotFFT(data,
                            plot_config,
                            'actuator_controls_0',
                            title='Actuator Controls FFT')
    data_plot.add_graph(['control[0]', 'control[1]', 'control[2]'], colors3,
                        ['Roll', 'Pitch', 'Yaw'])
    if not data_plot.had_error:
        if 'MC_DTERM_CUTOFF' in ulog.initial_parameters:
            data_plot.mark_frequency(
                ulog.initial_parameters['MC_DTERM_CUTOFF'], 'MC_DTERM_CUTOFF')
        if 'IMU_GYRO_CUTOFF' in ulog.initial_parameters:
            data_plot.mark_frequency(
                ulog.initial_parameters['IMU_GYRO_CUTOFF'], 'IMU_GYRO_CUTOFF',
                20)

    if data_plot.finalize() is not None: plots.append(data_plot)

    # actuator controls 1
    # (only present on VTOL, Fixed-wing config)
    data_plot = DataPlot(data,
                         plot_config,
                         'actuator_controls_1',
                         y_start=0,
                         title='Actuator Controls 1 (VTOL in Fixed-Wing mode)',
                         plot_height='small',
                         changed_params=changed_params,
                         x_range=x_range)
    data_plot.add_graph(
        ['control[0]', 'control[1]', 'control[2]', 'control[3]'],
        colors8[0:4], ['Roll', 'Pitch', 'Yaw', 'Thrust'],
        mark_nan=True)
    plot_flight_modes_background(data_plot, flight_mode_changes, vtol_states)
    if data_plot.finalize() is not None: plots.append(data_plot)

    # actuator outputs 0: Main
    data_plot = DataPlot(data,
                         plot_config,
                         'actuator_outputs',
                         y_start=0,
                         title='Actuator Outputs (Main)',
                         plot_height='small',
                         changed_params=changed_params,
                         x_range=x_range)
    num_actuator_outputs = 8
    if data_plot.dataset:
        max_outputs = np.amax(data_plot.dataset.data['noutputs'])
        if max_outputs < num_actuator_outputs:
            num_actuator_outputs = max_outputs
    data_plot.add_graph(
        ['output[' + str(i) + ']' for i in range(num_actuator_outputs)],
        colors8[0:num_actuator_outputs],
        ['Output ' + str(i) for i in range(num_actuator_outputs)],
        mark_nan=True)
    plot_flight_modes_background(data_plot, flight_mode_changes, vtol_states)

    if data_plot.finalize() is not None: plots.append(data_plot)

    # actuator outputs 1: AUX
    data_plot = DataPlot(data,
                         plot_config,
                         'actuator_outputs',
                         y_start=0,
                         title='Actuator Outputs (AUX)',
                         plot_height='small',
                         changed_params=changed_params,
                         topic_instance=1,
                         x_range=x_range)
    num_actuator_outputs = 8
    # only plot if at least one of the outputs is not constant
    all_constant = True
    if data_plot.dataset:
        max_outputs = np.amax(data_plot.dataset.data['noutputs'])
        if max_outputs < num_actuator_outputs:
            num_actuator_outputs = max_outputs

        for i in range(num_actuator_outputs):
            output_data = data_plot.dataset.data['output[' + str(i) + ']']
            if not np.all(output_data == output_data[0]):
                all_constant = False
    if not all_constant:
        data_plot.add_graph(
            ['output[' + str(i) + ']' for i in range(num_actuator_outputs)],
            colors8[0:num_actuator_outputs],
            ['Output ' + str(i) for i in range(num_actuator_outputs)],
            mark_nan=True)
        plot_flight_modes_background(data_plot, flight_mode_changes,
                                     vtol_states)

        if data_plot.finalize() is not None: plots.append(data_plot)

    # raw acceleration
    data_plot = DataPlot(data,
                         plot_config,
                         'sensor_combined',
                         y_axis_label='[m/s^2]',
                         title='Raw Acceleration',
                         plot_height='small',
                         changed_params=changed_params,
                         x_range=x_range)
    data_plot.add_graph([
        'accelerometer_m_s2[0]', 'accelerometer_m_s2[1]',
        'accelerometer_m_s2[2]'
    ], colors3, ['X', 'Y', 'Z'])
    if data_plot.finalize() is not None: plots.append(data_plot)

    # raw angular speed
    data_plot = DataPlot(data,
                         plot_config,
                         'sensor_combined',
                         y_axis_label='[deg/s]',
                         title='Raw Angular Speed (Gyroscope)',
                         plot_height='small',
                         changed_params=changed_params,
                         x_range=x_range)
    data_plot.add_graph([
        lambda data:
        ('gyro_rad[0]', np.rad2deg(data['gyro_rad[0]'])), lambda data:
        ('gyro_rad[1]', np.rad2deg(data['gyro_rad[1]'])), lambda data:
        ('gyro_rad[2]', np.rad2deg(data['gyro_rad[2]']))
    ], colors3, ['X', 'Y', 'Z'])
    if data_plot.finalize() is not None: plots.append(data_plot)

    # magnetic field strength
    data_plot = DataPlot(data,
                         plot_config,
                         magnetometer_ga_topic,
                         y_axis_label='[gauss]',
                         title='Raw Magnetic Field Strength',
                         plot_height='small',
                         changed_params=changed_params,
                         x_range=x_range)
    data_plot.add_graph(
        ['magnetometer_ga[0]', 'magnetometer_ga[1]', 'magnetometer_ga[2]'],
        colors3, ['X', 'Y', 'Z'])
    if data_plot.finalize() is not None: plots.append(data_plot)

    # distance sensor
    data_plot = DataPlot(data,
                         plot_config,
                         'distance_sensor',
                         y_start=0,
                         y_axis_label='[m]',
                         title='Distance Sensor',
                         plot_height='small',
                         changed_params=changed_params,
                         x_range=x_range)
    data_plot.add_graph(['current_distance', 'covariance'], colors3[0:2],
                        ['Distance', 'Covariance'])
    if data_plot.finalize() is not None: plots.append(data_plot)

    # gps uncertainty
    # the accuracy values can be really large if there is no fix, so we limit the
    # y axis range to some sane values
    data_plot = DataPlot(data,
                         plot_config,
                         'vehicle_gps_position',
                         title='GPS Uncertainty',
                         y_range=Range1d(0, 40),
                         plot_height='small',
                         changed_params=changed_params,
                         x_range=x_range)
    data_plot.add_graph(
        ['eph', 'epv', 'satellites_used', 'fix_type'], colors8[::2], [
            'Horizontal position accuracy [m]',
            'Vertical position accuracy [m]', 'Num Satellites used', 'GPS Fix'
        ])
    if data_plot.finalize() is not None: plots.append(data_plot)

    # gps noise & jamming
    data_plot = DataPlot(data,
                         plot_config,
                         'vehicle_gps_position',
                         y_start=0,
                         title='GPS Noise & Jamming',
                         plot_height='small',
                         changed_params=changed_params,
                         x_range=x_range)
    data_plot.add_graph(['noise_per_ms', 'jamming_indicator'], colors3[0:2],
                        ['Noise per ms', 'Jamming Indicator'])
    if data_plot.finalize() is not None: plots.append(data_plot)

    # thrust and magnetic field
    data_plot = DataPlot(data,
                         plot_config,
                         magnetometer_ga_topic,
                         y_start=0,
                         title='Thrust and Magnetic Field',
                         plot_height='small',
                         changed_params=changed_params,
                         x_range=x_range)
    data_plot.add_graph([
        lambda data:
        ('len_mag',
         np.sqrt(data['magnetometer_ga[0]']**2 + data['magnetometer_ga[1]']**2
                 + data['magnetometer_ga[2]']**2))
    ], colors2[0:1], ['Norm of Magnetic Field'])
    data_plot.change_dataset('actuator_controls_0')
    data_plot.add_graph([lambda data: ('thrust', data['control[3]'])],
                        colors2[1:2], ['Thrust'])
    if data_plot.finalize() is not None: plots.append(data_plot)

    # Acceleration Spectrogram
    data_plot = DataPlotSpec(data,
                             plot_config,
                             'sensor_combined',
                             y_axis_label='[Hz]',
                             title='Acceleration Power Spectral Density',
                             plot_height='small',
                             x_range=x_range)
    data_plot.add_graph([
        'accelerometer_m_s2[0]', 'accelerometer_m_s2[1]',
        'accelerometer_m_s2[2]'
    ], ['X', 'Y', 'Z'])
    if data_plot.finalize() is not None: plots.append(data_plot)

    # power
    data_plot = DataPlot(data,
                         plot_config,
                         'battery_status',
                         y_start=0,
                         title='Power',
                         plot_height='small',
                         changed_params=changed_params,
                         x_range=x_range)
    data_plot.add_graph([
        'voltage_v', 'voltage_filtered_v', 'current_a', lambda data:
        ('discharged_mah', data['discharged_mah'] / 100), lambda data:
        ('remaining', data['remaining'] * 10)
    ], colors8[::2] + colors8[1:2], [
        'Battery Voltage [V]', 'Battery Voltage filtered [V]',
        'Battery Current [A]', 'Discharged Amount [mAh / 100]',
        'Battery remaining [0=empty, 10=full]'
    ])
    data_plot.change_dataset('system_power')
    if data_plot.dataset:
        if 'voltage5v_v' in data_plot.dataset.data and \
                        np.amax(data_plot.dataset.data['voltage5v_v']) > 0.0001:
            data_plot.add_graph(['voltage5v_v'], colors8[7:8], ['5 V'])
        if 'voltage3v3_v' in data_plot.dataset.data and \
                        np.amax(data_plot.dataset.data['voltage3v3_v']) > 0.0001:
            data_plot.add_graph(['voltage3v3_v'], colors8[5:6], ['3.3 V'])
    if data_plot.finalize() is not None: plots.append(data_plot)

    # estimator watchdog
    try:
        data_plot = DataPlot(data,
                             plot_config,
                             'estimator_status',
                             y_start=0,
                             title='Estimator Watchdog',
                             plot_height='small',
                             changed_params=changed_params,
                             x_range=x_range)
        estimator_status = ulog.get_dataset('estimator_status').data
        plot_data = []
        plot_labels = []
        input_data = [
            ('NaN Flags', estimator_status['nan_flags']),
            ('Health Flags (vel, pos, hgt)', estimator_status['health_flags']),
            ('Timeout Flags (vel, pos, hgt)',
             estimator_status['timeout_flags']),
            ('Velocity Check Bit',
             (estimator_status['innovation_check_flags']) & 0x1),
            ('Horizontal Position Check Bit',
             (estimator_status['innovation_check_flags'] >> 1) & 1),
            ('Vertical Position Check Bit',
             (estimator_status['innovation_check_flags'] >> 2) & 1),
            ('Mag X, Y, Z Check Bits',
             (estimator_status['innovation_check_flags'] >> 3) & 0x7),
            ('Yaw Check Bit',
             (estimator_status['innovation_check_flags'] >> 6) & 1),
            ('Airspeed Check Bit',
             (estimator_status['innovation_check_flags'] >> 7) & 1),
            ('Synthetic Sideslip Check Bit',
             (estimator_status['innovation_check_flags'] >> 8) & 1),
            ('Height to Ground Check Bit',
             (estimator_status['innovation_check_flags'] >> 9) & 1),
            ('Optical Flow X, Y Check Bits',
             (estimator_status['innovation_check_flags'] >> 10) & 0x3),
        ]
        # filter: show only the flags that have non-zero samples
        for cur_label, cur_data in input_data:
            if np.amax(cur_data) > 0.1:
                data_label = 'flags_' + str(
                    len(plot_data))  # just some unique string
                plot_data.append(lambda d, data=cur_data, label=data_label:
                                 (label, data))
                plot_labels.append(cur_label)
                if len(plot_data) >= 8:  # cannot add more than that
                    break

        if len(plot_data) == 0:
            # add the plot even in the absence of any problem, so that the user
            # can validate that (otherwise it's ambiguous: it could be that the
            # estimator_status topic is not logged)
            plot_data = [lambda d: ('flags', input_data[0][1])]
            plot_labels = [input_data[0][0]]
        data_plot.add_graph(plot_data, colors8[0:len(plot_data)], plot_labels)
        if data_plot.finalize() is not None: plots.append(data_plot)
    except (KeyError, IndexError) as error:
        print('Error in estimator plot: ' + str(error))

    # RC Quality
    data_plot = DataPlot(data,
                         plot_config,
                         'input_rc',
                         title='RC Quality',
                         plot_height='small',
                         y_range=Range1d(0, 1),
                         changed_params=changed_params,
                         x_range=x_range)
    data_plot.add_graph([lambda data: ('rssi', data['rssi'] / 100), 'rc_lost'],
                        colors3[0:2], ['RSSI [0, 1]', 'RC Lost (Indicator)'])
    data_plot.change_dataset('vehicle_status')
    data_plot.add_graph(['rc_signal_lost'], colors3[2:3],
                        ['RC Lost (Detected)'])
    if data_plot.finalize() is not None: plots.append(data_plot)

    # cpu load
    data_plot = DataPlot(data,
                         plot_config,
                         'cpuload',
                         title='CPU & RAM',
                         plot_height='small',
                         y_range=Range1d(0, 1),
                         changed_params=changed_params,
                         x_range=x_range)
    data_plot.add_graph(['ram_usage', 'load'], [colors3[1], colors3[2]],
                        ['RAM Usage', 'CPU Load'])
    data_plot.add_span('load', line_color=colors3[2])
    data_plot.add_span('ram_usage', line_color=colors3[1])
    plot_flight_modes_background(data_plot, flight_mode_changes, vtol_states)
    if data_plot.finalize() is not None: plots.append(data_plot)

    # sampling: time difference
    try:
        data_plot = DataPlot(data,
                             plot_config,
                             'sensor_combined',
                             y_range=Range1d(0, 25e3),
                             y_axis_label='[us]',
                             title='Sampling Regularity of Sensor Data',
                             plot_height='small',
                             changed_params=changed_params,
                             x_range=x_range)
        sensor_combined = ulog.get_dataset('sensor_combined').data
        sampling_diff = np.diff(sensor_combined['timestamp'])
        min_sampling_diff = np.amin(sampling_diff)

        plot_dropouts(data_plot.bokeh_plot, ulog.dropouts, min_sampling_diff)

        data_plot.add_graph(
            [lambda data: ('timediff', np.append(sampling_diff, 0))],
            [colors3[2]], ['delta t (between 2 logged samples)'])
        data_plot.change_dataset('estimator_status')
        data_plot.add_graph(
            [lambda data: ('time_slip', data['time_slip'] * 1e6)],
            [colors3[1]], ['Estimator time slip (cumulative)'])
        if data_plot.finalize() is not None: plots.append(data_plot)
    except:
        pass

    # exchange all DataPlot's with the bokeh_plot and handle parameter changes

    param_changes_button = Button(label="Hide Parameter Changes", width=170)
    param_change_labels = []

    # FIXME: this should be a CustomJS callback, not on the server. However this
    # did not work for me.
    def param_changes_button_clicked():
        """ callback to show/hide parameter changes """
        for label in param_change_labels:
            if label.visible:
                param_changes_button.label = 'Show Parameter Changes'
                label.visible = False
                label.text_alpha = 0  # label.visible does not work, so we use this instead
            else:
                param_changes_button.label = 'Hide Parameter Changes'
                label.visible = True
                label.text_alpha = 1

    param_changes_button.on_click(param_changes_button_clicked)

    jinja_plot_data = []
    for i in range(len(plots)):
        if plots[i] is None:
            plots[i] = widgetbox(param_changes_button,
                                 width=int(plot_width * 0.99))
        if isinstance(plots[i], DataPlot):
            if plots[i].param_change_label is not None:
                param_change_labels.append(plots[i].param_change_label)

            plot_title = plots[i].title
            plots[i] = plots[i].bokeh_plot

            fragment = 'Nav-'+plot_title.replace(' ', '-') \
                .replace('&', '_').replace('(', '').replace(')', '')
            jinja_plot_data.append({
                'model_id': plots[i].ref['id'],
                'fragment': fragment,
                'title': plot_title
            })

    # changed parameters
    plots.append(get_changed_parameters(ulog.initial_parameters, plot_width))

    # information about which messages are contained in the log
    # TODO: need to load all topics for this (-> log loading will take longer)
    #       but if we load all topics and the log contains some (external) topics
    #       with buggy timestamps, it will affect the plotting.
    #    data_list_sorted = sorted(ulog.data_list, key=lambda d: d.name + str(d.multi_id))
    #    table_text = []
    #    for d in data_list_sorted:
    #        message_size = sum([ULog.get_field_size(f.type_str) for f in d.field_data])
    #        num_data_points = len(d.data['timestamp'])
    #        table_text.append((d.name, str(d.multi_id), str(message_size), str(num_data_points),
    #           str(message_size * num_data_points)))
    #    topics_info = '<table><tr><th>Name</th><th>Topic instance</th><th>Message Size</th>' \
    #            '<th>Number of data points</th><th>Total bytes</th></tr>' + ''.join(
    #            ['<tr><td>'+'</td><td>'.join(list(x))+'</td></tr>' for x in table_text]) + '</table>'
    #    topics_div = Div(text=topics_info, width=int(plot_width*0.9))
    #    plots.append(widgetbox(topics_div, width=int(plot_width*0.9)))

    # log messages
    plots.append(get_logged_messages(ulog.logged_messages, plot_width))

    # perf & top output
    top_data = ''
    perf_data = ''
    for state in ['pre', 'post']:
        if 'perf_top_' + state + 'flight' in ulog.msg_info_multiple_dict:
            current_top_data = ulog.msg_info_multiple_dict['perf_top_' +
                                                           state + 'flight'][0]
            flight_data = escape('\n'.join(current_top_data))
            top_data += '<p>' + state.capitalize(
            ) + ' Flight:<br/><pre>' + flight_data + '</pre></p>'
        if 'perf_counter_' + state + 'flight' in ulog.msg_info_multiple_dict:
            current_perf_data = ulog.msg_info_multiple_dict['perf_counter_' +
                                                            state +
                                                            'flight'][0]
            flight_data = escape('\n'.join(current_perf_data))
            perf_data += '<p>' + state.capitalize(
            ) + ' Flight:<br/><pre>' + flight_data + '</pre></p>'

    additional_data_html = ''
    if len(top_data) > 0:
        additional_data_html += '<h5>Processes</h5>' + top_data
    if len(perf_data) > 0:
        additional_data_html += '<h5>Performance Counters</h5>' + perf_data
    if len(additional_data_html) > 0:
        # hide by default & use a button to expand
        additional_data_html = '''
<button class="btn btn-secondary" data-toggle="collapse" style="min-width:0;"
 data-target="#show-additional-data">Show additional Data</button>
<div id="show-additional-data" class="collapse">
{:}
</div>
'''.format(additional_data_html)
        additional_data_div = Div(text=additional_data_html,
                                  width=int(plot_width * 0.9))
        plots.append(
            widgetbox(additional_data_div, width=int(plot_width * 0.9)))

    curdoc().template_variables['plots'] = jinja_plot_data

    return plots
Beispiel #40
0
                     value='constant',
                     options=['constant'] + columns)
size_column.on_change('value', update_columns)

slider = RangeSlider(start=years[0],
                     end=years[-1],
                     range=(years[0], years[-1]),
                     step=1,
                     title="Years")
slider.on_change('range', update_year)

region_column = CheckboxGroup(labels=regions[:], active=range(len(regions)))
region_column.on_change('active', update_columns)

reset_button = Button(label='Reset')
reset_button.on_click(reset)

#Create initial plot
p, sc_source, line_source = make_plot()

desc_box = Div(text=update_desc_box())

controls = widgetbox(
    [y_column, size_column, region_column, slider, reset_button, desc_box],
    width=430)
lout = row([p, controls])
curdoc().add_root(lout)
curdoc().title = "FH Scatterplot"

with open('time_plot_embed.html', 'w') as f:
    script = autoload_server(url="https://fh-vis.herokuapp.com/time_plot")
Beispiel #41
0

def re_analyze_callback():
    re_analyze()


# set callbacks

top_n_dropdown.on_change('value', top_n_phrases_changed_callback)
top_n_clusters_dropdown.on_change('value', top_n_clusters_changed_callback)
radio_group_area.on_change('active', selected_graph_changed_callback)
# pylint: disable=no-member
filter_topics_table_source.selected.on_change('indices',
                                              filter_topic_selected_callback)
filter_custom_table_source.selected.on_change('indices',
                                              filter_custom_selected_callback)
search_button.on_click(search_topic_callback)
clear_button.on_click(clear_search_callback)
filter_tabs.on_change('active', tab_changed_callback)
analyse_button.on_click(re_analyze_callback)

# start app

draw_ui(top_n_dropdown.value, top_n_clusters_dropdown.value,
        radio_group_area.active)

doc = curdoc()
main_title = "Trend Analysis"
doc.title = main_title
doc.add_root(grid)
toggle = Toggle(label="Start", type="success")
toggle.on_click(toggle_handler)
toggle.active = False

# Set up reset button
def reset_handler():
    global ii, current_time
    ii = 0
    current_time = 0
    l_forward.data_source.data["y"] = forward_wave()
    l_reverse.data_source.data["y"] = reverse_wave()
    l_sum.data_source.data["y"] = l_forward.data_source.data["y"] + \
                                  l_reverse.data_source.data["y"]
    #t2.data_source.data["text"] = ['t = {:.3f} s'.format(current_time)]
button_reset = Button(label="Reset", type="success")
button_reset.on_click(reset_handler)

# Set up checkboxes to show/hide forward & reverse propagating waves
def checkbox_group_handler(active):
    global alpha, alpha_slider
    if 0 in active:
        #l_forward.glyph.visible = True
        l_forward.glyph.line_alpha = alpha_forward_reverse_waves
    else:
        #l_forward.glyph.visible = False
        l_forward.glyph.line_alpha = 0.0
    if 1 in active:
        #l_reverse.glyph.visible = True
        l_reverse.glyph.line_alpha = alpha_forward_reverse_waves
    else:
        #l_reverse.glyph.visible = False
Beispiel #43
0
                            value=1,
                            step=1,
                            title="Liczba wentylatorów")
cpuPowerSlider = Slider(start=0,
                        end=100,
                        value=50,
                        step=1,
                        title="Moc procesora [%]")
resetButton = Button(label="Reset")
widgetsTitle = Div(text="""<center><b>Panel kontrolny</b></center>""")

outsideTempSlider.on_change('value_throttled', update_outsideTemp)
targetTempSlider.on_change('value_throttled', update_targetTemp)
numberOfFansSlider.on_change('value_throttled', update_numberOfFans)
cpuPowerSlider.on_change('value_throttled', update_cpuPower)
resetButton.on_click(simulation_reset)

inputs = column([
    widgetsTitle, targetTempSlider, outsideTempSlider, numberOfFansSlider,
    cpuPowerSlider, resetButton
],
                width=300)

#curdoc().theme = 'dark_minimal'
grid = gridplot([[temp_plot, err_plot], [temp2_plot, reg_plot]],
                toolbar_location=None)
#grid.toolbar_location = None
curdoc().add_root(row(inputs, grid))
curdoc().title = "CPU Cooler Simulator"
curdoc().add_periodic_callback(callback, 1)
Beispiel #44
0
    ]
    lower_bounds = [
        float(lower_bound_1.value),
        float(lower_bound_X.value),
        float(lower_bound_2.value)
    ]

    bets = ArbitrageOptimizer.get_optimal_bets(ratios, upper_bounds,
                                               lower_bounds)

    bet_1.value = str(round(bets[0], 0))
    bet_X.value = str(round(bets[1], 0))
    bet_2.value = str(round(bets[2], 0))


calculate_button.on_click(calculate_bets)

# create layout to be plotted
dataTable = get_data_table_from_games(games)
arbitrageTabs = Tabs(tabs=tabs, width=900)
calculator = column(row(upper_bound_1, upper_bound_X, upper_bound_2),
                    row(ratio_1, ratio_X, ratio_2),
                    row(lower_bound_1, lower_bound_X, lower_bound_2),
                    row(calculate_button), row(bet_1, bet_X, bet_2))

mainTabs = [
    Panel(child=dataTable, title="Current profitable games"),
    Panel(child=column(arbitrageTabs, calculator),
          title="Current arbitrage opportunities")
]
layout = column(Tabs(tabs=mainTabs), sizing_mode='stretch_both')
Beispiel #45
0
    if redraw_plot:
        #    if True:  # pylint: disable=using-constant-test
        figure = create_plot()
        #TO DO: for some reason this destroys the coupling to source.data
        # to figure out why (and then restrict this to actual redrawing scenarios)
        l.children[0].children[1] = figure
        redraw_plot = False

    update_legends(l)
    plot_info.text += " done!"
    btn_plot.button_type = 'success'
    return


btn_plot.on_click(update)


# pylint: disable=unused-argument
def on_change_clr(attr, old, new):
    """Remember to redraw plot next time, when necessary.

    When switching between bond_type color and something else,
    the plot needs to be redrawn.
    """
    global redraw_plot
    if (new == 'bond_type' or old == 'bond_type') and new != old:
        redraw_plot = True

    check_uniqueness(attr, old, new)
def generate_plots(ulog, px4_ulog, flight_mode_changes, db_data, vehicle_data):
    """ create a list of bokeh plots (and widgets) to show """

    plots = []
    data = ulog.data_list

    # Heading
    sys_name = ''
    if 'sys_name' in ulog.msg_info_dict:
        sys_name = cgi.escape(ulog.msg_info_dict['sys_name']) + ' '
    div = Div(text="<h1>" + sys_name + px4_ulog.get_mav_type() + "</h1>",
              width=int(plot_width * 0.9))
    header_divs = [div]
    if db_data.description != '':
        div_descr = Div(text="<h4>" + db_data.description + "</h4>",
                        width=int(plot_width * 0.9))
        header_divs.append(div_descr)

    # airframe
    table_text = []
    if 'SYS_AUTOSTART' in ulog.initial_parameters:
        sys_autostart = ulog.initial_parameters['SYS_AUTOSTART']
        airframe_data = get_airframe_data(sys_autostart)

        if airframe_data is None:
            table_text.append(('Airframe', str(sys_autostart)))
        else:
            airframe_type = ''
            if 'type' in airframe_data:
                airframe_type = ', ' + airframe_data['type']
            table_text.append(
                ('Airframe', airframe_data.get('name') + airframe_type +
                 ' <small>(' + str(sys_autostart) + ')</small>'))

    # HW & SW
    sys_hardware = ''
    if 'ver_hw' in ulog.msg_info_dict:
        sys_hardware = cgi.escape(ulog.msg_info_dict['ver_hw'])
        table_text.append(('Hardware', sys_hardware))

    release_str = ulog.get_version_info_str()
    if release_str is None:
        release_str = ''
        release_str_suffix = ''
    else:
        release_str += ' <small>('
        release_str_suffix = ')</small>'
    if 'ver_sw' in ulog.msg_info_dict:
        ver_sw = cgi.escape(ulog.msg_info_dict['ver_sw'])
        ver_sw_link = 'https://github.com/PX4/Firmware/commit/' + ver_sw
        table_text.append(
            ('Software Version', release_str + '<a href="' + ver_sw_link +
             '" target="_blank">' + ver_sw[:8] + '</a>' + release_str_suffix))

    if 'sys_os_name' in ulog.msg_info_dict and 'sys_os_ver_release' in ulog.msg_info_dict:
        os_name = cgi.escape(ulog.msg_info_dict['sys_os_name'])
        os_ver = ulog.get_version_info_str('sys_os_ver_release')
        if os_ver is not None:
            table_text.append(('OS Version', os_name + ', ' + os_ver))

    table_text.append(('Estimator', px4_ulog.get_estimator()))
    # dropouts
    dropout_durations = [dropout.duration for dropout in ulog.dropouts]
    if len(dropout_durations) > 0:
        total_duration = sum(dropout_durations) / 1000
        if total_duration > 5:
            total_duration_str = '{:.0f}'.format(total_duration)
        else:
            total_duration_str = '{:.2f}'.format(total_duration)
        table_text.append(
            ('Dropouts', '{:} ({:} s)'.format(len(dropout_durations),
                                              total_duration_str)))

    # logging duration
    m, s = divmod(int((ulog.last_timestamp - ulog.start_timestamp) / 1e6), 60)
    h, m = divmod(m, 60)
    table_text.append(
        ('Logging duration', '{:d}:{:02d}:{:02d}'.format(h, m, s)))

    # total vehicle flight time
    flight_time_s = get_total_flight_time(ulog)
    if flight_time_s is not None:
        m, s = divmod(int(flight_time_s), 60)
        h, m = divmod(m, 60)
        days, h = divmod(h, 24)
        flight_time_str = ''
        if days > 0: flight_time_str += '{:d} days '.format(days)
        if h > 0: flight_time_str += '{:d} hours '.format(h)
        if m > 0: flight_time_str += '{:d} minutes '.format(m)
        flight_time_str += '{:d} seconds '.format(s)
        table_text.append(('Vehicle flight time', flight_time_str))

    # vehicle UUID (and name if provided). SITL does not have a UUID
    if 'sys_uuid' in ulog.msg_info_dict and sys_hardware != 'SITL':
        sys_uuid = cgi.escape(ulog.msg_info_dict['sys_uuid'])
        if vehicle_data is not None and vehicle_data.name != '':
            sys_uuid = sys_uuid + ' (' + vehicle_data.name + ')'
        if len(sys_uuid) > 0:
            table_text.append(('Vehicle UUID', sys_uuid))

    # Wind speed, rating, feedback
    if db_data.wind_speed >= 0:
        table_text.append(('Wind Speed', db_data.wind_speed_str()))
    if len(db_data.rating) > 0:
        table_text.append(('Flight Rating', db_data.rating_str()))
    if len(db_data.feedback) > 0:
        table_text.append(('Feedback', db_data.feedback.replace('\n',
                                                                '<br/>')))
    if len(db_data.video_url) > 0:
        table_text.append(('Video', '<a href="' + db_data.video_url +
                           '" target="_blank">' + db_data.video_url + '</a>'))

    # generate the table
    divs_text = '<table>' + ''.join([
        '<tr><td class="left">' + a + ':</td><td>' + b + '</td></tr>'
        for a, b in table_text
    ]) + '</table>'
    header_divs.append(Div(text=divs_text, width=int(plot_width * 0.9)))
    plots.append(widgetbox(header_divs, width=int(plot_width * 0.9)))

    # FIXME: for now, we use Google maps directly without bokeh, because it's not working reliably
    # GPS map
    #    gps_plots = []
    #    gps_titles = []
    #    plot = plot_map(ulog, plot_config, map_type='google', api_key =
    #            get_google_maps_api_key(), setpoints=False)
    #    plot = None
    #    if plot is not None:
    #        gps_plots.append(plot)
    #        gps_titles.append('GPS Map: Satellite')
    #
    #    plot = plot_map(ulog, plot_config, map_type='plain', setpoints=True)
    #    if plot is not None:
    #        gps_plots.append(plot)
    #        gps_titles.append('GPS Map: Plain')
    #
    #    data_plot = DataPlot2D(data, plot_config, 'vehicle_local_position',
    #        x_axis_label = '[m]', y_axis_label='[m]', plot_height='gps_map')
    #    data_plot.add_graph('y', 'x', colors2[0], 'Estimated')
    #    data_plot.change_dataset('vehicle_local_position_setpoint')
    #    data_plot.add_graph('y', 'x', colors2[1], 'Setpoint')
    #    if data_plot.finalize() is not None:
    #        gps_plots.append(data_plot.bokeh_plot)
    #        gps_titles.append('Local Position')
    #
    #
    #    if len(gps_plots) >= 2:
    #        tabs = []
    #        for i in range(len(gps_plots)):
    #            tabs.append(Panel(child=gps_plots[i], title=gps_titles[i]))
    #        gps_plot_height=plot_config['plot_height']['gps_map'] + 30
    #        plots.append(Tabs(tabs=tabs, width=plot_width, height=gps_plot_height))
    #    elif len(gps_plots) == 1:
    #        plots.extend(gps_plots)

    # Position plot
    data_plot = DataPlot2D(data,
                           plot_config,
                           'vehicle_local_position',
                           x_axis_label='[m]',
                           y_axis_label='[m]',
                           plot_height='gps_map')
    data_plot.add_graph('y',
                        'x',
                        colors2[0],
                        'Estimated',
                        check_if_all_zero=True)
    data_plot.change_dataset('vehicle_local_position_setpoint')
    data_plot.add_graph('y', 'x', colors2[1], 'Setpoint')
    # groundtruth (SITL only)
    data_plot.change_dataset('vehicle_local_position_groundtruth')
    data_plot.add_graph('y', 'x', color_gray, 'Groundtruth')
    # GPS + position setpoints
    plot_map(ulog,
             plot_config,
             map_type='plain',
             setpoints=True,
             bokeh_plot=data_plot.bokeh_plot)
    if data_plot.finalize() is not None:
        plots.append(data_plot.bokeh_plot)
        curdoc().template_variables['has_position_data'] = True

    # initialize parameter changes
    changed_params = None
    if not 'replay' in ulog.msg_info_dict:  # replay can have many param changes
        if len(ulog.changed_parameters) > 0:
            changed_params = ulog.changed_parameters
            plots.append(None)  # save space for the param change button

    ### Add all data plots ###

    # Altitude estimate
    data_plot = DataPlot(data,
                         plot_config,
                         'vehicle_gps_position',
                         y_axis_label='[m]',
                         title='Altitude Estimate',
                         changed_params=changed_params)
    data_plot.add_graph([lambda data: ('alt', data['alt'] * 0.001)],
                        colors8[0:1], ['GPS Altitude'])
    data_plot.change_dataset('sensor_combined')
    data_plot.add_graph(['baro_alt_meter'], colors8[1:2],
                        ['Barometer Altitude'])
    data_plot.change_dataset('vehicle_global_position')
    data_plot.add_graph(['alt'], colors8[2:3], ['Fused Altitude Estimation'])
    data_plot.change_dataset('position_setpoint_triplet')
    data_plot.add_circle(['current.alt'],
                         [plot_config['mission_setpoint_color']],
                         ['Altitude Setpoint'])
    data_plot.change_dataset('actuator_controls_0')
    data_plot.add_graph([lambda data: ('thrust', data['control[3]'] * 100)],
                        colors8[6:7], ['Thrust [0, 100]'])
    plot_flight_modes_background(data_plot.bokeh_plot, flight_mode_changes)

    if data_plot.finalize() is not None: plots.append(data_plot)

    # Roll/Pitch/Yaw angle & angular rate
    for axis in ['roll', 'pitch', 'yaw']:

        # angle
        axis_name = axis.capitalize()
        data_plot = DataPlot(data,
                             plot_config,
                             'vehicle_attitude',
                             y_axis_label='[deg]',
                             title=axis_name + ' Angle',
                             plot_height='small',
                             changed_params=changed_params)
        data_plot.add_graph([lambda data: (axis, np.rad2deg(data[axis]))],
                            colors2[0:1], [axis_name + ' Estimated'])
        data_plot.change_dataset('vehicle_attitude_setpoint')
        data_plot.add_graph(
            [lambda data: (axis + '_d', np.rad2deg(data[axis + '_d']))],
            colors2[1:2], [axis_name + ' Setpoint'])
        data_plot.change_dataset('vehicle_attitude_groundtruth')
        data_plot.add_graph([lambda data: (axis, np.rad2deg(data[axis]))],
                            [color_gray], [axis_name + ' Groundtruth'])
        plot_flight_modes_background(data_plot.bokeh_plot, flight_mode_changes)

        if data_plot.finalize() is not None: plots.append(data_plot)

        # rate
        data_plot = DataPlot(data,
                             plot_config,
                             'vehicle_attitude',
                             y_axis_label='[deg/s]',
                             title=axis_name + ' Angular Rate',
                             plot_height='small',
                             changed_params=changed_params)
        data_plot.add_graph(
            [lambda data: (axis + 'speed', np.rad2deg(data[axis + 'speed']))],
            colors2[0:1], [axis_name + ' Rate Estimated'])
        data_plot.change_dataset('vehicle_rates_setpoint')
        data_plot.add_graph([lambda data: (axis, np.rad2deg(data[axis]))],
                            colors2[1:2], [axis_name + ' Rate Setpoint'])
        data_plot.change_dataset('vehicle_attitude_groundtruth')
        data_plot.add_graph(
            [lambda data: (axis + 'speed', np.rad2deg(data[axis + 'speed']))],
            [color_gray], [axis_name + ' Rate Groundtruth'])
        plot_flight_modes_background(data_plot.bokeh_plot, flight_mode_changes)

        if data_plot.finalize() is not None: plots.append(data_plot)

    # Local position
    for axis in ['x', 'y', 'z']:
        data_plot = DataPlot(data,
                             plot_config,
                             'vehicle_local_position',
                             y_axis_label='[m]',
                             title='Local Position ' + axis.upper(),
                             plot_height='small',
                             changed_params=changed_params)
        data_plot.add_graph([axis], colors2[0:1],
                            [axis.upper() + ' Estimated'])
        data_plot.change_dataset('vehicle_local_position_setpoint')
        data_plot.add_graph([axis], colors2[1:2], [axis.upper() + ' Setpoint'])
        plot_flight_modes_background(data_plot.bokeh_plot, flight_mode_changes)

        if data_plot.finalize() is not None: plots.append(data_plot)

    # Velocity
    data_plot = DataPlot(data,
                         plot_config,
                         'vehicle_local_position',
                         y_axis_label='[m/s]',
                         title='Velocity',
                         plot_height='small',
                         changed_params=changed_params)
    data_plot.add_graph(['vx', 'vy', 'vz'], colors3, ['X', 'Y', 'Z'])
    plot_flight_modes_background(data_plot.bokeh_plot, flight_mode_changes)

    if data_plot.finalize() is not None: plots.append(data_plot)

    # Vision position (only if topic found)
    if any(elem.name == 'vehicle_vision_position' for elem in data):
        data_plot = DataPlot(data,
                             plot_config,
                             'vehicle_vision_position',
                             y_axis_label='[m]',
                             title='Vision Position',
                             plot_height='small',
                             changed_params=changed_params)
        data_plot.add_graph(['x', 'y', 'z'], colors3, ['X', 'Y', 'Z'])
        plot_flight_modes_background(data_plot.bokeh_plot, flight_mode_changes)

        data_plot.change_dataset('vehicle_local_position_groundtruth')
        data_plot.add_graph(
            ['x', 'y', 'z'], colors8[2:5],
            ['Groundtruth X', 'Groundtruth Y', 'Groundtruth Z'])

        if data_plot.finalize() is not None: plots.append(data_plot)

        # Vision velocity
        data_plot = DataPlot(data,
                             plot_config,
                             'vehicle_vision_position',
                             y_axis_label='[m]',
                             title='Vision Velocity',
                             plot_height='small',
                             changed_params=changed_params)
        data_plot.add_graph(['vx', 'vy', 'vz'], colors3, ['X', 'Y', 'Z'])
        plot_flight_modes_background(data_plot.bokeh_plot, flight_mode_changes)

        data_plot.change_dataset('vehicle_local_position_groundtruth')
        data_plot.add_graph(
            ['vx', 'vy', 'vz'], colors8[2:5],
            ['Groundtruth X', 'Groundtruth Y', 'Groundtruth Z'])
        if data_plot.finalize() is not None: plots.append(data_plot)

    # Vision attitude
    if any(elem.name == 'vehicle_vision_attitude' for elem in data):
        data_plot = DataPlot(data,
                             plot_config,
                             'vehicle_vision_attitude',
                             y_axis_label='[deg]',
                             title='Vision Attitude',
                             plot_height='small',
                             changed_params=changed_params)
        data_plot.add_graph([
            lambda data: ('roll', np.rad2deg(data['roll'])), lambda data:
            ('pitch', np.rad2deg(data['pitch'])), lambda data:
            ('yaw', np.rad2deg(data['yaw']))
        ], colors3, ['Roll', 'Pitch', 'Yaw'])
        plot_flight_modes_background(data_plot.bokeh_plot, flight_mode_changes)

        data_plot.change_dataset('vehicle_attitude_groundtruth')
        data_plot.add_graph(
            [
                lambda data: ('roll', np.rad2deg(data['roll'])), lambda data:
                ('pitch', np.rad2deg(data['pitch'])), lambda data:
                ('yaw', np.rad2deg(data['yaw']))
            ], colors8[2:5],
            ['Roll Groundtruth', 'Pitch Groundtruth', 'Yaw Groundtruth'])

        if data_plot.finalize() is not None: plots.append(data_plot)

    # Airspeed vs Ground speed
    try:
        control_state = ulog.get_dataset('control_state').data
        # only plot if valid airspeed
        if np.amax(control_state['airspeed_valid']) == 1:
            data_plot = DataPlot(data,
                                 plot_config,
                                 'vehicle_global_position',
                                 y_axis_label='[m/s]',
                                 title='Airspeed',
                                 plot_height='small',
                                 changed_params=changed_params)
            data_plot.add_graph([
                lambda data: ('groundspeed_estimated',
                              np.sqrt(data['vel_n']**2 + data['vel_e']**2))
            ], colors3[2:3], ['Ground Speed Estimated'])
            data_plot.change_dataset('control_state')
            data_plot.add_graph(['airspeed'], colors2[0:1],
                                ['Airspeed Estimated'])

            plot_flight_modes_background(data_plot.bokeh_plot,
                                         flight_mode_changes)

            if data_plot.finalize() is not None: plots.append(data_plot)
    except:
        pass

    # raw radio control inputs
    data_plot = DataPlot(data,
                         plot_config,
                         'rc_channels',
                         title='Raw Radio Control Inputs',
                         plot_height='small',
                         y_range=Range1d(-1.1, 1.1),
                         changed_params=changed_params)
    num_rc_channels = 8
    if data_plot.dataset:
        max_channels = np.amax(data_plot.dataset.data['channel_count'])
        if max_channels < num_rc_channels: num_rc_channels = max_channels
    legends = []
    for i in range(num_rc_channels):
        channel_names = px4_ulog.get_configured_rc_input_names(i)
        if channel_names is None:
            legends.append('Channel ' + str(i))
        else:
            legends.append('Channel ' + str(i) + ' (' +
                           ', '.join(channel_names) + ')')
    data_plot.add_graph(
        ['channels[' + str(i) + ']' for i in range(num_rc_channels)],
        colors8[0:num_rc_channels], legends)
    plot_flight_modes_background(data_plot.bokeh_plot, flight_mode_changes)

    if data_plot.finalize() is not None: plots.append(data_plot)

    # actuator controls 0
    data_plot = DataPlot(data,
                         plot_config,
                         'actuator_controls_0',
                         y_start=0,
                         title='Actuator Controls 0',
                         plot_height='small',
                         changed_params=changed_params)
    data_plot.add_graph(
        ['control[0]', 'control[1]', 'control[2]', 'control[3]'], colors8[0:4],
        ['Roll', 'Pitch', 'Yaw', 'Thrust'])
    plot_flight_modes_background(data_plot.bokeh_plot, flight_mode_changes)
    if data_plot.finalize() is not None: plots.append(data_plot)

    # actuator outputs
    data_plot = DataPlot(data,
                         plot_config,
                         'actuator_outputs',
                         y_start=0,
                         title='Actuator Outputs',
                         plot_height='small',
                         changed_params=changed_params)
    num_actuator_outputs = 8
    if data_plot.dataset:
        max_outputs = np.amax(data_plot.dataset.data['noutputs'])
        if max_outputs < num_actuator_outputs:
            num_actuator_outputs = max_outputs
    data_plot.add_graph(
        ['output[' + str(i) + ']' for i in range(num_actuator_outputs)],
        colors8[0:num_actuator_outputs],
        ['Output ' + str(i) for i in range(num_actuator_outputs)])
    plot_flight_modes_background(data_plot.bokeh_plot, flight_mode_changes)

    if data_plot.finalize() is not None: plots.append(data_plot)

    # raw acceleration
    data_plot = DataPlot(data,
                         plot_config,
                         'sensor_combined',
                         y_axis_label='[m/s^2]',
                         title='Raw Acceleration',
                         plot_height='small',
                         changed_params=changed_params)
    data_plot.add_graph([
        'accelerometer_m_s2[0]', 'accelerometer_m_s2[1]',
        'accelerometer_m_s2[2]'
    ], colors3, ['X', 'Y', 'Z'])
    if data_plot.finalize() is not None: plots.append(data_plot)

    # raw angular speed
    data_plot = DataPlot(data,
                         plot_config,
                         'sensor_combined',
                         y_axis_label='[deg/s]',
                         title='Raw Angular Speed (Gyroscope)',
                         plot_height='small',
                         changed_params=changed_params)
    data_plot.add_graph([
        lambda data:
        ('gyro_rad[0]', np.rad2deg(data['gyro_rad[0]'])), lambda data:
        ('gyro_rad[1]', np.rad2deg(data['gyro_rad[1]'])), lambda data:
        ('gyro_rad[2]', np.rad2deg(data['gyro_rad[2]']))
    ], colors3, ['X', 'Y', 'Z'])
    if data_plot.finalize() is not None: plots.append(data_plot)

    # magnetic field strength
    data_plot = DataPlot(data,
                         plot_config,
                         'sensor_combined',
                         y_axis_label='[gauss]',
                         title='Raw Magnetic Field Strength',
                         plot_height='small',
                         changed_params=changed_params)
    data_plot.add_graph(
        ['magnetometer_ga[0]', 'magnetometer_ga[1]', 'magnetometer_ga[2]'],
        colors3, ['X', 'Y', 'Z'])
    if data_plot.finalize() is not None: plots.append(data_plot)

    # distance sensor
    data_plot = DataPlot(data,
                         plot_config,
                         'distance_sensor',
                         y_start=0,
                         y_axis_label='[m]',
                         title='Distance Sensor',
                         plot_height='small',
                         changed_params=changed_params)
    data_plot.add_graph(['current_distance', 'covariance'], colors3[0:2],
                        ['Distance', 'Covariance'])
    if data_plot.finalize() is not None: plots.append(data_plot)

    # gps uncertainty
    # the accuracy values can be really large if there is no fix, so we limit the
    # y axis range to some sane values
    data_plot = DataPlot(data,
                         plot_config,
                         'vehicle_gps_position',
                         title='GPS Uncertainty',
                         y_range=Range1d(0, 40),
                         plot_height='small',
                         changed_params=changed_params)
    data_plot.add_graph(
        ['eph', 'epv', 'satellites_used', 'fix_type'], colors8[::2], [
            'Horizontal position accuracy [m]',
            'Vertical position accuracy [m]', 'Num Satellites used', 'GPS Fix'
        ])
    if data_plot.finalize() is not None: plots.append(data_plot)

    # gps noise & jamming
    data_plot = DataPlot(data,
                         plot_config,
                         'vehicle_gps_position',
                         y_start=0,
                         title='GPS Noise & Jamming',
                         plot_height='small',
                         changed_params=changed_params)
    data_plot.add_graph(['noise_per_ms', 'jamming_indicator'], colors3[0:2],
                        ['Noise per ms', 'Jamming Indicator'])
    if data_plot.finalize() is not None: plots.append(data_plot)

    # thrust and magnetic field
    data_plot = DataPlot(data,
                         plot_config,
                         'sensor_combined',
                         y_start=0,
                         title='Thrust and Magnetic Field',
                         plot_height='small',
                         changed_params=changed_params)
    data_plot.add_graph([
        lambda data:
        ('len_mag',
         np.sqrt(data['magnetometer_ga[0]']**2 + data['magnetometer_ga[1]']**2
                 + data['magnetometer_ga[2]']**2))
    ], colors2[0:1], ['Norm of Magnetic Field'])
    data_plot.change_dataset('actuator_controls_0')
    data_plot.add_graph([lambda data: ('thrust', data['control[3]'])],
                        colors2[1:2], ['Thrust'])
    if data_plot.finalize() is not None: plots.append(data_plot)

    # power
    # TODO: dischared in Ah?
    data_plot = DataPlot(data,
                         plot_config,
                         'battery_status',
                         y_start=0,
                         title='Power',
                         plot_height='small',
                         changed_params=changed_params)
    data_plot.add_graph([
        'voltage_v', 'voltage_filtered_v', 'current_a', lambda data:
        ('discharged_mah', data['discharged_mah'] / 100)
    ], colors8[::2], [
        'Voltage  [V]', 'Voltage filtered [V]', 'Current [A]',
        'Discharged Amount [mAh / 100]'
    ])
    if data_plot.finalize() is not None: plots.append(data_plot)

    # estimator watchdog
    data_plot = DataPlot(data,
                         plot_config,
                         'estimator_status',
                         y_start=0,
                         title='Estimator Watchdog',
                         plot_height='small',
                         changed_params=changed_params)
    data_plot.add_graph(['nan_flags', 'health_flags', 'timeout_flags'],
                        colors3, [
                            'NaN Flags', 'Health Flags (vel, pos, hgt)',
                            'Timeout Flags (vel, pos, hgt)'
                        ])
    if data_plot.finalize() is not None: plots.append(data_plot)

    # RC Quality
    data_plot = DataPlot(data,
                         plot_config,
                         'input_rc',
                         title='RC Quality',
                         plot_height='small',
                         y_range=Range1d(0, 1),
                         changed_params=changed_params)
    data_plot.add_graph(['rc_lost', lambda data: ('rssi', data['rssi'] / 100)],
                        colors3[0:2], ['RC Lost', 'RSSI [0, 1]'])
    if data_plot.finalize() is not None: plots.append(data_plot)

    # cpu load
    data_plot = DataPlot(data,
                         plot_config,
                         'cpuload',
                         title='CPU & RAM',
                         plot_height='small',
                         y_range=Range1d(0, 1),
                         changed_params=changed_params)
    data_plot.add_graph(['ram_usage', 'load'], [colors3[1], colors3[2]],
                        ['RAM Usage', 'CPU Load'])
    data_plot.add_span('load', line_color=colors3[2])
    data_plot.add_span('ram_usage', line_color=colors3[1])
    plot_flight_modes_background(data_plot.bokeh_plot, flight_mode_changes)
    if data_plot.finalize() is not None: plots.append(data_plot)

    # sampling: time difference
    try:
        data_plot = DataPlot(data,
                             plot_config,
                             'sensor_combined',
                             y_start=0,
                             y_axis_label='[us]',
                             title='Sampling Regularity of Sensor Data',
                             plot_height='small',
                             changed_params=changed_params)
        sensor_combined = ulog.get_dataset('sensor_combined').data
        sampling_diff = np.diff(sensor_combined['timestamp'])
        min_sampling_diff = np.amin(sampling_diff)

        plot_dropouts(data_plot.bokeh_plot, ulog.dropouts, min_sampling_diff)

        data_plot.add_graph(
            [lambda data: ('timediff', np.append(sampling_diff, 0))],
            [colors3[2]], ['delta t (between 2 samples)'])
        if data_plot.finalize() is not None: plots.append(data_plot)
    except:
        pass

    # exchange all DataPlot's with the bokeh_plot and handle parameter changes

    param_changes_button = Button(label="Hide Parameter Changes", width=170)
    param_change_labels = []

    # FIXME: this should be a CustomJS callback, not on the server. However this
    # did not work for me.
    def param_changes_button_clicked():
        """ callback to show/hide parameter changes """
        for label in param_change_labels:
            if label.visible:
                param_changes_button.label = 'Show Parameter Changes'
                label.visible = False
                label.text_alpha = 0  # label.visible does not work, so we use this instead
            else:
                param_changes_button.label = 'Hide Parameter Changes'
                label.visible = True
                label.text_alpha = 1

    param_changes_button.on_click(param_changes_button_clicked)

    jinja_plot_data = []
    for i in range(len(plots)):
        if plots[i] is None:
            plots[i] = widgetbox(param_changes_button,
                                 width=int(plot_width * 0.99))
        if isinstance(plots[i], DataPlot):
            if plots[i].param_change_label is not None:
                param_change_labels.append(plots[i].param_change_label)
            plots[i] = plots[i].bokeh_plot

            plot_title = plots[i].title.text
            fragment = 'Nav-'+plot_title.replace(' ', '-') \
                .replace('&', '_').replace('(', '').replace(')', '')
            jinja_plot_data.append({
                'model_id': plots[i].ref['id'],
                'fragment': fragment,
                'title': plot_title
            })

    # changed parameters
    param_names = []
    param_values = []
    param_defaults = []
    param_mins = []
    param_maxs = []
    param_descriptions = []
    default_params = get_default_parameters()
    for param_name in sorted(ulog.initial_parameters):
        param_value = ulog.initial_parameters[param_name]

        if param_name.startswith('RC') or param_name.startswith('CAL_'):
            continue

        try:
            if param_name in default_params:
                default_param = default_params[param_name]
                if default_param['type'] == 'FLOAT':
                    is_default = abs(
                        float(default_param['default']) -
                        float(param_value)) < 0.00001
                    if 'decimal' in default_param:
                        param_value = round(param_value,
                                            int(default_param['decimal']))
                else:
                    is_default = int(
                        default_param['default']) == int(param_value)
                if not is_default:
                    param_names.append(param_name)
                    param_values.append(param_value)
                    param_defaults.append(default_param['default'])
                    param_mins.append(default_param.get('min', ''))
                    param_maxs.append(default_param.get('max', ''))
                    param_descriptions.append(
                        default_param.get('short_desc', ''))
            else:
                # not found: add it as if it were changed
                param_names.append(param_name)
                param_values.append(param_value)
                param_defaults.append('')
                param_mins.append('')
                param_maxs.append('')
                param_descriptions.append('(unknown)')
        except Exception as error:
            print(type(error), error)
    param_data = dict(names=param_names,
                      values=param_values,
                      defaults=param_defaults,
                      mins=param_mins,
                      maxs=param_maxs,
                      descriptions=param_descriptions)
    source = ColumnDataSource(param_data)
    columns = [
        TableColumn(field="names",
                    title="Name",
                    width=int(plot_width * 0.2),
                    sortable=False),
        TableColumn(field="values",
                    title="Value",
                    width=int(plot_width * 0.15),
                    sortable=False),
        TableColumn(field="defaults",
                    title="Default",
                    width=int(plot_width * 0.1),
                    sortable=False),
        TableColumn(field="mins",
                    title="Min",
                    width=int(plot_width * 0.075),
                    sortable=False),
        TableColumn(field="maxs",
                    title="Max",
                    width=int(plot_width * 0.075),
                    sortable=False),
        TableColumn(field="descriptions",
                    title="Description",
                    width=int(plot_width * 0.40),
                    sortable=False),
    ]
    data_table = DataTable(source=source,
                           columns=columns,
                           width=plot_width,
                           height=300,
                           sortable=False,
                           selectable=False)
    div = Div(
        text=
        """<b>Non-default Parameters</b> (except RC and sensor calibration)""",
        width=int(plot_width / 2))
    plots.append(widgetbox(div, data_table, width=plot_width))

    # log messages
    log_times = []
    log_levels = []
    log_messages = []
    for m in ulog.logged_messages:
        m1, s1 = divmod(int(m.timestamp / 1e6), 60)
        h1, m1 = divmod(m1, 60)
        log_times.append("{:d}:{:02d}:{:02d}".format(h1, m1, s1))
        log_levels.append(m.log_level_str())
        log_messages.append(m.message)
    log_data = dict(times=log_times, levels=log_levels, messages=log_messages)
    source = ColumnDataSource(log_data)
    columns = [
        TableColumn(field="times",
                    title="Time",
                    width=int(plot_width * 0.15),
                    sortable=False),
        TableColumn(field="levels",
                    title="Level",
                    width=int(plot_width * 0.1),
                    sortable=False),
        TableColumn(field="messages",
                    title="Message",
                    width=int(plot_width * 0.75),
                    sortable=False),
    ]
    data_table = DataTable(source=source,
                           columns=columns,
                           width=plot_width,
                           height=300,
                           sortable=False,
                           selectable=False)
    div = Div(text="""<b>Logged Messages</b>""", width=int(plot_width / 2))
    plots.append(widgetbox(div, data_table, width=plot_width))

    curdoc().template_variables['plots'] = jinja_plot_data

    return plots
Beispiel #47
0
def scattergraph_tab(floorplans):
    df = floorplans

    # column_names
    # df = df.rename(columns={'project_name':'Neighborhood','builder_name':'Builder','city':'Market','master_plan':'Community','typical_lot_size':'Lot Size','total_units_planned':'Total Units','total_units_sold':'Units Sold','total_remaining':'Unsold Homes','hoa1':'HOA','assessments':'Tax Rate','plan_name_1_field':'Plan Name','field_of_beds_1_field':'Beds','field_of_floors_1_field':'Floors','garage_1_field':'Garages','square_footage_1_field':'Square Footage','price_1_field':'Base Price'})

    # colors
    # movies["color"] = np.where(movies["Oscars"] > 0, "orange", "grey")
    # movies["alpha"] = np.where(movies["Oscars"] > 0, 0.9, 0.25)
    # movies.fillna(0, inplace=True)  # just replace missing values with zero
    # movies["revenue"] = movies.BoxOffice.apply(lambda x: '{:,d}'.format(int(x)))

    axis_map = {
        "Home Size": "Square Footage (1)",
        "Base Price": "Price (1)",
        "Lot Size (sf)": "Typical Lot Size",
        "Latitude": "Lat",
        "Longitude": "Long",
        "Sales Rate": "Sales Rate"
    }

    # desc =
    #   Div(text=open(join(dirname(__file__), "description.html")).read(), sizing_mode="stretch_width")

    # Max and Min Values
    sf_max = math.ceil(df['Square Footage (1)'].max() / 500) * 500
    sf_min = math.floor(df['Square Footage (1)'].min() / 500) * 500
    price_max = math.ceil(df['Price (1)'].max() / 50000) * 50000
    price_min = math.floor(df['Price (1)'].min() / 50000) * 50000
    lot_max = math.ceil(df['Typical Lot Size'].max() / 500) * 500
    lot_min = math.floor(df['Typical Lot Size'].min() / 500) * 500

    # Input controls
    max_sf_widget = TextInput(title="Maximum Square Footage",
                              value=str(sf_max))
    min_sf_widget = TextInput(title="Minimum Square Footage",
                              value=str(sf_min))
    max_price_widget = TextInput(title="Maximum Base Price",
                                 value=str(price_max))
    min_price_widget = TextInput(title="Minimum Base Price",
                                 value=str(price_min))
    max_lot_size_widget = TextInput(title="Maximum Lot Size (sf)",
                                    value=str(lot_max))
    min_lot_size_widget = TextInput(title="Minimum Lot Size (sf)",
                                    value=str(lot_min))

    # builder_select = MultiSelect(title="Builder Select", value=sorted(list(df['Builder Name'].unique())),options=sorted(list(df['Builder Name'].unique())))
    # market_select = MultiSelect(title="Market Select", value=sorted(list(df['City'].unique())),options=sorted(list(df['City'].unique())))

    x_axis = Select(title="X Axis",
                    options=sorted(axis_map.keys()),
                    value="Home Size")
    y_axis = Select(title="Y Axis",
                    options=sorted(axis_map.keys()),
                    value="Base Price")

    fha_span = Span(location=403000,
                    dimension='width',
                    line_color='blue',
                    line_dash='dashed',
                    line_width=.1)
    cll_span = Span(location=453100,
                    dimension='width',
                    line_color='green',
                    line_dash='dashed',
                    line_width=.1)

    sf_slider = RangeSlider(title="Square Footage",
                            start=sf_min,
                            end=sf_max,
                            value=(sf_min, sf_max),
                            step=500,
                            value_throttled=(250, 250))
    price_slider = RangeSlider(title="Base Price",
                               start=price_min,
                               end=price_max,
                               value=(price_min, price_max),
                               step=500,
                               value_throttled=(50000, 50000))
    lot_slider = RangeSlider(title="Lot Size (SF)",
                             start=lot_min,
                             end=lot_max,
                             value=(lot_min, lot_max),
                             step=500,
                             value_throttled=(250, 250))

    # Create Column Data Source that will be used by the plot
    source = ColumnDataSource(data=dict(
        SF=[],
        Price=[],
        Builder=[],
        Color=[],
        Neighborhood=[],
        LotSize=[],
        Market=[],
        Sales_Rate=[],
        Total_Homes=[],
        Homes_Sold=[],
        Unsold_Homes=[],
        Beds=[],
        Baths=[],
        HOA=[],
        Tax_Rate=[],
        Floors=[],
        Lat=[],
        Long=[],
        Submarket=[],
        OpenDate=[]))  # source = ColumnDataSource(data=df)

    # TOOLTIPS=[
    #     ("Title", "@title"),
    #     ("Year", "@year"),
    #     ("$", "@revenue")
    # ]

    floors = [str(x) for x in df['# of Floors (1)'].unique()]
    markers = ['hex', 'circle_x', 'triangle', 'square']
    # p = figure(plot_height=600, plot_width=700, title="", toolbar_location=None, tooltips=TOOLTIPS, sizing_mode="scale_both")

    # Create plots and attributes
    p = figure(plot_height=500,
               plot_width=800,
               title="Competitive Market Area")
    p.scatter(
        x='SF',
        y='Price',
        source=source,
        size=15,
        line_color='black',
        fill_alpha=.25,

        # legend='Floors',
        # # marker=factor_mark('Floors', markers, floors),
        # color=factor_cmap('Floors', 'Category10_4', floors)
    )
    map_options = GMapOptions(lat=df.Lat.mean(),
                              lng=df.Long.mean(),
                              map_type="roadmap",
                              zoom=8)
    pmap = gmap(Google_API,
                map_options,
                plot_width=360,
                plot_height=400,
                title="CMA Map",
                toolbar_location="above")
    pmap.circle(x="Long",
                y="Lat",
                size=15,
                fill_color='blue',
                fill_alpha=0.25,
                line_color='black',
                line_width=.08,
                source=source)

    p.yaxis.formatter = NumeralTickFormatter(format="$ 0,0")
    p.xaxis.formatter = NumeralTickFormatter(format="0,0")

    # Filter dataframe based on widget inputs
    def filter_df():
        # builder_list = [builder_select_widget.labels[i] for i in builder_select_widget.active]
        # market_list = [market_select_widget.labels[i] for i in market_select_widget.active]

        # submarket_val = submarket.value.strip()
        selected = df[
            (df['Square Footage (1)'] <= float(sf_slider.value[1])) &
            (df['Square Footage (1)'] >= float(sf_slider.value[0])) &
            (df['Price (1)'] <= float(price_slider.value[1])) &
            (df['Price (1)'] >= float(price_slider.value[0])) &
            (df['Typical Lot Size'] <= float(lot_slider.value[1])) &
            (df['Typical Lot Size'] >= float(lot_slider.value[0]))
            # (df['Builder Name'].isin(builder_list)) &
            # (df['City'].isin(market_list))
        ]
        # if submarket_val != "All":
        #     selected = selected[selected['Submarket'].str.contains(submarket_val)==True]
        return selected

# Update df

    def update():
        df = filter_df()
        df = df.sort_values(by=['Project Name'])

        p.xaxis.axis_label = x_axis.value
        p.yaxis.axis_label = y_axis.value
        # p.title.text = "%d Floorplans Selected, %d Communities Selected, %d Builders Selected" % (len(df), df.Neighborhood.nunique(), df.Builder.nunique())

        source.data = dict(
            # x=df[x_name],
            # y=df[y_name],
            SF=df['Square Footage (1)'],
            Price=df['Price (1)'],
            # Color=df['Color'],
            Neighborhood=df['Project Name'],
            Floors=df['# of Floors (1)'],
            Builder=df['Builder Name'],
            Market=df['City'],
            Lot_Size=df['Typical Lot Size'],
            Sales_Rate=df['Sales Rate'],
            Total_Homes=df['Total Units Planned'],
            Homes_Sold=df['Total Units Sold'],
            Unsold_Homes=df['Total Remaining'],
            HOA=df['HOA1'],
            Tax_Rate=df['Assessments'],
            Beds=df['# of Beds (1)'],
            Baths=df['# of Baths (1)'],
            Lat=df['Lat'],
            Long=df['Long'],
            # Submarket=df['Submarket'],
            # Open_Date=df['Open Date']
        )

# Add plot tools

    hover_callback = CustomJS(
        code="""var tooltips = document.getElementsByClassName("bk-tooltip");
            for (var i = 0, len = tooltips.length; i < len; i ++) {
                tooltips[i].style.top = "25px"; // unset what bokeh.js sets
                tooltips[i].style.left = "100px";
                tooltips[i].style.bottom = "";
                tooltips[i].style.right = "";
                """)
    hover_callback2 = CustomJS(
        code="""var tooltips = document.getElementsByClassName("bk-tooltip");
                for (var i = 0, len = tooltips.length; i < len; i ++) {
                tooltips[i].style.top = "25px"; // unset what bokeh.js sets
                tooltips[i].style.left = "-700px";
                tooltips[i].style.bottom = "";
                tooltips[i].style.right = "";
                }""")

    hover = HoverTool(tooltips=[
        ('Neighborhood', '@Neighborhood'),
        ('Builder', '@Builder'),
        ('Market', '@Market'),
        ('Lot Size', '@{Lot_Size}{(0,0)}'
         " SF"),
        ('Square Footage', '@{SF}{0,0SF}'
         " SF"),
        ('Base Price', '@{Price}{$0,0}'),
        ('Floors', '@Floors'),
        ('Sales Rate', '@{Sales_Rate}{(0.0)}'
         "/Mo"),
        ('Beds/Baths', '@{Beds}'
         "/"
         '@{Baths}{(0.0)}'),
    ],
                      callback=hover_callback,
                      show_arrow=False,
                      point_policy='snap_to_data')
    hover2 = HoverTool(tooltips=[
        ('Neighborhood', '@Neighborhood'),
        ('Builder', '@Builder'),
        ('Market', '@Market'),
        ('Lot Size', '@{Lot_Size}{(0,0)}'
         " SF"),
        ('Square Footage', '@{SF}{0,0SF}'
         " SF"),
        ('Base Price', '@{Price}{$0,0}'),
        ('Floors', '@Floors'),
        ('Sales Rate', '@{Sales_Rate}{(0.0)}'
         "/Mo"),
        ('Beds/Baths', '@{Beds}'
         "/"
         '@{Baths}{(0.0)}'),
    ],
                       callback=hover_callback2,
                       show_arrow=False,
                       point_policy='snap_to_data')

    table_columns = [
        TableColumn(field='Neighborhood', title='Neighborhood'),
        TableColumn(field='Market', title='Market'),
        TableColumn(field='Builder', title='Builder'),
        TableColumn(field='SF',
                    title='Home Size',
                    formatter=NumberFormatter(format='0,0')),
        TableColumn(field='Price',
                    title='Base Price',
                    formatter=NumberFormatter(format='$ 0,0[.]00'))
        # TableColumn(field="Sales_Rate", title="Sales Rate",formatter=HTMLTemplateFormatter(template='<code><%= value +" / Mo" %></code>')),
        # TableColumn(field="Lot_Size", title='Avg Lot Size',formatter=HTMLTemplateFormatter(template='<code><%= value +" SF" %></code>')),
        # TableColumn(field="Open_Date", title="Open Date",formatter=DateFormatter(format="%m/%d/%Y"))
    ]

    def floorplans_query():
        print('something')
        floorplans = pd.read_csv(
            join(dirname(join(dirname(__file__))), 'data', 'floorplans.csv'))
        con = sql.connect(join('data', 'Market.db'))
        floorplans.to_sql('floorplans', con, if_exists='replace')
        con.close()
        print(floorplans)
        return print('Data uploaded from CSV!')
        scattergraph_tab(floorplans)

    def download():
        date = datetime.datetime.now().strftime("%m_%d_%y_h%Hm%Ms%S")
        print('Testing')
        df.to_csv(
            os.path.abspath(
                os.path.join(os.path.dirname(__file__), '..', 'data',
                             'Downloads',
                             'scattergraph' + str(date) + '.csv')))

    button_dl = Button(label="Download", button_type="success")
    button_ul = Button(label="Upload data from CSV", button_type="success")
    button_dl.on_click(download)
    button_ul.on_click(floorplans_query)
    table = DataTable(source=source,
                      columns=table_columns,
                      editable=True,
                      height=600,
                      width=1200,
                      fit_columns=True,
                      scroll_to_selection=True)

    controls = [sf_slider, price_slider, lot_slider]

    for control in controls:
        control.on_change('value', lambda attr, old, new: update())

    p.add_tools(hover)
    pmap.add_tools(hover2)
    pmap.add_tools(WheelZoomTool())
    inputs = column([*controls, button_ul, button_dl], width=180, height=250)
    inputs.sizing_mode = "fixed"

    # Create layout
    l = layout([[column([inputs]), p, pmap], table], sizing_mode="fixed")

    tab = Panel(child=l, title='Scattergraph')

    # Initial call of update
    update()

    # Return
    return tab
Beispiel #48
0
class PeakPicking(Observer):

    def __init__(self, logger, spectrumId, dic, udic, pdata, dataSource, reference):
        Observer.__init__(self, logger)
        self.logger = logger
        self.id = spectrumId

        self.dic = dic
        self.udic = udic
        self.pdata = pdata
        self.mpdata = np.array(map(lambda x: -x, pdata))
        self.dataSource = dataSource

        reference.addObserver(lambda n: referenceObserver(self, n))

        self.sources = dict()
        self.sources['peaks'] = ColumnDataSource(data=dict(x=[], y=[]))

    def create(self):

        self.sources['table'] = ColumnDataSource(dict(x=[], y=[]))
        self.sources['background'] = ColumnDataSource(dict(x=[], y=[]))
        columns = [
                TableColumn(field="x", title="ppm", formatter=NumberFormatter(format="0.00")),
                TableColumn(field="y", title="y", formatter=NumberFormatter(format="0.00"))
            ]
        self.dataTable = DataTable(source=self.sources['table'], columns=columns, reorderable=False, width=500)
        self.sources['table'].on_change('selected', lambda attr, old, new: self.rowSelect(new['1d']['indices']))
        self.sources['table'].on_change('data', lambda attr, old, new: self.dataChanged(old, new))

        self.manual = CustomButton(label="Manual Peaks", button_type="success", width=500, error="Please select area using the peak picking tool.")
        self.manual.on_click(self.manualPeakPicking)

        self.peak = CustomButton(label="Peak By Peak", button_type="primary", width=250, error="Please select area using the peak by peak tool.")
        self.peak.on_click(self.peakByPeakPicking)
        self.peakTool = CustomTapTool.Create(self.peak, tapTool=PeakByPeakTapTool, auto=True, id="peakByPeakTool")

        self.createManualTool()

        self.createDeselectButton()
        self.createDeleteButton()

        self.chemicalShiftReportTitle = Div(text="<strong>Chemical Shift Report</strong>" if getLabel(self.udic) == "13C" else "")
        self.chemicalShiftReport = Paragraph(text=self.getChemicalShiftReport(), width=500)

    def createManualTool(self):
        callback = CustomJS(args=dict(button=self.manual), code="""
            /// get BoxSelectTool dimensions from cb_data parameter of Callback
            var geometry = cb_data['geometry'];

            button.data = {
                x0: geometry['x0'],
                x1: geometry['x1'],
                y:  geometry['y']
            };

            // Callback to the backend
            button.clicks++;
        """)
        self.manualTool = BothDimensionsSelectTool(
            tool_name = "Peak Picking By Threshold",
            icon = "my_icon_peak_picking",
            callback = callback,
            id = "peakPickingByThresholdTool"
        )

    def dataChanged(self, old, new):

        label = getLabel(self.udic)
        if label == "13C":
            added = [(peak, 'm') for peak in (set(new['x']) - set(old['x']))]
            removed = [(peak, 'm') for peak in (set(old['x']) - set(new['x']))]

            SpectrumDB.RemovePeaks(self.id, removed)
            SpectrumDB.AddPeaks(self.id, added)

        # Update Chemical Shift Report
        self.updateChemicalShiftReport()

    def updateChemicalShiftReport(self):
        self.chemicalShiftReport.text = self.getChemicalShiftReport()

    def getChemicalShiftReport(self):
        label = getLabel(self.udic)
        if label == "13C":
            return getMetadata(self.dic, self.udic) + " δ " + ", ".join("{:0.2f}".format(x) for x in [round(x, 2) for x in self.sources['table'].data['x']]) + "."
        else:
            return ""

    def createDeselectButton(self):
        self.deselectButton = Button(label="Deselect all peaks", button_type="default", width=250)
        self.deselectButton.on_click(lambda: deselectRows(self.sources['table']))

    def createDeleteButton(self):
        self.ids = []
        self.deleteButton = Button(label="Delete selected peaks", button_type="danger", width=250)
        self.deleteButton.on_click(self.deletePeaks)

    def deletePeaks(self):
        self.sources['peaks'].data = dict(x=[], y=[])

        newX = list(self.sources['table'].data['x'])
        newY = list(self.sources['table'].data['y'])

        ids = self.sources['table'].selected['1d']['indices']
        for i in sorted(ids, reverse=True):
            try:
                newX.pop(i)
                newY.pop(i)
            except IndexError:
                pass

        self.sources['table'].data = {
            'x': list(newX),
            'y': list(newY)
        }
        self.sources['background'].data = {
            'x': list(newX),
            'y': list(newY)
        }
        deselectRows(self.sources['table'])
        self.notifyObservers()

    def manualPeakPicking(self, dimensions, notify=True):

        # Positive Peaks
        self.peaksIndices = list(self.manualPeakPickingOnData(self.pdata, dimensions))
        # Negative Peaks
        self.peaksIndices.extend(self.manualPeakPickingOnData(self.mpdata, dimensions))
        # Sort Peaks
        self.peaksIndices = sorted(self.peaksIndices, reverse=True)

        if len(self.peaksIndices) > 0:
            self.updateDataValues({
                'x': [self.dataSource.data['ppm'][i] for i in self.peaksIndices],
                'y': [self.pdata[i] for i in self.peaksIndices]
            })
            if notify:
                self.notifyObservers()

    def manualPeakPickingOnData(self, data, dimensions):

        threshold = abs(dimensions['y'])
        if data.max() < threshold:
            return []

        peaks = ng.peakpick.pick(data, abs(dimensions['y']), algorithm="downward")

        peaksIndices = [int(peak[0]) for peak in peaks]
        # Filter left
        peaksIndices = [i for i in peaksIndices if self.dataSource.data['ppm'][i] <= dimensions['x0']]
        # Filter right
        peaksIndices = [i for i in peaksIndices if self.dataSource.data['ppm'][i] >= dimensions['x1']]
        return peaksIndices

    def peakByPeakPicking(self, dimensions):

        self.updateDataValues({
            'x': [dimensions['x']],
            'y': [dimensions['y']]
        })
        self.notifyObservers()

    def updateDataValues(self, data):
        # Update DataTable Values
        newData = list(OrderedDict.fromkeys(
            zip(
                self.sources['table'].data['x'] + data['x'],
                self.sources['table'].data['y'] + data['y']
            )
        ))
        newX, newY = zip(*sorted(newData, reverse=True))
        self.sources['table'].data = {
            'x': list(newX),
            'y': list(newY)
        }

        self.sources['background'].data = {
            'x': list(newX),
            'y': list(newY)
        }

    def selectByPPM(self, peaks):
        self.sources['table'].selected = {
            '0d': {'glyph': None, 'indices': []},
            '1d': {'indices': [self.sources['table'].data['x'].index(peak) for peak in peaks]},
            '2d': {'indices': {}}
        }

    def rowSelect(self, ids):
        self.sources['peaks'].data = {
            'x': [self.sources['table'].data['x'][i] for i in ids],
            'y': [self.sources['table'].data['y'][i] for i in ids]
        }

    def getPeaksInSpace(self, start, stop):
        return [y for x, y in zip(self.sources['table'].data['x'], self.sources['table'].data['y']) if x <= start and x >= stop]

    def getPPMInSpace(self, start, stop):
        return [x for x in self.sources['table'].data['x'] if x <= start and x >= stop]

    def draw(self, plot):

        peak = Circle(
            x="x",
            y="y",
            size=10,
            line_color="#C0C0C0",
            fill_color="#C0C0C0",
            line_width=1
        )
        plot.add_glyph(self.sources['background'], peak, selection_glyph=peak, nonselection_glyph=peak)

        selected = Circle(
            x="x",
            y="y",
            size=10,
            line_color="#ff0000",
            fill_color="#ff0000",
            line_width=1
        )
        plot.add_glyph(self.sources['peaks'], selected, selection_glyph=selected, nonselection_glyph=selected)

        self.manualTool.addToPlot(plot)

        plot.add_tools(self.peakTool)
def tab_testing():
    data_list = glob.glob('./np/Regression/*.npy')
    data_list = sorted(data_list)
    select_data = Select(title="Data:", value="", options=data_list)

    model_list = os.listdir('./model/Regression/')
    model_list = sorted(model_list)
    select_model = Select(title="Trained Model:", value="", options=model_list)

    notifier = Paragraph(text=""" Notification """, width=200, height=100)

    def refresh_handler():
        data_list_new = glob.glob('./np/Regression/*.npy')
        data_list_new = sorted(data_list_new)
        select_data.options = data_list_new

        model_list_new = os.listdir('./model/Regression/')
        model_list_new = sorted(model_list_new)
        select_model.options = model_list_new

    button_refresh = Button(label="Refresh list")
    button_refresh.on_click(refresh_handler)

    button_test = Button(label="Test model")

    select_result = MultiSelect(title="Key(result):")

    src = ColumnDataSource()
    df = pd.DataFrame(columns=['key', 'y', 'y_hat'])

    table_src = ColumnDataSource(pd.DataFrame(columns=['Key', 'MSE', 'R^2']))
    table_columns = [
        TableColumn(field=col, title=col) for col in ['Key', 'MSE', 'R^2']
    ]
    table_acc = DataTable(source=table_src,
                          columns=table_columns,
                          width=350,
                          height=400,
                          fit_columns=True,
                          name="Accuracy per Key")

    def test_handler():
        df.drop(df.index, inplace=True)
        print("Start test")
        tf.reset_default_graph()
        K.clear_session()

        notifier.text = """ Start testing """

        if (select_data.value == ""):
            data = np.load(select_data.options[0])
        else:
            data = np.load(select_data.value)
        data = data.item()
        notifier.text = """ Import data """

        data_x = data.get('x')
        if (data_x.shape[-1] == 1 and not 'cnn' in select_model.value):
            data_x = np.squeeze(data_x, -1)
        data_y = data.get('y')
        data_key = data.get('key1')

        print(data_x.shape)
        print(data_y.shape)

        df['key'] = data_key
        df['y'] = data_y[:, 0]

        op_list = []
        for i in df['key'].unique():
            op_list.append(str(i))
        select_result.options = op_list

        print(data_x.shape)
        print(data_y.shape)
        print(data.get('key1'))

        if (select_model.value == ""):
            model_name = select_model.options[0]
        else:
            model_name = select_model.value
        model_save_dir = './model/Regression/' + model_name + '/'

        model_dl = glob.glob(model_save_dir + '*.h5')
        model_ml = glob.glob(model_save_dir + '*.sav')

        print(model_save_dir + '*.h5')
        print(model_dl)
        print(model_ml)

        if (len(model_dl) > len(model_ml)):
            model = keras.models.load_model(model_save_dir + model_name +
                                            '.h5')
            target_hat = model.predict(data_x)
            DL = True

        elif (len(model_dl) < len(model_ml)):
            model = pickle.load(
                open(model_save_dir + model_name + '.sav', 'rb'))
            data_x = data_x.reshape([data_x.shape[0], -1])
            target_hat = model.predict(data_x)
            target_hat = np.expand_dims(target_hat, -1)
            DL = False

        notifier.text = """ Model restored """
        print("Model restored.")

        xs = []
        ys = []
        keys = []
        color = ['blue', 'red']

        xs.append([i for i in range(data_y.shape[0])])
        xs.append([i for i in range(data_y.shape[0])])
        ys.append(data_y)
        keys.append(data_key)

        print(target_hat.shape)
        K.clear_session()

        ys.append(target_hat)
        keys.append(data_key)

        print(target_hat[:, 0])
        df['y_hat'] = target_hat[:, 0]

        src.data = ColumnDataSource(
            data=dict(xs=xs, ys=ys, color=color, keys=keys)).data

        figure_trend.multi_line('xs', 'ys', source=src, color='color')

        line_mse = []
        line_r_2 = []
        for unit in df['key'].unique():
            target = df[df['key'] == unit]

            y = target['y'].values
            y_hat = target['y_hat'].values

            unit_mse = np.sum((y - y_hat)**2) / target.shape[0]
            unit_r_2 = np.max([r2_score(y, y_hat), 0])

            line_mse.append(unit_mse)
            line_r_2.append(unit_r_2)

        acc = pd.DataFrame(columns=['Key', 'MSE', 'R^2'])
        acc['Key'] = df['key'].unique()

        mse_mean = np.mean(line_mse)
        r_2_mean = np.mean(line_r_2)

        line_mse = list(map(lambda x: format(x, '.2f'), line_mse))
        acc['MSE'] = line_mse
        line_r_2 = list(map(lambda x: format(x, '.2f'), line_r_2))
        acc['R^2'] = line_r_2

        acc_append = pd.DataFrame(columns=acc.columns)
        acc_append['Key'] = ['MSE average', 'R^2 average']
        acc_append['MSE'] = [mse_mean, r_2_mean]

        acc = pd.concat([acc, acc_append])

        table_src.data = ColumnDataSource(acc).data

        notifier.text = """ Drawing complete """
        history.text = history.text + "\n\t" + model_name + "'s R^2 score: " + format(
            np.mean(r_2_mean), '.2f')

    def update(attr, old, new):

        key_to_plot = select_result.value

        xs = []
        ys = []
        keys = []

        y = []
        y_hat = []
        key = []

        key_type = type(df['key'].values[0])
        for k in key_to_plot:

            y += list(df[df['key'] == key_type(k)]['y'].values)
            y_hat += list(df[df['key'] == key_type(k)]['y_hat'].values)
            key += [k for _ in range(df[df['key'] == key_type(k)].shape[0])]

        ys.append(y)
        ys.append(y_hat)

        xs.append([i for i in range(len(y))])
        xs.append([i for i in range(len(y))])

        keys.append(key)
        keys.append(key)

        color = ['blue', 'red']

        src.data = ColumnDataSource(
            data=dict(xs=xs, ys=ys, color=color, keys=keys)).data

    select_result.on_change("value", update)

    button_test.on_click(test_handler)

    button_export = Button(label="Export result")

    def handler_export():
        df.to_csv('./Export/result.csv', index=False)

    button_export.on_click(handler_export)

    figure_trend = figure(title="Prediction result", width=800, height=460)
    history = PreText(text="", width=300, height=460)

    layout = Column(
        Row(button_refresh),
        Row(select_data, select_model, button_test, select_result, notifier),
        Row(table_acc, figure_trend, history, button_export))

    tab = Panel(child=layout, title='Regression Test')

    return tab
Beispiel #50
0
    session.store_document(document)

def radio_group_handler(active):
    print("radio_group_handler: %s" % active)
    session.store_document(document)

def checkbox_button_group_handler(active):
    print("checkbox_button_group_handler: %s" % active)
    session.store_document(document)

def radio_button_group_handler(active):
    print("radio_button_group_handler: %s" % active)
    session.store_document(document)

button = Button(label="Push button", icon=Icon(name="check"), type="primary")
button.on_click(button_handler)

toggle = Toggle(label="Toggle button", type="success")
toggle.on_click(toggle_handler)

menu = [("Item 1", "item_1"), ("Item 2", "item_2"), None, ("Item 3", "item_3")]
dropdown = Dropdown(label="Dropdown button", type="warning", menu=menu)
dropdown.on_click(dropdown_handler)

menu = [("Item 1", "foo"), ("Item 2", "bar"), None, ("Item 3", "baz")]
split = Dropdown(label="Split button", type="danger", menu=menu, default_action="baz")
split.on_click(split_handler)

checkbox_group = CheckboxGroup(labels=["Option 1", "Option 2", "Option 3"], active=[0, 1])
checkbox_group.on_click(checkbox_group_handler)
Beispiel #51
0
def ButtonWidget(*args, **kw):
    kw['label'] = kw.pop('title')
    cb = kw.pop('value')
    button = Button(*args, **kw)
    button.on_click(cb)
    return button
def plot():

    # FIGURES AND X-AXIS
    fig1 = Figure(title = 'Dive Profile',  plot_width = WIDTH, plot_height = HEIGHT, tools = TOOLS)
    fig2 = Figure(title = 'Dive Controls', plot_width = WIDTH, plot_height = HEIGHT, tools = TOOLS, x_range=fig1.x_range)
    fig3 = Figure(title = 'Attitude',      plot_width = WIDTH, plot_height = HEIGHT, tools = TOOLS, x_range=fig1.x_range)
    figs = gridplot([[fig1],[fig2],[fig3]])

    # Formatting x-axis
    timeticks = DatetimeTickFormatter(formats=dict(seconds =["%b%d %H:%M:%S"],
                                                   minutes =["%b%d %H:%M"],
                                                   hourmin =["%b%d %H:%M"],
                                                   hours =["%b%d %H:%M"],
                                                   days  =["%b%d %H:%M"],
                                                   months=["%b%d %H:%M"],
                                                   years =["%b%d %H:%M %Y"]))
    fig1.xaxis.formatter = timeticks
    fig2.xaxis.formatter = timeticks
    fig3.xaxis.formatter = timeticks

    # removing gridlines
    fig1.xgrid.grid_line_color = None
    fig1.ygrid.grid_line_color = None
    fig2.xgrid.grid_line_color = None
    fig2.ygrid.grid_line_color = None
    fig3.xgrid.grid_line_color = None
    fig3.ygrid.grid_line_color = None

    # INPUT WIDGETS
    collection_list = CONN[DB].collection_names(include_system_collections=False)
    gliders = sorted([platformID for platformID in collection_list if len(platformID)>2])
    gliders = Select(title = 'PlatformID', value = gliders[0], options = gliders)
    prev_glider = Button(label = '<')
    next_glider = Button(label = '>')
    glider_controlbox = HBox(children = [gliders, prev_glider, next_glider], height=80)

    chunkations = Select(title = 'Chunkation', value = 'segment', options = ['segment', '24hr', '30days', '-ALL-'])
    chunk_indicator = TextInput(title = 'index', value = '0')
    prev_chunk = Button(label = '<')
    next_chunk = Button(label = '>')
    chunk_ID   = PreText(height=80)
    chunk_controlbox = HBox(chunkations,
                            HBox(chunk_indicator, width=25),
                            prev_chunk, next_chunk,
                            chunk_ID,
                            height = 80)

    control_box = HBox(glider_controlbox,
                        chunk_controlbox)

    # DATA VARS
    deadby_date = ''
    depth    = ColumnDataSource(dict(x=[],y=[]))
    vert_vel = ColumnDataSource(dict(x=[],y=[]))

    mbpump   = ColumnDataSource(dict(x=[],y=[]))
    battpos  = ColumnDataSource(dict(x=[],y=[]))
    pitch    = ColumnDataSource(dict(x=[],y=[]))

    mfin      = ColumnDataSource(dict(x=[],y=[]))
    cfin      = ColumnDataSource(dict(x=[],y=[]))
    mroll     = ColumnDataSource(dict(x=[],y=[]))
    mheading = ColumnDataSource(dict(x=[],y=[]))
    cheading = ColumnDataSource(dict(x=[],y=[]))

    # AXIS setup
    colors = COLORS[:]

    fig1.y_range.flipped = True
    fig1.yaxis.axis_label = 'm_depth (m)'
    fig1.extra_y_ranges = {'vert_vel': Range1d(start=-50, end=50),
                           'dummy':    Range1d(start=0, end=100)}
    fig1.add_layout(place = 'right',
                    obj = LinearAxis(y_range_name = 'vert_vel',
                                     axis_label   = 'vertical velocity (cm/s)'))
    fig1.add_layout(place = 'left',
                    obj = LinearAxis(y_range_name = 'dummy',
                                     axis_label   = ' '))
    fig1.yaxis[1].visible = False
    fig1.yaxis[1].axis_line_alpha = 0
    fig1.yaxis[1].major_label_text_alpha = 0
    fig1.yaxis[1].major_tick_line_alpha = 0
    fig1.yaxis[1].minor_tick_line_alpha = 0


    fig2.yaxis.axis_label = 'pitch (deg)'
    fig2.y_range.start, fig2.y_range.end = -40,40
    fig2.extra_y_ranges = {'battpos': Range1d(start=-1, end = 1),
                           'bpump':   Range1d(start=-275, end=275)}
    fig2.add_layout(place = 'right',
                    obj = LinearAxis(y_range_name = 'battpos',
                                     axis_label = 'battpos (in)'))
    fig2.add_layout(place = 'left',
                    obj = LinearAxis(y_range_name = 'bpump',
                                     axis_label   = 'bpump (cc)'))
    fig2.yaxis[1].visible = False # necessary for spacing. later gets set to true


    fig3.yaxis.axis_label = 'fin/roll (deg)'
    fig3.y_range.start, fig3.y_range.end = -30, 30
    fig3.extra_y_ranges = {'heading': Range1d(start=0, end=360), #TODO dynamic avg centering
                           'dummy':   Range1d(start=0, end=100)}
    fig3.add_layout(place = 'right',
                    obj = LinearAxis(y_range_name = 'heading',
                                     axis_label   = 'headings (deg)'))
    fig3.add_layout(place = 'left',
                    obj = LinearAxis(y_range_name = 'dummy',
                                     axis_label   = ' '))
    fig3.yaxis[1].visible = False
    fig3.yaxis[1].axis_line_alpha = 0
    fig3.yaxis[1].major_label_text_alpha = 0
    fig3.yaxis[1].major_tick_line_alpha = 0
    fig3.yaxis[1].minor_tick_line_alpha = 0

    # PLOT OBJECTS
    fig1.line(  'x', 'y', source = depth,    legend = 'm_depth',     color = 'red')
    fig1.circle('x', 'y', source = depth,    legend = 'm_depth',     color = 'red')
    fig1.line(  'x', 'y', source = vert_vel, legend = 'vert_vel',    color = 'green',     y_range_name = 'vert_vel')
    fig1.circle('x', 'y', source = vert_vel, legend = 'vert_vel',    color = 'green',     y_range_name = 'vert_vel')
    fig1.renderers.append(Span(location = 0, dimension = 'width',    y_range_name = 'vert_vel',
                               line_color= 'green', line_dash='dashed', line_width=1))

    fig2.line(  'x', 'y', source = pitch,   legend = "m_pitch",    color = 'indigo')
    fig2.circle('x', 'y', source = pitch,   legend = "m_pitch",    color = 'indigo')
    fig2.line(  'x', 'y', source = battpos, legend = 'm_battpos',  color = 'magenta',   y_range_name = 'battpos')
    fig2.circle('x', 'y', source = battpos, legend = 'm_battpos',  color = 'magenta',   y_range_name = 'battpos')
    fig2.line(  'x', 'y', source = mbpump,  legend = "m_'bpump'",  color = 'blue',      y_range_name = 'bpump')
    fig2.circle('x', 'y', source = mbpump,  legend = "m_'bpump'",  color = 'blue',      y_range_name = 'bpump')
    fig2.renderers.append(Span(location = 0, dimension = 'width',
                               line_color= 'black', line_dash='dashed', line_width=1))
    fig3.line(  'x', 'y', source = mfin,       legend = 'm_fin',     color = 'cyan')
    fig3.circle('x', 'y', source = mfin,       legend = 'm_fin',     color = 'cyan')
    fig3.line(  'x', 'y', source = cfin,       legend = 'c_fin',     color = 'orange')
    fig3.circle('x', 'y', source = cfin,       legend = 'c_fin',     color = 'orange')
    fig3.line(  'x', 'y', source = mroll,      legend = 'm_roll',    color = 'magenta')
    fig3.circle('x', 'y', source = mroll,      legend = 'm_roll',    color = 'magenta')
    fig3.line(  'x', 'y', source = mheading,   legend = 'm_heading', color = 'blue',    y_range_name = 'heading')
    fig3.circle('x', 'y', source = mheading,   legend = 'm_heading', color = 'blue',    y_range_name = 'heading')
    fig3.line(  'x', 'y', source = cheading,   legend = 'c_heading', color = 'indigo',  y_range_name = 'heading')
    fig3.circle('x', 'y', source = cheading,   legend = 'c_heading', color = 'indigo',  y_range_name = 'heading')
    fig3.renderers.append(Span(location = 0, dimension = 'width',    y_range_name = 'default',
                               line_color= 'black', line_dash='dashed', line_width=1))

    # CALLBACK FUNCS
    def update_data(attrib,old,new):
        g = gliders.value
        chnk = chunkations.value
        chindex = abs(int(chunk_indicator.value))

        depth.data    = dict(x=[],y=[])
        vert_vel.data = dict(x=[],y=[])
        mbpump.data   = dict(x=[],y=[])
        battpos.data  = dict(x=[],y=[])
        pitch.data    = dict(x=[],y=[])

        mfin.data     = dict(x=[],y=[])
        cfin.data     = dict(x=[],y=[])
        mroll.data    = dict(x=[],y=[])
        mheading.data = dict(x=[],y=[])
        cheading.data = dict(x=[],y=[])


        depth.data,startend   = load_sensor(g, 'm_depth', chnk, chindex)

        if chnk == 'segment':
            xbd = startend[2]
            chunk_ID.text = '{} {} \n{} ({}) \nSTART: {} \nEND:   {}'.format(g, xbd['mission'],
                                                                             xbd['onboard_filename'], xbd['the8x3_filename'],
                                                                             e2ts(xbd['start']), e2ts(xbd['end']))
            if len(set(depth.data['x']))<=1 and attrib == 'chunk':
                if old > new:
                    next_chunk.clicks += 1
                else:
                    prev_chunk.clicks += 1
                return
            elif len(set(depth.data['x']))<=1 and chunk_indicator.value == 0:
                chunk_indicator.value = 1

        elif chnk in ['24hr', '30days']:
            chunk_ID.text = '{} \nSTART: {} \nEND:   {}'.format(g, e2ts(startend[0]), e2ts(startend[1]))
        elif chnk == '-ALL-':
            chunk_ID.text = '{} \nSTART: {} \nEND:   {}'.format(g,e2ts(depth.data['x'][0] /1000),
                                                                  e2ts(depth.data['x'][-1]/1000))


        vert_vel.data  = calc_vert_vel(depth.data)

        mbpump.data,_     = load_sensor(g, 'm_de_oil_vol', chnk, chindex)
        if len(mbpump.data['x']) > 1:
            #for yax in fig2.select('mbpump'):
            #    yax.legend = 'm_de_oil_vol'
            pass
        else:
            mbpump.data,_     = load_sensor(g, 'm_ballast_pumped', chnk, chindex)
            #for yax in fig2.select('mbpump'):
            #    yax.legend = 'm_ballast_pumped'
        battpos.data,_ = load_sensor(g, 'm_battpos',    chnk, chindex)
        pitch.data,_   = load_sensor(g, 'm_pitch',      chnk, chindex)
        pitch.data['y'] = [math.degrees(y) for y in pitch.data['y']]

        mfin.data,_     = load_sensor(g, 'm_fin',     chnk, chindex)
        cfin.data,_     = load_sensor(g, 'c_fin',     chnk, chindex)
        mroll.data,_    = load_sensor(g, 'm_roll',    chnk, chindex)
        mheading.data,_ = load_sensor(g, 'm_heading', chnk, chindex)
        cheading.data,_ = load_sensor(g, 'c_heading', chnk, chindex)
        mfin.data['y']     = [math.degrees(y) for y in mfin.data['y']]
        cfin.data['y']     = [math.degrees(y) for y in cfin.data['y']]
        mheading.data['y'] = [math.degrees(y) for y in mheading.data['y']]
        cheading.data['y'] = [math.degrees(y) for y in cheading.data['y']]
        mroll.data['y']    = [math.degrees(y) for y in mroll.data['y']]

        fig1.yaxis[1].visible = True
        fig2.yaxis[1].visible = True
        fig3.yaxis[1].visible = True


    #GLIDER SELECTS
    def glider_buttons(increment):
        ops = gliders.options
        new_index = ops.index(gliders.value) + increment
        if new_index >= len(ops):
            new_index = 0
        elif new_index < 0:
            new_index = len(ops)-1
        gliders.value = ops[new_index]
        chunkation_update(None, None, None) #reset chunk indicator and clicks
    def next_glider_func():
        glider_buttons(1)
    def prev_glider_func():
        glider_buttons(-1)
    def update_glider(attrib,old,new):
        chunk_indicator.value = '0'
        #update_data(None,None,None)


    gliders.on_change('value', update_glider)
    next_glider.on_click(next_glider_func)
    prev_glider.on_click(prev_glider_func)


        #CHUNK SELECTS
    def chunkation_update(attrib,old,new):
        chunk_indicator.value = '0'
        prev_chunk.clicks = 0
        next_chunk.clicks = 0
        update_data(None,None,None)
        if new == '-ALL-':
            chunk_indicator.value = '-'

    def chunk_func():
        chunkdiff = prev_chunk.clicks - next_chunk.clicks
        if chunkdiff < 0:
            prev_chunk.clicks = 0
            next_chunk.clicks = 0
            chunkdiff = 0
        print (chunkdiff)
        chunk_indicator.value = str(chunkdiff)

    def chunk_indicator_update(attrib,old,new):
        try:
            if abs(int(old)-int(new))>1: #manual update, triggers new non-manual indicator update, ie else clause below
                prev_chunk.clicks = int(new)
                next_chunk.clicks = 0
            else:
                update_data('chunk',int(old),int(new))
            print("UPDATE", old, new)
        except Exception as e:
            print(type(e),e, old, new)

    chunkations.on_change('value', chunkation_update)
    chunk_indicator.on_change('value', chunk_indicator_update)
    next_chunk.on_click(chunk_func)
    prev_chunk.on_click(chunk_func)

    update_data(None,None,None)

    return vplot(control_box, figs)
hover = t.select_one(HoverTool)
hover.point_policy = "follow_mouse"
hover.tooltips = [
	("task type", "@tasktype"),
	("#tasks", "@running_tasks"),
]

# Function that clears all checkboxes and calls checkbox to redraw the plots
def clear():
	checkbox_group_p.active = []
	checkbox("", "", "")

# Button to clear all checkboxes
clear_button = Button(label="clear all", width=20)
clear_button.on_click(clear)

# Function that sets all checkboxes and calls checkbox to redraw the plots
def select_all():
	checkbox_group_p.active = [i for i in range(len(attributes[1:]))]
	checkbox("", "", "")

# Button to select all checkboxes
all_button = Button(label="select all", width=20)
all_button.on_click(select_all)

layout = column(
	#row(WidgetBox(dropdown, width=405, height=100), WidgetBox(width=500),WidgetBox(runID)),
	row(WidgetBox(dropdown, width=410, height=100)),
	row(runID, startTime),
#	row(runID, numMessages),  
Beispiel #54
0
class Chart_Panel(object):

    def __init__(self, ut330):

        self.ut330 = ut330

        self.source = ColumnDataSource(data=dict(ts=[], t=[], h=[]))

        self.plot = figure(x_axis_type="datetime")
        self.plot.title = "Temperature and humidity vs. time"

        self.plot.line(x="ts",
                       y="t",
                       source=self.source,
                       color="blue",
                       legend="Temperature",
                       line_width=2)

        self.plot.xaxis.axis_label = "Timestamp"
        self.plot.yaxis.axis_label = "Temperature (C)"

        self.plot.extra_y_ranges = {"humidity": Range1d(0, 100)}

        self.plot.line(x="ts",
                       y="h",
                       source=self.source,
                       y_range_name="humidity",
                       color="green",
                       legend="Humidity",
                       line_width=2)

        self.plot.add_layout(LinearAxis(y_range_name="humidity",
                                        axis_label="Relative humidity (%)"),
                             'right')

        self.read = Button(label='Read data')
        self.delete = Button(label='Delete data')

    def _layout_(self):

        return VBox(HBox(self.read, self.delete), self.plot)

    def panel(self):

        return Panel(child=self._layout_(), title="Chart")

    def device_delete(self):

        self.ut330.delete_data()

    def device_read(self):

        self.data = self.ut330.read_data()

        df = pd.DataFrame(self.data)

        self.source.data = dict(ts=df['timestamp'],
                                t=df['temperature'],
                                h=df['humidity'])

        ymin = 10*int(df['temperature'].min()/10)
        ymax = 10*int((10+df['temperature'].max())/10)
        self.plot.y_range = Range1d(ymin, ymax)

        ymin = 10*int(df['humidity'].min()/10)
        ymax = 10*int((10+df['humidity'].max())/10)
        self.plot.extra_y_ranges = {"humidity": Range1d(ymin, ymax)}

    def callbacks(self):

        self.read.on_click(self.device_read)
        self.delete.on_click(self.device_delete)
Beispiel #55
0
    print("split_handler: %s" % value)

def checkbox_group_handler(active):
    print("checkbox_group_handler: %s" % active)

def radio_group_handler(active):
    print("radio_group_handler: %s" % active)

def checkbox_button_group_handler(active):
    print("checkbox_button_group_handler: %s" % active)

def radio_button_group_handler(active):
    print("radio_button_group_handler: %s" % active)

button = Button(label="Push button", icon=Icon(name="check"), type="primary")
button.on_click(button_handler)

toggle = Toggle(label="Toggle button", type="success")
toggle.on_click(toggle_handler)

menu = [("Item 1", "item_1"), ("Item 2", "item_2"), None, ("Item 3", "item_3")]
dropdown = Dropdown(label="Dropdown button", type="warning", menu=menu)
dropdown.on_click(dropdown_handler)

menu = [("Item 1", "foo"), ("Item 2", "bar"), None, ("Item 3", "baz")]
split = Dropdown(label="Split button", type="danger", menu=menu, default_value="baz")
split.on_click(split_handler)

checkbox_group = CheckboxGroup(labels=["Option 1", "Option 2", "Option 3"], active=[0, 1])
checkbox_group.on_click(checkbox_group_handler)
	def plotting(self):



		#Tools = [hover, TapTool(), BoxZoomTool(), BoxSelectTool(), PreviewSaveTool(), ResetTool()]
		TOOLS="crosshair,pan,wheel_zoom,box_zoom,reset,hover,previewsave"


		tab_plots = []
		#output_file("test.html")
		self.all_elements = []
		self.elements_comparison = []

		for attr_id, i in zip(self.attribute_ids, range(len(self.attribute_ids))):
			
			"""
			create plots for each datafile and put them in a tab.
			"""
			list_of_datasets = getattr(self, attr_id)
			y_axis_units = [x["y_unit"] for x in list_of_datasets]
			x_axis_units = [x["x_unit"] for x in list_of_datasets]

			figure_obj = figure(plot_width = 1000, plot_height = 800, y_axis_type = "log",
			title = attr_id, tools = TOOLS)
			#figure_obj.axes.major_label_text_font_size("12pt")
			#figure_obj.major_label_text_font_size("12pt")
			
			setattr(self, attr_id+"_"+"figure_obj",figure_obj)

			figure_obj.yaxis.axis_label = y_axis_units[0]
			figure_obj.xaxis.axis_label = x_axis_units[0]

			if not all(x == y_axis_units[0] for x in y_axis_units):
				for unit, data in zip(y_axis_units, list_of_datasets): 
					if not unit == y_axis_units[0]:
						figure_obj.extra_y_ranges =  {"foo": Range1d(start = np.amin(data["data"]["y"]),
						end = np.amax(data["data"]["y"]))}
						figure_obj.add_layout(LogAxis(y_range_name = "foo", axis_label = unit), "right")
						break

			if not all(x == x_axis_units[0] for x in x_axis_units):
				for unit, data in zip(x_axis_units, list_of_datasets): 
					if not unit == x_axis_units[0]:
						figure_obj.extra_x_ranges =  {"bar": Range1d(start = np.amin(data["data"]["x"]),
						end = np.amax(data["data"]["x"]))}
						figure_obj.add_layout(LinearAxis(x_range_name = "bar", axis_label = unit), "above")
						break



			figure_obj.xaxis.axis_label = list_of_datasets[0]["x_unit"]
			colour_list = Spectral11 + RdPu9 + Oranges9
			colour_indices = [0, 2, 8, 10, 12, 14, 20, 22, 1, 3, 9, 11, 13, 15]

			list_of_elements = []

			for dataset, color_index in zip(list_of_datasets, colour_indices):

				self.all_elements.append(dataset["sample element"]) #strip isotope number 
				color = colour_list[color_index]

				source = ColumnDataSource(data = dataset["data"]) #Datastructure for source of plotting

				setattr(self, attr_id+"_"+dataset["sample element"]+"_source", source) #Source element generalized for all plotting				


				list_of_elements.append(dataset["sample element"])

				figure_obj.line("x", "y", source = getattr(self, attr_id+"_"+dataset["sample element"]
								+"_source"), line_width = 2, line_color = color, 
								legend = dataset["sample element"], name = dataset["sample element"],
								 )

			hover = figure_obj.select_one(HoverTool).tooltips = [("element", "@element"), ("(x,y)", "($x, $y)")]

			radio_group = RadioGroup(labels = list_of_elements, active=0)

			"""
			Need to fetch default variables from input file and replace DEFAULT

			Block of code produces the layout of buttons and callbacks
			"""

			
			#Calculations on the dataset
			text_input_rsf = TextInput(value = "default", title = "RSF (at/cm^3): ")
			do_integral_button = Button(label = "Calibration Integral")
			smoothing_button = Button(label = "Smoothing on selected curve")

			text_input_sputter = TextInput(value = "default", title = "Sputter speed: float unit")
			text_input_crater_depth = TextInput(value = "default", title = "Depth of crater in: float")
			

			radio_group.on_change("active", lambda attr, old, new: None)

			text_input_xval_integral = TextInput(value = "0", title = "x-value for calibration integral ")
			text_input_yval_integral = TextInput(value = "0", title = "y-value for calibration integral ")

			#Save files for later use
			save_flexDPE_button = Button(label = "Save element for FlexPDE")
			save_all_flexDPE_button = Button(label = "Save all elements for FlexPDE")


			#Pointers to methods on click / change handlers
			do_integral_button.on_click(lambda identity = self.attribute_ids[i], radio = radio_group, 
										x_box = text_input_xval_integral, y_box = text_input_yval_integral: 
										self.integrate(identity, radio, x_box, y_box))

			smoothing_button.on_click(lambda identity = self.attribute_ids[i], radio = radio_group: 
									self.smoothing(identity, radio) )

			save_flexDPE_button.on_click(lambda identity = self.attribute_ids[i], radio = radio_group: 
										self.write_to_flexPDE(identity, radio))

			save_all_flexDPE_button.on_click(lambda identity = self.attribute_ids[i], radio = radio_group:
											self.write_all_to_flexPDE(identity, radio))

			text_input_rsf.on_change("value", lambda attr, old, new, radio = radio_group, 
								identity = self.attribute_ids[i], text_input = text_input_rsf, which = "rsf":
								self.update_data(identity, radio, text_input, new, which))


			text_input_sputter.on_change("value", lambda attr, old, new, radio = radio_group, 
								identity = self.attribute_ids[i], text_input = text_input_sputter, which = "sputter":
								self.update_data(identity, radio, text_input, new, which))

			text_input_crater_depth.on_change("value", lambda attr, old, new, radio = radio_group, 
								identity = self.attribute_ids[i], text_input = text_input_crater_depth, which = "crater_depth":
								self.update_data(identity, radio, text_input, new, which))


			#Initialization of actual plotting. 
			tab_plots.append(Panel(child = hplot(figure_obj, 
										   vform(radio_group, save_flexDPE_button, save_all_flexDPE_button), 
										   vform(text_input_rsf, smoothing_button, text_input_sputter, text_input_crater_depth),
										   vform(text_input_xval_integral, text_input_yval_integral, do_integral_button)),
										   title = attr_id))


		"""
		Check to see if one or more element exists in the samples and creat a comparison plot for each 
		of those elements.
		"""
		
		for element in self.all_elements:
			checkers = list(self.all_elements)
			checkers.remove(element)
			if element in checkers and not element in self.elements_comparison:
				self.elements_comparison.append(element)

		"""create plots for each element that is to be compared """
	
		for comparison_element in self.elements_comparison: 

			colour_list = Spectral11 + RdPu9 + Oranges9
			colour_indices = [0, 2, 8, 10, 12, 14, 20, 22, 1, 3, 9, 11, 13, 15]
			figure_obj = figure(plot_width = 1000, plot_height = 800, y_axis_type = "log", title = comparison_element, tools = TOOLS)
			#figure_obj.xaxis.major_label_text_font_size("12pt")
			#figure_obj.yaxis.major_label_text_font_size("12pt")
			

			y_axis_units = []
			x_axis_units = []

			comparison_datasets = []


			for attr_id, color_index in zip(self.attribute_ids, colour_indices):

				list_of_datasets = getattr(self, attr_id)

				for dataset in list_of_datasets:

					if dataset["sample element"] == comparison_element:
						comparison_datasets.append(dataset)
						y_axis_units.append(dataset["y_unit"])
						x_axis_units.append(dataset["x_unit"])

			figure_obj.xaxis.axis_label = comparison_datasets[-1]["x_unit"]
			figure_obj.yaxis.axis_label = comparison_datasets[-1]["y_unit"]

			if not all(x == y_axis_units[-1] for x in y_axis_units):
				for unit, data in zip(y_axis_units, comparison_datasets): 
					if not unit == y_axis_units[-1]:
						figure_obj.extra_y_ranges =  {"foo": Range1d(start = np.amin(data["data"]["y"]),
						end = np.amax(data["data"]["y"]))}
						figure_obj.add_layout(LogAxis(y_range_name = "foo", axis_label = unit), "right")
						break

			if not all(x == x_axis_units[-1] for x in x_axis_units):
				for unit, data in zip(x_axis_units, comparison_datasets): 
					if not unit == x_axis_units[-1]:
						figure_obj.extra_x_ranges =  {"bar": Range1d(start = np.amin(data["data"]["x"]),
						end = np.amax(data["data"]["x"]))}
						figure_obj.add_layout(LinearAxis(x_range_name = "bar", axis_label = unit), "above")
						break


			for attr_id, color_index in zip(self.attribute_ids, colour_indices):

				list_of_datasets = getattr(self, attr_id)

				for dataset in list_of_datasets:

					if dataset["sample element"] == comparison_element:
						color = colour_list[color_index]

						"""
						Logic that ensures that plots get put with correspoinding axes. 
						"""
						if dataset["x_unit"] != x_axis_units[-1] or dataset["y_unit"] != y_axis_units[-1]:

							if dataset["x_unit"] != x_axis_units[-1] and dataset["y_unit"] != y_axis_units[-1]:

								figure_obj.line("x", "y", source = getattr(self, attr_id+"_"+dataset["sample element"]+"_source"), line_width = 2, 
								line_color = color, legend = attr_id, x_range_name = "bar", y_range_name = "foo")

							elif dataset["x_unit"] != x_axis_units[-1]:

								figure_obj.line("x", "y", source = getattr(self, attr_id+"_"+dataset["sample element"]+"_source"), line_width = 2, 
								line_color = color, legend = attr_id, x_range_name = "bar")

							else: 

								figure_obj.line("x", "y", source = getattr(self, attr_id+"_"+dataset["sample element"]+"_source"), line_width = 2, 
								line_color = color, legend = attr_id, y_range_name = "foo")

						else: 
							figure_obj.line("x", "y", source = getattr(self, attr_id+"_"+dataset["sample element"]+"_source"), line_width = 2, 
							line_color = color, legend = attr_id)
						


			tab_plots.append(Panel(child = figure_obj, title = comparison_element))	

		tabs = Tabs(tabs = tab_plots)

		session = push_session(curdoc())
		session.show()
		session.loop_until_closed()
tsne_source.on_change('selected', on_tsne_data_update)



# Undo button
undo_selected_points_button = Button(label='Undo last selection')

def on_button_undo_selection():
    global previously_selected_spike_indices
    tsne_source.data = {'tsne-x': tsne[0], 'tsne-y': tsne[1]}
    tsne_source.selected['1d']['indices'] = previously_selected_spike_indices
    old = new = tsne_source.selected
    tsne_source.trigger('selected', old, new)

undo_selected_points_button.on_click(on_button_undo_selection)


# Layout
lay = column(tsne_figure, undo_selected_points_button)

session = push_session(curdoc())
session.show(lay)  # open the document in a browser
session.loop_until_closed()

# ======================================================================================================================

import matplotlib.pyplot as plt
import numpy as np
from scipy.spatial import distance
import os
Beispiel #58
0
    synonym_suggestions.menu = new_synonyms


processed_dir = "processed/" if len(sys.argv) < 2 else sys.argv[1]
start_year = 2012 if len(sys.argv) < 3 else sys.argv[2]
num_years = 5 if len(sys.argv) < 4 else sys.argv[3]
# Load all the pickle files.
year_data = load_data(processed_dir, start_year, num_years)
# Create the front-end
x_axis = range(start_year, start_year + num_years)
# User Input
text_input = TextInput(value="", title="Graph these comma-separated phrases:")
text_input.on_change("value", create_plot)
# Spell check
spelling_suggestions = Button(label="")
spelling_suggestions.on_click(suggestion_handler)
# Generate synonyms
generate_synonyms = Button(label="Generate synonyms")
generate_synonyms.on_click(synonym_button_handler)
# Dropdown to select replacement synonyms
synonym_suggestions = Dropdown(label="Synonyms", menu=[])
synonym_suggestions.on_change("value", replace_synonym)
# Plot!
p = figure(title="Ngram Viewer",
           x_axis_label='Year',
           y_axis_label='Frequency',
           min_border=75,
           plot_width=900,
           plot_height=700)
source = ColumnDataSource({'xs': [], 'ys': [], 'labels': [], 'colors': []})
p.multi_line('xs',
fig = make_trial_figure()

# Setup callbacks for tools and sources
trialSourceDict['undefined'].on_change('selected', undefined_selected)
trialSourceDict['saccade'].on_change('selected', saccade_selected)
trialSourceDict['pursuit'].on_change('selected', pursuit_selected)
trialSourceDict['fixation'].on_change('selected', fixation_selected)

###########################################################################
# Add widgets and their callbacks
#widgets = add_widgets()

from bokeh.models.widgets import Button, TextInput

label_saccade_button = Button(label='saccade')
label_saccade_button.on_click(label_saccade_cb)

label_pursuit_button = Button(label='pursuit')
label_pursuit_button.on_click(label_pursuit_cb)

label_fixation_button = Button(label='fixation')
label_fixation_button.on_click(label_fixation_cb)

remove_button = Button(label='remove')
remove_button.on_click(remove_cb)

trial_text = TextInput(value=str(trialNum))
trial_text.on_change('value', trial_text_cb)

nextTrial_button = Button(label='+trial')
nextTrial_button .on_click(next_trial_cb)
Beispiel #60
0
def buildPlot():
    #####################Setup
    # Grab graph colors, pop undesireable ones
    colors = SEABORN_PALETTES['bright']

    #Grab and sort the FQs
    quals = fruit_df.reset_index()
    quals = quals['FruitQuality'].unique().tolist()
    for idx, i in enumerate(list(quals)):
        if type(i) == type(0.5):
            quals.pop(idx)
    unique_FQs = quals

    #a little math to get the epoch time to set the initial x range
    minDate = ts_to_epoch(fruit_df['Date'].min())
    maxDate = ts_to_epoch(fruit_df['Date'].max())

    ###########Create and format the plot
    plot = figure(
        x_axis_type="datetime",
        plot_width=600,
        plot_height=400,
        tools=[PanTool(),
               WheelZoomTool(),
               SaveTool(),
               BoxZoomTool()],
        x_range=DataRange1d(
            start=minDate, end=maxDate
        ),  #sets the initial date range  to the limits of the data
        y_range=DataRange1d(start=0, end=1),
        name='the_plot',
        toolbar_location='above')
    #some styling
    plot.title.text = "Historical Volatility"
    plot.xaxis.axis_label = "Trade Date"
    plot.yaxis.axis_label = "Vol"
    plot.background_fill_color = '#EAEBF0'
    plot.xgrid.grid_line_color = 'white'
    plot.ygrid.grid_line_color = 'white'
    plot.xaxis.axis_line_color = 'white'
    plot.xaxis.major_tick_line_color = 'white'
    plot.xaxis.minor_tick_line_color = 'white'
    plot.yaxis.axis_line_color = 'white'
    plot.yaxis.major_tick_line_color = 'white'
    plot.yaxis.minor_tick_line_color = 'white'
    plot.toolbar.logo = None

    #a list for all of the lines to reside in
    lines = []
    legends = []

    ##############Create the widgets

    #a console style window to show debug messages TODO: add on/off functionality
    debug = PreText(text="", width=1200, height=500)

    #echos the debug in a place more visiable for the user
    user_message = Paragraph(text='')

    #Asset_Class, Product, and From dropdown boxes. Sets dropdown's initial value.
    asCls = Select(title="Asset Class",
                   options=ddOpts['Asset_Class'].unique().tolist())
    asCls.value = asCls.options[0]
    prod = Select(title="Products",
                  options=ddOpts[ddOpts['Asset_Class'] == asCls.value]
                  ['Product'].unique().tolist())
    prod.value = prod.options[0]
    whereFrom = Select(title="From",
                       options=ddOpts[(ddOpts['Asset_Class'] == asCls.value)
                                      & (ddOpts['Product'] == prod.value)]
                       ['From'].unique().tolist())
    whereFrom.value = whereFrom.options[0]
    FQslider = Slider(title='Fruit Quality',
                      start=min(unique_FQs),
                      end=max(unique_FQs),
                      step=1)

    #the amount of days back to look for the data
    days_back = TextInput(title='Days ago', value='365')
    days_back_buttons = RadioButtonGroup(
        labels=['10', '30', '90', '180', '365', '730'], active=4)

    #the date to linear fit to
    fixed_date_buttons = RadioButtonGroup(
        labels=['30', '60', '90', '120', '180', '365'], active=2)
    fixed_date = TextInput(title='Days to Exp', value='90')

    #the amount of days with which to calculate the rolling mean
    rolling_days_buttons = RadioButtonGroup(labels=['1', '2', '5', '10'],
                                            active=0)
    rolling_days = TextInput(title='Rolling Mean Days', value='1')

    #a dynamically resizing checkbox group that allows for the changing of the visablity of any line on the plot
    line_onOff = CheckboxGroup(width=400, name='line_onOff')

    #the associated colors to act as a legend for line_onOff
    legendDiv = Div(width=50)

    #button to add a line
    addLine = Button(label="Add Line")

    #an html rendered visualization of the data for each line
    descriptions = Div(text='', width=500)

    #resizes the plot
    rszButton = Button(label='resize')

    ##########Define functions associated with the widgets

    #concats any dubug call to the end of the current debug text, and changes the user message
    def updateDebug(inString):
        inString = str(inString)
        user_message.text = inString
        oldText = debug.text
        newText = ("*- " + str(datetime.now()) + " : " + inString)
        debug.text = oldText + '\n' + newText

    #changes the potential products and contract categories to match the user selected asset class
    def asClsChange(attrname, old, new):
        prod.options = ddOpts[ddOpts['Asset_Class'] ==
                              asCls.value]['Product'].unique().tolist()
        prod.value = prod.options[0]

    #changes the potential contract categories to match the user selected product
    def prodChange(attrname, old, new):
        whereFrom.options = ddOpts[(ddOpts['Asset_Class'] == asCls.value) & (
            ddOpts['Product'] == prod.value)]['From'].unique().tolist()
        whereFrom.value = whereFrom.options[0]

    #links the days back button and text box
    def days_back_buttonChange(attrname, old, new):
        days_back.value = days_back_buttons.labels[days_back_buttons.active]

    #checks that the users input is an int
    def days_backChange(attrname, old, new):
        try:
            days_back.value = str(int(days_back.value))
        except ValueError:
            days_back.value = '0'
            updateDebug('please type an integer')

    #links the fixed date button and text box
    def fixed_date_buttonChange(attrname, old, new):
        fixed_date.value = fixed_date_buttons.labels[fixed_date_buttons.active]

    #checks that the users input is an int
    def fixed_dateChange(attrname, old, new):
        try:
            fixed_date.value = str(int(fixed_date.value))
        except ValueError:
            fixed_date.value = '0'
            updateDebug('please type an integer')

    #links the rolling days button and text box
    def rolling_days_buttonsChange(attrname, old, new):
        rolling_days.value = rolling_days_buttons.labels[
            rolling_days_buttons.active]

    #checks that the users input is an int
    def rolling_daysChange(attrname, old, new):
        try:
            rolling_days.value = str(int(rolling_days.value))
        except ValueError:
            rolling_days.value = '0'
            updateDebug('please type an integer')

    #fits the plot to the currently visiable lines
    def resize():
        if len(line_onOff.active) == 0 or len(line_onOff.labels) == 0:

            plot.x_range.start = ts_to_epoch(fruit_df['Date'].min())
            plot.x_range.end = ts_to_epoch(fruit_df['Date'].max())
            plot.y_range.start = 0
            plot.y_range.end = 100
        else:
            xmin, xmax, ymin, ymax = calc_range(lines)
            plot.x_range.start = xmin
            plot.x_range.end = xmax
            plot.y_range.start = ymin
            plot.y_range.end = ymax

    #turn lines on or off
    def line_onOffChange(attrname, old, new):
        for i in range(len(line_onOff.labels)):
            if i in line_onOff.active:
                lines[i].glyph.visible = True
            else:
                lines[i].glyph.visible = False
        legendDiv.text = '<div>'
        for line in lines:
            legendDiv.text += '<br><div style="background-color: %s; float:up; padding: 4px 4px 4px 4px"></div><br>' % line.glyph.line_color
        legendDiv.text += '</div>'
        resize()

    #adds a line to the graph
    def grphUpdt():
        #adds some debug messages, grabs the current time as to later show the total time taken to calculate
        updateDebug("Starting")
        updateDebug("total dataframe size: " + str(fruit_df.shape))
        stTime = datetime.now()

        #the value to linear fit to
        fit_to = int(fixed_date.value)

        #instiantiate an empty dataframe that will eventually contain the graphs data
        graphData = pd.DataFrame({
            'Date': [],
            'PriceVolatility': [],
            'Days_to_Exp': []
        })

        #grab the appropriate subset of the whole dataframe based on the users input into the widgets
        updateDebug("querying the data..")

        try:
            workingDf = fruit_df.loc[asCls.value, prod.value, whereFrom.value]
        except KeyError:
            updateDebug(
                'no data with that combination of Asset Class, Product, From')
            return

        try:
            workingDf = workingDf[[
                'Date', 'PriceVolatility', 'Days_to_Exp'
            ]][(workingDf['Date'] >
                (date.today() - timedelta(days=int(days_back.value))))]
        except KeyError:
            updateDebug(
                'no data with that combination of Asset Class, Product, From, and days back'
            )
            return
        updateDebug("done breaking down df")

        #a hook in the case that the users inputs resulted in an empty dataframe
        if (workingDf.empty):
            updateDebug(
                'no data with that combination of Asset Class, Product, From, and days back'
            )
            return

        #widdle down the database to only contain the user specified FQ
        try:
            graphData = workingDf.loc[int(FQslider.value)].copy()
        except KeyError:
            updateDebug('no data with that FQ')

        #another empty graph hook
        if (graphData.empty):
            updateDebug(
                'no data with that combination of Asset Class, Product, Contract Category, FQ, and days back'
            )
            return
        updateDebug('grabed correct FQs')

        #calculate linear fit on the current subset
        updateDebug('calculating linear fit...')
        graphData = mu.linearFit(fit_to=fit_to,
                                 group_on_column='Date',
                                 df=graphData,
                                 fit_column='Days_to_Exp',
                                 on_columns=['PriceVolatility'])
        updateDebug('finished with linear fit')

        # a few more debug messages
        updateDebug(
            "working df qry: Asset_Class = %s and Product = %s and From = %s and Date > %s "
            % (asCls.value, prod.value, whereFrom.value,
               str(date.today() - timedelta(days=int(days_back.value)))))
        updateDebug("graph data shape: " + str(workingDf.shape))

        #makes sure graph data has at least 5 rows, so that rolling mean can be calculated
        if graphData.shape[0] > int(rolling_days.value):

            #make the graph legend, based on if there's a denominator specified or not
            this_legend = '%s - %s FQ: %s Days to Exp: %s From: %s Rolling Days: %s' % (
                prod.value, whereFrom.value, int(
                    FQslider.value), fixed_date.value,
                str(date.today() - timedelta(days=int(days_back.value))),
                rolling_days.value)

            #add a new line to the graph, and add the accosiated GlyphRenderer created by adding the line to the lines list.
            #Set the legend to the previously calculated legend, and set the color to the next color in the current theme (if there are more lines than colors, there will be multiple lines with the same color)
            #Calculates a 5 day rolling mean on the y values. Maybe add a slider/text box/other widget so the user can set the rolling mean themselves
            updateDebug('adding line to plot')
            lines.append(
                plot.line(graphData.index.values[int(rolling_days.value) - 1:],
                          graphData['PriceVolatility'].rolling(
                              window=int(rolling_days.value)).mean()
                          [int(rolling_days.value) - 1:],
                          line_width=3,
                          color=colors[len(lines) % len(colors)]))
            legends.append(this_legend)
            updateDebug("updated graph")

            global descDf

            #either creates, or adds to, a dataframe containing statistics about the data. stats come from pandas DataFrame.describe.
            if descDf is None:
                graphData[this_legend] = graphData['PriceVolatility']
                descDf = graphData[[
                    this_legend
                ]].rolling(window=int(rolling_days.value)).mean(
                )[int(rolling_days.value) -
                  1:].describe(percentiles=[]).transpose().copy()
            else:
                graphData[this_legend] = graphData['PriceVolatility']
                descDf = pd.concat([
                    descDf, graphData[[
                        this_legend
                    ]].rolling(window=int(rolling_days.value)).mean()
                    [int(rolling_days.value) -
                     1:].describe(percentiles=[]).transpose().copy()
                ])

            descDf = descDf.round(1)
            descriptions.text = descDf.to_html().replace('\\n', '')
            graphData.drop(this_legend, 1, inplace=True)

            #add the name of the line to the checkbox so that it can be turned off and o
            line_onOff.labels.append(this_legend)
            line_onOff.active.append(len(line_onOff.labels) - 1)
            legendDiv.text = '<div>'
            for line in lines:
                legendDiv.text += '<br><div style="background-color: %s; float:up; padding: 4px 4px 4px 4px"></div><br>' % line.glyph.line_color
            legendDiv.text += '</div>'
            ##leaving this in case we get around to figuring out the hover tool
            ##formats the date values for the hover tool, currently commented out until we, or bokeh, fix the hover tool for multiple lines
            #formDates= pd.to_datetime(graphData['Date'] ,format="%m-%d-%Y")
            #lines[-1].data_source.data['formDates'] = formDates.apply(lambda x: x.strftime('%m-%d-%Y'))

            ##Displays the amout of time it took to draw the line, as well as the number of points in the graph
            updateDebug("updated y vals, with rolling mean calculated")
            updateDebug(
                str(datetime.now() - stTime) + " FOR " +
                str(len(lines[-1].data_source.data['x'])) + " points")
        else:
            updateDebug("There's no data to display")
        del graphData
        del workingDf

    #######Link widgets to their associated functions
    asCls.on_change('value', asClsChange)
    prod.on_change('value', prodChange)
    days_back_buttons.on_change('active', days_back_buttonChange)
    days_back.on_change('value', days_backChange)
    fixed_date_buttons.on_change('active', fixed_date_buttonChange)
    fixed_date.on_change('value', fixed_dateChange)
    rolling_days_buttons.on_change('active', rolling_days_buttonsChange)
    rolling_days.on_change('value', rolling_daysChange)
    line_onOff.on_change('active', line_onOffChange)
    addLine.on_click(grphUpdt)
    rszButton.on_click(resize)

    #Formatting
    fixed_date_box = WidgetBox(fixed_date, fixed_date_buttons)
    days_back_box = WidgetBox(days_back, days_back_buttons)
    rolling_days_box = WidgetBox(rolling_days, rolling_days_buttons)
    widgets = [
        asCls, prod, whereFrom, FQslider, days_back_box, fixed_date_box,
        rolling_days_box, addLine, rszButton, user_message
    ]
    plot_w_description = VBox(plot, descriptions, width=700)
    pwd_w_leg = HBox(plot_w_description,
                     VBox(legendDiv),
                     VBox(line_onOff),
                     width=plot_w_description.width + line_onOff.width + 100,
                     name='div_to_save')
    input_box = VBox(*widgets, width=400, height=1200)
    total_box = HBox(VBox(input_box),
                     VBox(pwd_w_leg),
                     width=input_box.width + pwd_w_leg.width + 100,
                     height=1200)
    tot_w_debug = VBox(total_box, VBox(HBox(debug)))

    resize()
    return tot_w_debug