Beispiel #1
0
 def modify_doc(doc):
     source = ColumnDataSource(dict(x=[1, 2], y=[1, 1], val=["a", "b"]))
     plot = Plot(plot_height=400, plot_width=400, x_range=Range1d(0, 1), y_range=Range1d(0, 1), min_border=0)
     plot.add_glyph(source, Circle(x='x', y='y', size=20))
     plot.add_tools(CustomAction(callback=CustomJS(args=dict(s=source), code=RECORD("data", "s.data"))))
     group = RadioGroup(labels=LABELS, css_classes=["foo"])
     def cb(active):
         source.data['val'] = [active, "b"]
     group.on_click(cb)
     doc.add_root(column(group, plot))
 def modify_doc(doc):
     source = ColumnDataSource(dict(x=[1, 2], y=[1, 1], val=["a", "b"]))
     plot = Plot(plot_height=400, plot_width=400, x_range=Range1d(0, 1), y_range=Range1d(0, 1), min_border=0)
     plot.add_glyph(source, Circle(x='x', y='y', size=20))
     plot.add_tools(CustomAction(callback=CustomJS(args=dict(s=source), code=RECORD("data", "s.data"))))
     group = RadioGroup(labels=LABELS, css_classes=["foo"])
     def cb(active):
         source.data['val'] = [active, "b"]
     group.on_click(cb)
     doc.add_root(column(group, plot))
    def __init__(self, image_views, disp_min=0, disp_max=1000, colormap="plasma"):
        """Initialize a colormapper.

        Args:
            image_views (ImageView): Associated streamvis image view instances.
            disp_min (int, optional): Initial minimal display value. Defaults to 0.
            disp_max (int, optional): Initial maximal display value. Defaults to 1000.
            colormap (str, optional): Initial colormap. Defaults to 'plasma'.
        """
        lin_colormapper = LinearColorMapper(
            palette=cmap_dict[colormap], low=disp_min, high=disp_max
        )

        log_colormapper = LogColorMapper(palette=cmap_dict[colormap], low=disp_min, high=disp_max)

        for image_view in image_views:
            image_view.image_glyph.color_mapper = lin_colormapper

        color_bar = ColorBar(
            color_mapper=lin_colormapper,
            location=(0, -5),
            orientation="horizontal",
            height=15,
            width=100,
            padding=5,
        )
        self.color_bar = color_bar

        # ---- selector
        def select_callback(_attr, _old, new):
            if new in cmap_dict:
                lin_colormapper.palette = cmap_dict[new]
                log_colormapper.palette = cmap_dict[new]
                high_color.color = cmap_dict[new][-1]

        select = Select(
            title="Colormap:", value=colormap, options=list(cmap_dict.keys()), default_size=100
        )
        select.on_change("value", select_callback)
        self.select = select

        # ---- auto toggle button
        def auto_toggle_callback(state):
            if state:
                display_min_spinner.disabled = True
                display_max_spinner.disabled = True
            else:
                display_min_spinner.disabled = False
                display_max_spinner.disabled = False

        auto_toggle = CheckboxGroup(labels=["Auto Colormap Range"], default_size=145)
        auto_toggle.on_click(auto_toggle_callback)
        self.auto_toggle = auto_toggle

        # ---- scale radiobutton group
        def scale_radiobuttongroup_callback(selection):
            if selection == 0:  # Linear
                for image_view in image_views:
                    image_view.image_glyph.color_mapper = lin_colormapper
                color_bar.color_mapper = lin_colormapper
                color_bar.ticker = BasicTicker()

            else:  # Logarithmic
                if self.disp_min > 0:
                    for image_view in image_views:
                        image_view.image_glyph.color_mapper = log_colormapper
                    color_bar.color_mapper = log_colormapper
                    color_bar.ticker = LogTicker()
                else:
                    scale_radiobuttongroup.active = 0

        scale_radiobuttongroup = RadioGroup(
            labels=["Linear", "Logarithmic"], active=0, default_size=145
        )
        scale_radiobuttongroup.on_click(scale_radiobuttongroup_callback)
        self.scale_radiobuttongroup = scale_radiobuttongroup

        # ---- display max value
        def display_max_spinner_callback(_attr, _old_value, new_value):
            self.display_min_spinner.high = new_value - STEP
            if new_value <= 0:
                scale_radiobuttongroup.active = 0

            lin_colormapper.high = new_value
            log_colormapper.high = new_value

        display_max_spinner = Spinner(
            title="Max Display Value:",
            low=disp_min + STEP,
            value=disp_max,
            step=STEP,
            disabled=bool(auto_toggle.active),
            default_size=145,
        )
        display_max_spinner.on_change("value", display_max_spinner_callback)
        self.display_max_spinner = display_max_spinner

        # ---- display min value
        def display_min_spinner_callback(_attr, _old_value, new_value):
            self.display_max_spinner.low = new_value + STEP
            if new_value <= 0:
                scale_radiobuttongroup.active = 0

            lin_colormapper.low = new_value
            log_colormapper.low = new_value

        display_min_spinner = Spinner(
            title="Min Display Value:",
            high=disp_max - STEP,
            value=disp_min,
            step=STEP,
            disabled=bool(auto_toggle.active),
            default_size=145,
        )
        display_min_spinner.on_change("value", display_min_spinner_callback)
        self.display_min_spinner = display_min_spinner

        # ---- high color
        def high_color_callback(_attr, _old_value, new_value):
            lin_colormapper.high_color = new_value
            log_colormapper.high_color = new_value

        high_color = ColorPicker(
            title="High Color:", color=cmap_dict[colormap][-1], default_size=90
        )
        high_color.on_change("color", high_color_callback)
        self.high_color = high_color

        # ---- mask color
        def mask_color_callback(_attr, _old_value, new_value):
            lin_colormapper.nan_color = new_value
            log_colormapper.nan_color = new_value

        mask_color = ColorPicker(title="Mask Color:", color="gray", default_size=90)
        mask_color.on_change("color", mask_color_callback)
        self.mask_color = mask_color
Beispiel #4
0
     data161subset = data161.iloc[startPt:startPt+slot:space,:]
     dataSource.data.update(ColumnDataSource(data161subset).data)
slider.on_change('value', callback)

# Radio buttons to choose time scale
radioLabels = ['day','week','month']
radio = RadioGroup(labels=radioLabels,active=1)
def radioCallback(active):
    timerange = radioLabels[active]
    print(timerange)
    global slot
    global space
    tooltips,slot, space = updateToolTips(timerange)
    data161subset = data161.iloc[startPt:startPt+slot:space,:]
    dataSource.data.update(ColumnDataSource(data161subset).data)
radio.on_click(radioCallback)

# Buttons to choose which sources are shown
checkbuttons = CheckboxButtonGroup(labels=zlist, active=[0,1,2])
def checkboxCallback(active):
    global showcols
    showcols=[]
    print(active)
    for activeItem in active:
        showcols.append(' '+zlist[activeItem].lower())
    print(showcols)
    for colRef,line in enumerate(ylist,1):
        if line in showcols:
            dictOfLines[line].visible = True
        else:
            dictOfLines[line].visible = False
Beispiel #5
0
class BokehSPE(Tool):
    name = "BokehSPE"
    description = "Interactively explore the steps in obtaining and fitting " \
                  "SPE spectrum"

    aliases = Dict(
        dict(
            r='EventFileReaderFactory.reader',
            f='EventFileReaderFactory.input_path',
            max_events='EventFileReaderFactory.max_events',
            ped='CameraR1CalibratorFactory.pedestal_path',
            tf='CameraR1CalibratorFactory.tf_path',
            pe='CameraR1CalibratorFactory.pe_path',
            fitter='ChargeFitterFactory.fitter',
        ))
    classes = List([
        EventFileReaderFactory,
        CameraR1CalibratorFactory,
        ChargeFitterFactory,
    ])

    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self._event = None
        self._event_index = None
        self._event_id = None
        self._active_pixel = 0

        self.w_event_index = None
        self.w_goto_event_index = None
        self.w_hoa = None
        self.w_fitspectrum = None
        self.w_fitcamera = None
        self.layout = None

        self.reader = None
        self.r1 = None
        self.dl0 = None
        self.dl1 = None
        self.dl1_height = None
        self.area = None
        self.height = None

        self.n_events = None
        self.n_pixels = None
        self.n_samples = None

        self.cleaner = None
        self.extractor = None
        self.extractor_height = None
        self.dead = None
        self.fitter = None

        self.neighbours2d = None
        self.stage_names = None

        self.p_camera_area = None
        self.p_camera_fit_gain = None
        self.p_camera_fit_brightness = None
        self.p_fitter = None
        self.p_stage_viewer = None
        self.p_fit_viewer = None
        self.p_fit_table = None

    def setup(self):
        self.log_format = "%(levelname)s: %(message)s [%(name)s.%(funcName)s]"
        kwargs = dict(config=self.config, tool=self)

        reader_factory = EventFileReaderFactory(**kwargs)
        reader_class = reader_factory.get_class()
        self.reader = reader_class(**kwargs)

        r1_factory = CameraR1CalibratorFactory(origin=self.reader.origin,
                                               **kwargs)
        r1_class = r1_factory.get_class()
        self.r1 = r1_class(**kwargs)

        self.dl0 = CameraDL0Reducer(**kwargs)

        self.cleaner = CHECMWaveformCleanerAverage(**kwargs)
        self.extractor = AverageWfPeakIntegrator(**kwargs)
        self.extractor_height = SimpleIntegrator(window_shift=0,
                                                 window_width=1,
                                                 **kwargs)

        self.dl1 = CameraDL1Calibrator(extractor=self.extractor,
                                       cleaner=self.cleaner,
                                       **kwargs)
        self.dl1_height = CameraDL1Calibrator(extractor=self.extractor_height,
                                              cleaner=self.cleaner,
                                              **kwargs)

        self.dead = Dead()

        fitter_factory = ChargeFitterFactory(**kwargs)
        fitter_class = fitter_factory.get_class()
        self.fitter = fitter_class(**kwargs)

        self.n_events = self.reader.num_events
        first_event = self.reader.get_event(0)
        self.n_pixels = first_event.inst.num_pixels[0]
        self.n_samples = first_event.r0.tel[0].num_samples

        geom = CameraGeometry.guess(*first_event.inst.pixel_pos[0],
                                    first_event.inst.optical_foclen[0])
        self.neighbours2d = get_neighbours_2d(geom.pix_x, geom.pix_y)

        # Get stage names
        self.stage_names = [
            '0: raw', '1: baseline_sub', '2: no_pulse', '3: smooth_baseline',
            '4: smooth_wf', '5: cleaned'
        ]

        # Init Plots
        self.p_camera_area = Camera(self, self.neighbours2d, "Area", geom)
        self.p_camera_fit_gain = Camera(self, self.neighbours2d, "Gain", geom)
        self.p_camera_fit_brightness = Camera(self, self.neighbours2d,
                                              "Brightness", geom)
        self.p_fitter = FitterWidget(fitter=self.fitter, **kwargs)
        self.p_stage_viewer = StageViewer(**kwargs)
        self.p_fit_viewer = FitViewer(**kwargs)
        self.p_fit_table = FitTable(**kwargs)

    def start(self):
        # Prepare storage array
        self.area = np.zeros((self.n_events, self.n_pixels))
        self.height = np.zeros((self.n_events, self.n_pixels))

        source = self.reader.read()
        desc = "Looping through file"
        for event in tqdm(source, total=self.n_events, desc=desc):
            index = event.count

            self.r1.calibrate(event)
            self.dl0.reduce(event)
            self.dl1.calibrate(event)
            peak_area = np.copy(event.dl1.tel[0].image)
            self.dl1_height.calibrate(event)
            peak_height = np.copy(event.dl1.tel[0].image)

            self.area[index] = peak_area
            self.height[index] = peak_height

        # Setup Plots
        self.p_camera_area.enable_pixel_picker()
        self.p_camera_area.add_colorbar()
        self.p_camera_fit_gain.enable_pixel_picker()
        self.p_camera_fit_gain.add_colorbar()
        self.p_camera_fit_brightness.enable_pixel_picker()
        self.p_camera_fit_brightness.add_colorbar()
        self.p_fitter.create()
        self.p_stage_viewer.create(self.neighbours2d, self.stage_names)
        self.p_fit_viewer.create(self.p_fitter.fitter.subfit_labels)
        self.p_fit_table.create()

        # Setup widgets
        self.create_event_index_widget()
        self.create_goto_event_index_widget()
        self.event_index = 0
        self.create_hoa_widget()
        self.create_fitspectrum_widget()
        self.create_fitcamera_widget()

        # Get bokeh layouts
        l_camera_area = self.p_camera_area.layout
        l_camera_fit_gain = self.p_camera_fit_gain.layout
        l_camera_fit_brightness = self.p_camera_fit_brightness.layout
        l_fitter = self.p_fitter.layout
        l_stage_viewer = self.p_stage_viewer.layout
        l_fit_viewer = self.p_fit_viewer.layout
        l_fit_table = self.p_fit_table.layout

        # Setup layout
        self.layout = layout([
            [self.w_hoa, self.w_fitspectrum, self.w_fitcamera],
            [l_camera_fit_brightness, l_fit_viewer, l_fitter],
            [l_camera_fit_gain, l_fit_table],
            [l_camera_area, self.w_goto_event_index, self.w_event_index],
            [Div(text="Stage Viewer")],
            [l_stage_viewer],
        ])

    def finish(self):
        curdoc().add_root(self.layout)
        curdoc().title = "Event Viewer"

    def fit_spectrum(self, pix):
        if self.w_hoa.active == 0:
            spectrum = self.area
        else:
            spectrum = self.height

        success = self.p_fitter.fit(spectrum[:, pix])
        if not success:
            self.log.warning("Pixel {} couldn't be fit".format(pix))
        return success

    def fit_camera(self):
        gain = np.ma.zeros(self.n_pixels)
        gain.mask = np.zeros(gain.shape, dtype=np.bool)
        brightness = np.ma.zeros(self.n_pixels)
        brightness.mask = np.zeros(gain.shape, dtype=np.bool)

        fitter = self.p_fitter.fitter.fitter_type
        if fitter == 'spe':
            coeff = 'lambda_'
        elif fitter == 'bright':
            coeff = 'mean'
        else:
            self.log.error("No case for fitter type: {}".format(fitter))
            raise ValueError

        desc = "Fitting pixels"
        for pix in trange(self.n_pixels, desc=desc):
            if not self.fit_spectrum(pix):
                gain.mask[pix] = True
                continue
            if fitter == 'spe':
                gain[pix] = self.p_fitter.fitter.coeff['spe']
            brightness[pix] = self.p_fitter.fitter.coeff[coeff]

        gain = np.ma.masked_where(np.isnan(gain), gain)
        gain = self.dead.mask1d(gain)
        brightness = np.ma.masked_where(np.isnan(brightness), brightness)
        brightness = self.dead.mask1d(brightness)

        self.p_camera_fit_gain.image = gain
        self.p_camera_fit_brightness.image = brightness

    @property
    def event(self):
        return self._event

    @event.setter
    def event(self, val):
        self._event = val

        self.r1.calibrate(val)
        self.dl0.reduce(val)
        self.dl1.calibrate(val)
        peak_area = val.dl1.tel[0].image

        self._event_index = val.count
        self._event_id = val.r0.event_id
        self.update_event_index_widget()

        stages = self.dl1.cleaner.stages
        pulse_window = self.dl1.cleaner.stages['window'][0]
        int_window = val.dl1.tel[0].extracted_samples[0]

        self.p_camera_area.image = peak_area
        self.p_stage_viewer.update_stages(np.arange(self.n_samples), stages,
                                          pulse_window, int_window)

    @property
    def event_index(self):
        return self._event_index

    @event_index.setter
    def event_index(self, val):
        self._event_index = val
        self.event = self.reader.get_event(val, False)

    @property
    def active_pixel(self):
        return self._active_pixel

    @active_pixel.setter
    def active_pixel(self, val):
        if not self._active_pixel == val:
            self._active_pixel = val

            self.fit_spectrum(val)

            self.p_camera_area.active_pixel = val
            self.p_camera_fit_gain.active_pixel = val
            self.p_camera_fit_brightness.active_pixel = val
            self.p_stage_viewer.active_pixel = val

            self.p_fit_viewer.update(self.p_fitter.fitter)
            self.p_fit_table.update(self.p_fitter.fitter)

    def create_event_index_widget(self):
        self.w_event_index = TextInput(title="Event Index:", value='')

    def update_event_index_widget(self):
        if self.w_event_index:
            self.w_event_index.value = str(self.event_index)

    def create_goto_event_index_widget(self):
        self.w_goto_event_index = Button(label="GOTO Index", width=100)
        self.w_goto_event_index.on_click(self.on_goto_event_index_widget_click)

    def on_goto_event_index_widget_click(self):
        self.event_index = int(self.w_event_index.value)

    def on_event_index_widget_change(self, attr, old, new):
        if self.event_index != int(self.w_event_index.value):
            self.event_index = int(self.w_event_index.value)

    def create_hoa_widget(self):
        self.w_hoa = RadioGroup(labels=['area', 'height'], active=0)
        self.w_hoa.on_click(self.on_hoa_widget_select)

    def on_hoa_widget_select(self, active):
        self.fit_spectrum(self.active_pixel)
        self.p_fit_viewer.update(self.p_fitter.fitter)
        self.p_fit_table.update(self.p_fitter.fitter)

    def create_fitspectrum_widget(self):
        self.w_fitspectrum = Button(label='Fit Spectrum')
        self.w_fitspectrum.on_click(self.on_fitspectrum_widget_select)

    def on_fitspectrum_widget_select(self):
        t = time()
        self.fit_spectrum(self.active_pixel)
        self.log.info("Fit took {} seconds".format(time() - t))
        self.p_fit_viewer.update(self.p_fitter.fitter)
        self.p_fit_table.update(self.p_fitter.fitter)

    def create_fitcamera_widget(self):
        self.w_fitcamera = Button(label='Fit Camera')
        self.w_fitcamera.on_click(self.on_fitcamera_widget_select)

    def on_fitcamera_widget_select(self):
        self.fit_camera()
        self.fit_spectrum(self.active_pixel)
        self.p_fit_viewer.update(self.p_fitter.fitter)
        self.p_fit_table.update(self.p_fitter.fitter)