def update(self, y, u, y_dot, w=1.0): self.once = True self.nsamples += 1 self.n = y.size self.k = u.size # XXX: check self.y_stats.update(y, w) self.u_stats.update(u, w) # remove mean u_n = u - self.u_stats.get_mean() y_n = y - self.y_stats.get_mean() # make products T_k = outer(outer(y_n, y_dot), u_n) assert T_k.shape == (self.n, self.n, self.k) U_k = outer(y_dot, u_n) assert U_k.shape == (self.n, self.k) # update tensor self.T.update(T_k, w) self.U.update(U_k, w)
def update(self, y, y_dot, u, w): self.once = True M = y.shape[0] check_all_finite(y) check_all_finite(y_dot) check_all_finite(u) # TODO: check shape is conserved self.is1D = y.ndim == 1 self.is2D = y.ndim == 2 gy = generalized_gradient(y) y_dot_w = w u_w = np.ones(u.shape) gy_w = w.reshape((1, M)) assert gy.shape == gy_w.shape Qi = outer(u, u) Qi_w = outer(u_w, u_w) self.Q.update(Qi, Qi_w) Pi = outer_first_dim(gy) Pi_w = outer_first_dim(gy_w) self.P.update(Pi, Pi_w) self.R_needs_update = True Gi = outer(u, gy * y_dot) Gi_w = outer(u_w, gy_w * y_dot_w) self.G.update(Gi, Gi_w) self.H_needs_update = True Bk = outer(u, y_dot) Bk_w = outer(u_w, y_dot_w) self.B.update(Bk, Bk_w) self.C_needs_update = True self.last_y = y self.last_gy = gy self.last_y_dot = y_dot self.last_u = u self.last_w = w
def update(self, y, u, y_dot, w): self.once = True self.nsamples += 1 check_all_finite(y) check_all_finite(u) check_all_finite(y_dot) check_all_finite(w) self.n = y.size self.k = u.size self.y_stats.update(y) # TODO: make robust self.u_stats.update(u) # remove mean u_n = u - self.u_stats.get_mean() self.y_mean.update(y, w) # TODO: make robust y_n = y - self.y_mean.get_value(fill_value=0.5) # weights y_n_w = w y_dot_w = w u_n_w = np.ones(u.shape) T_k = outer(outer(y_n, y_dot), u_n) T_k_w = outer(outer(y_n_w, y_dot_w), u_n_w) U_k = outer(y_dot, u_n) U_k_w = outer(y_dot_w, u_n_w) assert T_k.shape == (self.n, self.n, self.k) assert U_k.shape == (self.n, self.k) # update tensor self.T.update(T_k, T_k_w) self.U.update(U_k, U_k_w)