def main(): parser = optparse.OptionParser() parser.add_option("-r", "--runtime", dest="runtime", default=None) parser.add_option("-o", "--output", dest="output", default=None) (options, args) = parser.parse_args() if not options.runtime: print >> sys.stderr, "Error: --runtime is required" sys.exit(1) runtime = options.runtime bindings = loadBindings() b = bootstrap.Bootstrap(runtime, bindings, moduleId="titanium", moduleName="Titanium") jsTemplate = open(os.path.join(thisDir, "bootstrap.js")).read() gperfTemplate = open(os.path.join(thisDir, "bootstrap.gperf")).read() outDir = genDir if options.output != None: outDir = options.output b.generateJS(jsTemplate, gperfTemplate, outDir)
def file_list_to_df(climb_files, control_files, sym_files): """ Loads the likelihoods of all runs as a dict of DataFrames, and collapses symmetrical inds. """ result_paths = zip(climb_files, control_files, sym_files) for i, (climb_file, control_file, sym_file) in enumerate(result_paths): try: B = bootstrap.Bootstrap(climb_file, control_file, sym_file) except tables.NoSuchNodeError: continue yield i, B.likdata
data_field1 = data_field1.reset_index() data_field1.columns=['X','Y'] num_childtraingtest =4000 #子训练集个数 print('训练组数',num_childtraingtest) # 3 结合6个仿真和4个现场 是10行数据,从10行数据中提取分布 childtest = ChidTraingTest.TraingTest(data_field1, num_childtraingtest) # 4 bootstrap 采样 loops = 100 percetion_m_childTest = pd.DataFrame() for i in range(0, num_childtraingtest * 10, 10) : data2 = childtest[i:i+10] # print( bootstrap.Bootstrap(data2) ) percetion_m_childTest = percetion_m_childTest.append( bootstrap.Bootstrap(data2 , loops).ix[0] ) percetion_m_childTest = percetion_m_childTest.reset_index(drop= True) percetion_m_childTest.columns = ['mux', 'muy', 'sigmax', 'sigmay'] # print(percetion_m_childTest) percetion_m_childTest.to_excel('3.xlsx') s3 = [np.mean(percetion_m_childTest['mux']), np.mean(percetion_m_childTest['muy']), np.mean(percetion_m_childTest['sigmax']), np.mean(percetion_m_childTest['sigmay'])] print('所有的平均值,直接平均 :') print(s3 ) # 4 聚类 s4 = k_means.k_means(percetion_m_childTest)
from oslo_config import cfg from oslo_log import log import bootstrap import os import service conf = cfg.CONF log.register_options(conf) conf(project='pythontest', prog='pythontest-user', args=[]) #conf(defualt_config_files='/etc/pythontest.conf') log.setup(conf, 'pythontest') boot = bootstrap.Bootstrap(conf) conf.drivers.transport = 'wsgi' application = boot.transport() app = application.app #periodic_task = service.Periodic_Task(conf, boot._storage) import time, threading #def run_periodic_task(): #threading.Thread.daemon = True #if conf.periodic_task_interval is None: #interval = 60*60*24 #periodic_task.list_boss_pe_endpointt() #periodic_task.format_pe_list_result() #periodic_task.pe_contrast_to_local_db() #periodic_task.list_boss_ce_endpoint() #periodic_task.format_ce_list_result() #periodic_task.ce_contrast_to_local_db() #interval = conf.periodic_task_interval #t = threading.Timer(interval, run_periodic_task)
num_childtraingtest = 2 for j in range(100, 1000, 25): H.append(j) loops = j #bootstrap采样循环次数,修改 # print('训练组数',num_childtraingtest) # D =pd.DataFrame( index= num_childtraingtest) # 3 结合6个仿真和4个现场 是10行数据,从10行数据中提取分布 childtest = ChidTraingTest.TraingTest(data_field1, num_childtraingtest) # 4 bootstrap 采样 percetion_m_childTest = pd.DataFrame() for i in range(0, num_childtraingtest * 10, 10): data2 = childtest[i:i + 10] # print( bootstrap.Bootstrap(data2) ) percetion_m_childTest = percetion_m_childTest.append( bootstrap.Bootstrap(data2, loops).ix[0]) percetion_m_childTest = percetion_m_childTest.reset_index(drop=True) percetion_m_childTest.columns = ['mux', 'muy', 'sigmax', 'sigmay'] s3 = [ np.mean(percetion_m_childTest['mux']), np.mean(percetion_m_childTest['muy']), np.mean(percetion_m_childTest['sigmax']), np.mean(percetion_m_childTest['sigmay']) ] # print(s3) # 6误差平方和 aa = [100, 120, 10, 15] d1 = 0 for i in range(4):
def main(): bs = bootstrap.Bootstrap('rhd.csv') conf_interval = bs.getBootstrapCIs(0.05, bs.X.iloc[[0]]) print('confidence interval:', conf_interval) print('actual execution time:', bs.y.iloc[[0]])