Beispiel #1
0
    def test_q_probability_of_improvement(self, cuda=False):
        device = torch.device("cuda") if cuda else torch.device("cpu")
        for dtype in (torch.float, torch.double):
            # the event shape is `b x q x t` = 1 x 1 x 1
            samples = torch.zeros(1, 1, 1, device=device, dtype=dtype)
            mm = MockModel(MockPosterior(samples=samples))
            # X is `q x d` = 1 x 1. X is a dummy and unused b/c of mocking
            X = torch.zeros(1, 1, device=device, dtype=dtype)

            # basic test
            sampler = IIDNormalSampler(num_samples=2)
            acqf = qProbabilityOfImprovement(model=mm,
                                             best_f=0,
                                             sampler=sampler)
            res = acqf(X)
            self.assertEqual(res.item(), 0.5)

            # basic test, no resample
            sampler = IIDNormalSampler(num_samples=2, seed=12345)
            acqf = qProbabilityOfImprovement(model=mm,
                                             best_f=0,
                                             sampler=sampler)
            res = acqf(X)
            self.assertEqual(res.item(), 0.5)
            self.assertEqual(acqf.sampler.base_samples.shape,
                             torch.Size([2, 1, 1, 1]))
            bs = acqf.sampler.base_samples.clone()
            res = acqf(X)
            self.assertTrue(torch.equal(acqf.sampler.base_samples, bs))

            # basic test, qmc, no resample
            sampler = SobolQMCNormalSampler(num_samples=2)
            acqf = qProbabilityOfImprovement(model=mm,
                                             best_f=0,
                                             sampler=sampler)
            res = acqf(X)
            self.assertEqual(res.item(), 0.5)
            self.assertEqual(acqf.sampler.base_samples.shape,
                             torch.Size([2, 1, 1, 1]))
            bs = acqf.sampler.base_samples.clone()
            acqf(X)
            self.assertTrue(torch.equal(acqf.sampler.base_samples, bs))

            # basic test, qmc, resample
            sampler = SobolQMCNormalSampler(num_samples=2, resample=True)
            acqf = qProbabilityOfImprovement(model=mm,
                                             best_f=0,
                                             sampler=sampler)
            res = acqf(X)
            self.assertEqual(res.item(), 0.5)
            self.assertEqual(acqf.sampler.base_samples.shape,
                             torch.Size([2, 1, 1, 1]))
            bs = acqf.sampler.base_samples.clone()
            acqf(X)
            self.assertFalse(torch.equal(acqf.sampler.base_samples, bs))
Beispiel #2
0
 def test_get_base_sample_shape_no_collapse(self):
     sampler = SobolQMCNormalSampler(num_samples=4, collapse_batch_dims=False)
     self.assertFalse(sampler.resample)
     self.assertEqual(sampler.sample_shape, torch.Size([4]))
     self.assertFalse(sampler.collapse_batch_dims)
     # check sample shape non-batched
     posterior = _get_posterior()
     bss = sampler._get_base_sample_shape(posterior=posterior)
     self.assertEqual(bss, torch.Size([4, 2, 1]))
     # check sample shape batched
     posterior = _get_posterior_batched()
     bss = sampler._get_base_sample_shape(posterior=posterior)
     self.assertEqual(bss, torch.Size([4, 3, 2, 1]))
Beispiel #3
0
 def test_get_base_sample_shape(self):
     sampler = SobolQMCNormalSampler(num_samples=4)
     self.assertFalse(sampler.resample)
     self.assertEqual(sampler.sample_shape, torch.Size([4]))
     self.assertTrue(sampler.collapse_batch_dims)
     # check sample shape non-batched
     posterior = _get_posterior()
     bss = sampler._get_base_sample_shape(posterior=posterior)
     self.assertEqual(bss, torch.Size([4, 2, 1]))
     # check sample shape batched
     posterior = _get_posterior_batched()
     bss = sampler._get_base_sample_shape(posterior=posterior)
     self.assertEqual(bss, torch.Size([4, 1, 2, 1]))
Beispiel #4
0
    def test_forward_no_collapse(self, cuda=False):
        for dtype in (torch.float, torch.double):

            # no resample
            sampler = SobolQMCNormalSampler(num_samples=4,
                                            seed=1234,
                                            collapse_batch_dims=False)
            self.assertFalse(sampler.resample)
            self.assertEqual(sampler.seed, 1234)
            self.assertFalse(sampler.collapse_batch_dims)
            # check samples non-batched
            posterior = _get_posterior(cuda=cuda, dtype=dtype)
            samples = sampler(posterior)
            self.assertEqual(samples.shape, torch.Size([4, 2, 1]))
            self.assertEqual(sampler.seed, 1235)
            # ensure samples are the same
            samples2 = sampler(posterior)
            self.assertTrue(torch.allclose(samples, samples2))
            self.assertEqual(sampler.seed, 1235)
            # ensure this works with a differently shaped posterior
            posterior_batched = _get_posterior_batched(cuda=cuda, dtype=dtype)
            samples_batched = sampler(posterior_batched)
            self.assertEqual(samples_batched.shape, torch.Size([4, 3, 2, 1]))
            self.assertEqual(sampler.seed, 1236)

            # resample
            sampler = SobolQMCNormalSampler(num_samples=4,
                                            resample=True,
                                            collapse_batch_dims=False)
            self.assertTrue(sampler.resample)
            self.assertFalse(sampler.collapse_batch_dims)
            initial_seed = sampler.seed
            # check samples non-batched
            posterior = _get_posterior(cuda=cuda, dtype=dtype)
            samples = sampler(posterior=posterior)
            self.assertEqual(samples.shape, torch.Size([4, 2, 1]))
            self.assertEqual(sampler.seed, initial_seed + 1)
            # ensure samples are not the same
            samples2 = sampler(posterior)
            self.assertFalse(torch.allclose(samples, samples2))
            self.assertEqual(sampler.seed, initial_seed + 2)
            # ensure this works with a differently shaped posterior
            posterior_batched = _get_posterior_batched(cuda=cuda, dtype=dtype)
            samples_batched = sampler(posterior_batched)
            self.assertEqual(samples_batched.shape, torch.Size([4, 3, 2, 1]))
            self.assertEqual(sampler.seed, initial_seed + 3)
Beispiel #5
0
 def test_unsupported_dimension(self):
     sampler = SobolQMCNormalSampler(num_samples=2)
     mean = torch.zeros(1112)
     cov = DiagLazyTensor(torch.ones(1112))
     mvn = MultivariateNormal(mean, cov)
     posterior = GPyTorchPosterior(mvn)
     with self.assertRaises(UnsupportedError) as e:
         sampler(posterior)
         self.assertIn("Requested: 1112", str(e.exception))
Beispiel #6
0
    def test_q_expected_improvement_batch(self, cuda=False):
        device = torch.device("cuda") if cuda else torch.device("cpu")
        for dtype in (torch.float, torch.double):
            # the event shape is `b x q x t` = 2 x 2 x 1
            samples = torch.zeros(2, 2, 1, device=device, dtype=dtype)
            samples[0, 0, 0] = 1.0
            mm = MockModel(MockPosterior(samples=samples))

            # X is a dummy and unused b/c of mocking
            X = torch.zeros(1, 1, 1, device=device, dtype=dtype)

            # test batch mode
            sampler = IIDNormalSampler(num_samples=2)
            acqf = qExpectedImprovement(model=mm, best_f=0, sampler=sampler)
            res = acqf(X)
            self.assertEqual(res[0].item(), 1.0)
            self.assertEqual(res[1].item(), 0.0)

            # test shifting best_f value
            acqf = qExpectedImprovement(model=mm, best_f=-1, sampler=sampler)
            res = acqf(X)
            self.assertEqual(res[0].item(), 2.0)
            self.assertEqual(res[1].item(), 1.0)

            # test batch mode, no resample
            sampler = IIDNormalSampler(num_samples=2, seed=12345)
            acqf = qExpectedImprovement(model=mm, best_f=0, sampler=sampler)
            res = acqf(X)  # 1-dim batch
            self.assertEqual(res[0].item(), 1.0)
            self.assertEqual(res[1].item(), 0.0)
            self.assertEqual(acqf.sampler.base_samples.shape,
                             torch.Size([2, 1, 2, 1]))
            bs = acqf.sampler.base_samples.clone()
            acqf(X)
            self.assertTrue(torch.equal(acqf.sampler.base_samples, bs))
            res = acqf(X.expand(2, 1, 1))  # 2-dim batch
            self.assertEqual(res[0].item(), 1.0)
            self.assertEqual(res[1].item(), 0.0)
            # the base samples should have the batch dim collapsed
            self.assertEqual(acqf.sampler.base_samples.shape,
                             torch.Size([2, 1, 2, 1]))
            bs = acqf.sampler.base_samples.clone()
            acqf(X.expand(2, 1, 1))
            self.assertTrue(torch.equal(acqf.sampler.base_samples, bs))

            # test batch mode, qmc, no resample
            sampler = SobolQMCNormalSampler(num_samples=2)
            acqf = qExpectedImprovement(model=mm, best_f=0, sampler=sampler)
            res = acqf(X)
            self.assertEqual(res[0].item(), 1.0)
            self.assertEqual(res[1].item(), 0.0)
            self.assertEqual(acqf.sampler.base_samples.shape,
                             torch.Size([2, 1, 2, 1]))
            bs = acqf.sampler.base_samples.clone()
            acqf(X)
            self.assertTrue(torch.equal(acqf.sampler.base_samples, bs))

            # test batch mode, qmc, resample
            sampler = SobolQMCNormalSampler(num_samples=2, resample=True)
            acqf = qExpectedImprovement(model=mm, best_f=0, sampler=sampler)
            res = acqf(X)  # 1-dim batch
            self.assertEqual(res[0].item(), 1.0)
            self.assertEqual(res[1].item(), 0.0)
            self.assertEqual(acqf.sampler.base_samples.shape,
                             torch.Size([2, 1, 2, 1]))
            bs = acqf.sampler.base_samples.clone()
            acqf(X)
            self.assertFalse(torch.equal(acqf.sampler.base_samples, bs))
            res = acqf(X.expand(2, 1, 1))  # 2-dim batch
            self.assertEqual(res[0].item(), 1.0)
            self.assertEqual(res[1].item(), 0.0)
            # the base samples should have the batch dim collapsed
            self.assertEqual(acqf.sampler.base_samples.shape,
                             torch.Size([2, 1, 2, 1]))
            bs = acqf.sampler.base_samples.clone()
            acqf(X.expand(2, 1, 1))
            self.assertFalse(torch.equal(acqf.sampler.base_samples, bs))
Beispiel #7
0
    def test_q_upper_confidence_bound_batch(self, cuda=False):
        # TODO: T41739913 Implement tests for all MCAcquisitionFunctions
        device = torch.device("cuda") if cuda else torch.device("cpu")
        for dtype in (torch.float, torch.double):
            samples = torch.zeros(2, 2, 1, device=device, dtype=dtype)
            samples[0, 0, 0] = 1.0
            mm = MockModel(MockPosterior(samples=samples))
            # X is a dummy and unused b/c of mocking
            X = torch.zeros(1, 1, 1, device=device, dtype=dtype)

            # test batch mode
            sampler = IIDNormalSampler(num_samples=2)
            acqf = qUpperConfidenceBound(model=mm, beta=0.5, sampler=sampler)
            res = acqf(X)
            self.assertEqual(res[0].item(), 1.0)
            self.assertEqual(res[1].item(), 0.0)

            # test batch mode, no resample
            sampler = IIDNormalSampler(num_samples=2, seed=12345)
            acqf = qUpperConfidenceBound(model=mm, beta=0.5, sampler=sampler)
            res = acqf(X)  # 1-dim batch
            self.assertEqual(res[0].item(), 1.0)
            self.assertEqual(res[1].item(), 0.0)
            self.assertEqual(acqf.sampler.base_samples.shape,
                             torch.Size([2, 1, 2, 1]))
            bs = acqf.sampler.base_samples.clone()
            acqf(X)
            self.assertTrue(torch.equal(acqf.sampler.base_samples, bs))
            res = acqf(X.expand(2, 1, 1))  # 2-dim batch
            self.assertEqual(res[0].item(), 1.0)
            self.assertEqual(res[1].item(), 0.0)
            # the base samples should have the batch dim collapsed
            self.assertEqual(acqf.sampler.base_samples.shape,
                             torch.Size([2, 1, 2, 1]))
            bs = acqf.sampler.base_samples.clone()
            acqf(X.expand(2, 1, 1))
            self.assertTrue(torch.equal(acqf.sampler.base_samples, bs))

            # test batch mode, qmc, no resample
            sampler = SobolQMCNormalSampler(num_samples=2)
            acqf = qUpperConfidenceBound(model=mm, beta=0.5, sampler=sampler)
            res = acqf(X)
            self.assertEqual(res[0].item(), 1.0)
            self.assertEqual(res[1].item(), 0.0)
            self.assertEqual(acqf.sampler.base_samples.shape,
                             torch.Size([2, 1, 2, 1]))
            bs = acqf.sampler.base_samples.clone()
            acqf(X)
            self.assertTrue(torch.equal(acqf.sampler.base_samples, bs))

            # test batch mode, qmc, resample
            sampler = SobolQMCNormalSampler(num_samples=2, resample=True)
            acqf = qUpperConfidenceBound(model=mm, beta=0.5, sampler=sampler)
            res = acqf(X)  # 1-dim batch
            self.assertEqual(res[0].item(), 1.0)
            self.assertEqual(res[1].item(), 0.0)
            self.assertEqual(acqf.sampler.base_samples.shape,
                             torch.Size([2, 1, 2, 1]))
            bs = acqf.sampler.base_samples.clone()
            acqf(X)
            self.assertFalse(torch.equal(acqf.sampler.base_samples, bs))
            res = acqf(X.expand(2, 1, 1))  # 2-dim batch
            self.assertEqual(res[0].item(), 1.0)
            self.assertEqual(res[1].item(), 0.0)
            # the base samples should have the batch dim collapsed
            self.assertEqual(acqf.sampler.base_samples.shape,
                             torch.Size([2, 1, 2, 1]))
            bs = acqf.sampler.base_samples.clone()
            acqf(X.expand(2, 1, 1))
            self.assertFalse(torch.equal(acqf.sampler.base_samples, bs))
Beispiel #8
0
    def test_q_noisy_expected_improvement_batch(self, cuda=False):
        device = torch.device("cuda") if cuda else torch.device("cpu")
        for dtype in (torch.float, torch.double):
            # the event shape is `b x q x t` = 2 x 3 x 1
            samples_noisy = torch.zeros(2, 3, 1, device=device, dtype=dtype)
            samples_noisy[0, 0, 0] = 1.0
            mm_noisy = MockModel(MockPosterior(samples=samples_noisy))
            # X is `q x d` = 1 x 1
            X = torch.zeros(1, 1, 1, device=device, dtype=dtype)
            X_baseline = torch.zeros(1, 1, device=device, dtype=dtype)

            # test batch mode
            sampler = IIDNormalSampler(num_samples=2)
            acqf = qNoisyExpectedImprovement(model=mm_noisy,
                                             X_baseline=X_baseline,
                                             sampler=sampler)
            res = acqf(X)
            self.assertEqual(res[0].item(), 1.0)
            self.assertEqual(res[1].item(), 0.0)

            # test batch mode, no resample
            sampler = IIDNormalSampler(num_samples=2, seed=12345)
            acqf = qNoisyExpectedImprovement(model=mm_noisy,
                                             X_baseline=X_baseline,
                                             sampler=sampler)
            res = acqf(X)  # 1-dim batch
            self.assertEqual(res[0].item(), 1.0)
            self.assertEqual(res[1].item(), 0.0)
            self.assertEqual(acqf.sampler.base_samples.shape,
                             torch.Size([2, 1, 3, 1]))
            bs = acqf.sampler.base_samples.clone()
            acqf(X)
            self.assertTrue(torch.equal(acqf.sampler.base_samples, bs))
            res = acqf(X.expand(2, 1, 1))  # 2-dim batch
            self.assertEqual(res[0].item(), 1.0)
            self.assertEqual(res[1].item(), 0.0)
            # the base samples should have the batch dim collapsed
            self.assertEqual(acqf.sampler.base_samples.shape,
                             torch.Size([2, 1, 3, 1]))
            bs = acqf.sampler.base_samples.clone()
            acqf(X.expand(2, 1, 1))
            self.assertTrue(torch.equal(acqf.sampler.base_samples, bs))

            # test batch mode, qmc, no resample
            sampler = SobolQMCNormalSampler(num_samples=2)
            acqf = qNoisyExpectedImprovement(model=mm_noisy,
                                             X_baseline=X_baseline,
                                             sampler=sampler)
            res = acqf(X)
            self.assertEqual(res[0].item(), 1.0)
            self.assertEqual(res[1].item(), 0.0)
            self.assertEqual(acqf.sampler.base_samples.shape,
                             torch.Size([2, 1, 3, 1]))
            bs = acqf.sampler.base_samples.clone()
            acqf(X)
            self.assertTrue(torch.equal(acqf.sampler.base_samples, bs))

            # test X_pending w/ batch mode, qmc, resample
            sampler = SobolQMCNormalSampler(num_samples=2,
                                            resample=True,
                                            seed=12345)
            acqf = qNoisyExpectedImprovement(model=mm_noisy,
                                             X_baseline=X_baseline,
                                             sampler=sampler)
            res = acqf(X)  # 1-dim batch
            self.assertEqual(res[0].item(), 1.0)
            self.assertEqual(res[1].item(), 0.0)
            self.assertEqual(acqf.sampler.base_samples.shape,
                             torch.Size([2, 1, 3, 1]))
            bs = acqf.sampler.base_samples.clone()
            acqf(X)
            self.assertFalse(torch.equal(acqf.sampler.base_samples, bs))
            res = acqf(X.expand(2, 1, 1))  # 2-dim batch
            self.assertEqual(res[0].item(), 1.0)
            self.assertEqual(res[1].item(), 0.0)
            # the base samples should have the batch dim collapsed
            self.assertEqual(acqf.sampler.base_samples.shape,
                             torch.Size([2, 1, 3, 1]))
            bs = acqf.sampler.base_samples.clone()
            acqf(X.expand(2, 1, 1))
            self.assertFalse(torch.equal(acqf.sampler.base_samples, bs))
Beispiel #9
0
    def test_q_noisy_expected_improvement(self, cuda=False):
        device = torch.device("cuda") if cuda else torch.device("cpu")
        for dtype in (torch.float, torch.double):
            # the event shape is `b x q x t` = 1 x 2 x 1
            samples_noisy = torch.tensor([1.0, 0.0],
                                         device=device,
                                         dtype=dtype)
            samples_noisy = samples_noisy.view(1, 2, 1)
            # X_baseline is `q' x d` = 1 x 1
            X_baseline = torch.zeros(1, 1, device=device, dtype=dtype)
            mm_noisy = MockModel(MockPosterior(samples=samples_noisy))
            # X is `q x d` = 1 x 1
            X = torch.zeros(1, 1, device=device, dtype=dtype)

            # basic test
            sampler = IIDNormalSampler(num_samples=2)
            acqf = qNoisyExpectedImprovement(model=mm_noisy,
                                             X_baseline=X_baseline,
                                             sampler=sampler)
            res = acqf(X)
            self.assertEqual(res.item(), 1.0)

            # basic test, no resample
            sampler = IIDNormalSampler(num_samples=2, seed=12345)
            acqf = qNoisyExpectedImprovement(model=mm_noisy,
                                             X_baseline=X_baseline,
                                             sampler=sampler)
            res = acqf(X)
            self.assertEqual(res.item(), 1.0)
            self.assertEqual(acqf.sampler.base_samples.shape,
                             torch.Size([2, 1, 2, 1]))
            bs = acqf.sampler.base_samples.clone()
            acqf(X)
            self.assertTrue(torch.equal(acqf.sampler.base_samples, bs))

            # basic test, qmc, no resample
            sampler = SobolQMCNormalSampler(num_samples=2)
            acqf = qNoisyExpectedImprovement(model=mm_noisy,
                                             X_baseline=X_baseline,
                                             sampler=sampler)
            res = acqf(X)
            self.assertEqual(res.item(), 1.0)
            self.assertEqual(acqf.sampler.base_samples.shape,
                             torch.Size([2, 1, 2, 1]))
            bs = acqf.sampler.base_samples.clone()
            acqf(X)
            self.assertTrue(torch.equal(acqf.sampler.base_samples, bs))

            # basic test, qmc, resample
            sampler = SobolQMCNormalSampler(num_samples=2,
                                            resample=True,
                                            seed=12345)
            acqf = qNoisyExpectedImprovement(model=mm_noisy,
                                             X_baseline=X_baseline,
                                             sampler=sampler)
            res = acqf(X)
            self.assertEqual(res.item(), 1.0)
            self.assertEqual(acqf.sampler.base_samples.shape,
                             torch.Size([2, 1, 2, 1]))
            bs = acqf.sampler.base_samples.clone()
            acqf(X)
            self.assertFalse(torch.equal(acqf.sampler.base_samples, bs))