def exNew(exclude=sc.array([1,2,3,4]), plotfilename='exNew.png',nburn=20000,nsamples=200000, parsigma=[5,.075,.01,1,.1],dsigma=1.): """exMix1: solve the new exercise using MCMC sampling Input: exclude - ID numbers to exclude from the analysis (can be None) plotfilename - filename for the output plot nburn - number of burn-in samples nsamples - number of samples to take after burn-in parsigma - proposal distribution width (Gaussian) dsigma - divide uncertainties by this amount Output: plot History: 2010-04-28 - Written - Bovy (NYU) """ sc.random.seed(1) #In the interest of reproducibility (if that's a word) #Read the data data= read_data('data_yerr.dat') ndata= len(data) if not exclude == None: nsample= ndata- len(exclude) else: nsample= ndata #First find the chi-squared solution, which we will use as an #initial guess #Put the data in the appropriate arrays and matrices Y= sc.zeros(nsample) X= sc.zeros(nsample) A= sc.ones((nsample,2)) C= sc.zeros((nsample,nsample)) yerr= sc.zeros(nsample) jj= 0 for ii in range(ndata): if not exclude == None and sc.any(exclude == data[ii][0]): pass else: Y[jj]= data[ii][1][1] X[jj]= data[ii][1][0] A[jj,1]= data[ii][1][0] C[jj,jj]= data[ii][2]**2./dsigma**2. yerr[jj]= data[ii][2]/dsigma jj= jj+1 #Now compute the best fit and the uncertainties bestfit= sc.dot(linalg.inv(C),Y.T) bestfit= sc.dot(A.T,bestfit) bestfitvar= sc.dot(linalg.inv(C),A) bestfitvar= sc.dot(A.T,bestfitvar) bestfitvar= linalg.inv(bestfitvar) bestfit= sc.dot(bestfitvar,bestfit) initialguess= sc.array([bestfit[0],bestfit[1],0.,sc.mean(Y),m.log(sc.var(Y))])#(m,b,Pb,Yb,Vb) #With this initial guess start off the sampling procedure initialX= objective(initialguess,X,Y,yerr) currentX= initialX bestX= initialX bestfit= initialguess currentguess= initialguess naccept= 0 samples= [] samples.append(currentguess) for jj in range(nburn+nsamples): #Draw a sample from the proposal distribution newsample= sc.zeros(5) newsample[0]= currentguess[0]+stats.norm.rvs()*parsigma[0] newsample[1]= currentguess[1]+stats.norm.rvs()*parsigma[1] #newsample[2]= stats.uniform.rvs() newsample[2]= currentguess[2]+stats.norm.rvs()*parsigma[2] newsample[3]= currentguess[3]+stats.norm.rvs()*parsigma[3] newsample[4]= currentguess[4]+stats.norm.rvs()*parsigma[4] #Calculate the objective function for the newsample newX= objective(newsample,X,Y,yerr) #Accept or reject #Reject with the appropriate probability u= stats.uniform.rvs() if u < m.exp(newX-currentX): #Accept currentX= newX currentguess= newsample naccept= naccept+1 if currentX > bestX: bestfit= currentguess bestX= currentX samples.append(currentguess) if double(naccept)/(nburn+nsamples) < .2 or double(naccept)/(nburn+nsamples) > .6: print "Acceptance ratio was "+str(double(naccept)/(nburn+nsamples)) samples= sc.array(samples).T[:,nburn:-1] print "Best-fit, overall" print bestfit, sc.mean(samples[2,:]), sc.median(samples[2,:]) histmb,edges= sc.histogramdd(samples.T[:,0:2],bins=round(sc.sqrt(nsamples)/5.)) indxi= sc.argmax(sc.amax(histmb,axis=1)) indxj= sc.argmax(sc.amax(histmb,axis=0)) print "Best-fit, marginalized" print edges[0][indxi-1], edges[1][indxj-1] print edges[0][indxi], edges[1][indxj] print edges[0][indxi+1], edges[1][indxj+1] #2D histogram plot.bovy_print() levels= special.erf(0.5*sc.arange(1,4)) #xrange=[edges[0][0],edges[0][-1]] #yrange=[edges[1][0],edges[1][-1]] xrange=[-120,120] yrange=[1.5,3.2] histmb,edges= sc.histogramdd(samples.T[:,0:2], range=[[-120,120],[1.5,3.2]], bins=(round(sc.sqrt(nsamples)/5.)/(edges[0][-1]-edges[0][0])*(xrange[1]-xrange[0]), round(sc.sqrt(nsamples)/5.)/(edges[1][-1]-edges[1][0])*(yrange[1]-yrange[0]))) aspect=(xrange[1]-xrange[0])/(yrange[1]-yrange[0]) plot.bovy_dens2d(histmb.T,origin='lower',cmap='gist_yarg', contours=True,cntrmass=True, xrange=xrange,yrange=yrange, levels=levels, aspect=aspect, xlabel=r'$b$',ylabel=r'$m$') if dsigma == 1.: plot.bovy_text(r'$\mathrm{using\ correct\ data\ uncertainties}$', top_right=True) else: plot.bovy_text(r'$\mathrm{using\ data\ uncertainties\ /\ 2}$', top_right=True) if dsigma == 1.: plot.bovy_end_print('exNew1a.png') else: plot.bovy_end_print('exNew2a.png') #Data with MAP line and sampling plot.bovy_print() bestb= edges[0][indxi] bestm= edges[1][indxj] xrange=[0,300] yrange=[0,700] plot.bovy_plot(xrange,bestm*sc.array(xrange)+bestb,'k-', xrange=xrange,yrange=yrange, xlabel=r'$x$',ylabel=r'$y$',zorder=2) errorbar(X,Y,yerr,color='k',marker='o',color='k',linestyle='None',zorder=1) for ii in range(10): #Random sample ransample= sc.floor((stats.uniform.rvs()*nsamples)) ransample= samples.T[ransample,0:2] bestb= ransample[0] bestm= ransample[1] plot.bovy_plot(xrange,bestm*sc.array(xrange)+bestb, overplot=True,xrange=xrange,yrange=yrange, xlabel=r'$x$',ylabel=r'$y$',color='0.75',zorder=1) if dsigma == 1.: plot.bovy_text(r'$\mathrm{using\ correct\ data\ uncertainties}$', top_right=True) else: plot.bovy_text(r'$\mathrm{using\ data\ uncertainties\ /\ 2}$', top_right=True) if dsigma == 1.: plot.bovy_end_print('exNew1b.png') else: plot.bovy_end_print('exNew2b.png') #Pb plot plot.bovy_print() plot.bovy_hist(samples.T[:,2],color='k',bins=round(sc.sqrt(nsamples)/5.), xlabel=r'$P_\mathrm{b}$',normed=True,histtype='step', range=[0,1]) if dsigma == 1.: plot.bovy_text(r'$\mathrm{using\ correct\ data\ uncertainties}$', top_right=True) else: plot.bovy_text(r'$\mathrm{using\ data\ uncertainties\ /\ 2}$', top_right=True) if dsigma == 1.: plot.bovy_end_print('exNew1c.png') else: plot.bovy_end_print('exNew2c.png') return
def exMix1( exclude=None, plotfilenameA="exMix1a.png", plotfilenameB="exMix1b.png", plotfilenameC="exMix1c.png", nburn=20000, nsamples=1000000, parsigma=[5, 0.075, 0.2, 1, 0.1], dsigma=1.0, bovyprintargs={}, sampledata=None, ): """exMix1: solve exercise 5 (mixture model) using MCMC sampling Input: exclude - ID numbers to exclude from the analysis (can be None) plotfilename* - filenames for the output plot nburn - number of burn-in samples nsamples - number of samples to take after burn-in parsigma - proposal distribution width (Gaussian) dsigma - divide uncertainties by this amount Output: plot History: 2010-04-28 - Written - Bovy (NYU) """ sc.random.seed(-1) # In the interest of reproducibility (if that's a word) # Read the data data = read_data("data_yerr.dat") ndata = len(data) if not exclude == None: nsample = ndata - len(exclude) else: nsample = ndata # First find the chi-squared solution, which we will use as an # initial guess # Put the data in the appropriate arrays and matrices Y = sc.zeros(nsample) X = sc.zeros(nsample) A = sc.ones((nsample, 2)) C = sc.zeros((nsample, nsample)) yerr = sc.zeros(nsample) jj = 0 for ii in range(ndata): if not exclude == None and sc.any(exclude == data[ii][0]): pass else: Y[jj] = data[ii][1][1] X[jj] = data[ii][1][0] A[jj, 1] = data[ii][1][0] C[jj, jj] = data[ii][2] ** 2.0 / dsigma ** 2.0 yerr[jj] = data[ii][2] / dsigma jj = jj + 1 brange = [-120, 120] mrange = [1.5, 3.2] # This matches the order of the parameters in the "samples" vector mbrange = [brange, mrange] if sampledata is None: sampledata = runSampler(X, Y, A, C, yerr, nburn, nsamples, parsigma, mbrange) (histmb, edges, mbsamples, pbhist, pbedges) = sampledata # Hack -- produce fake Pbad samples from Pbad histogram. pbsamples = hstack([array([x] * N) for x, N in zip((pbedges[:-1] + pbedges[1:]) / 2, pbhist)]) indxi = sc.argmax(sc.amax(histmb, axis=1)) indxj = sc.argmax(sc.amax(histmb, axis=0)) print "Best-fit, marginalized" print edges[0][indxi - 1], edges[1][indxj - 1] print edges[0][indxi], edges[1][indxj] print edges[0][indxi + 1], edges[1][indxj + 1] # 2D histogram plot.bovy_print(**bovyprintargs) levels = special.erf(0.5 * sc.arange(1, 4)) xe = [edges[0][0], edges[0][-1]] ye = [edges[1][0], edges[1][-1]] aspect = (xe[1] - xe[0]) / (ye[1] - ye[0]) plot.bovy_dens2d( histmb.T, origin="lower", cmap=cm.gist_yarg, interpolation="nearest", contours=True, cntrmass=True, extent=xe + ye, levels=levels, aspect=aspect, xlabel=r"$b$", ylabel=r"$m$", ) xlim(brange) ylim(mrange) plot.bovy_end_print(plotfilenameA) # Data with MAP line and sampling plot.bovy_print(**bovyprintargs) bestb = edges[0][indxi] bestm = edges[1][indxj] xrange = [0, 300] yrange = [0, 700] plot.bovy_plot( xrange, bestm * sc.array(xrange) + bestb, "k-", xrange=xrange, yrange=yrange, xlabel=r"$x$", ylabel=r"$y$", zorder=2, ) errorbar(X, Y, yerr, marker="o", color="k", linestyle="None", zorder=1) for m, b in mbsamples: plot.bovy_plot( xrange, m * sc.array(xrange) + b, overplot=True, xrange=xrange, yrange=yrange, xlabel=r"$x$", ylabel=r"$y$", color="0.75", zorder=1, ) plot.bovy_end_print(plotfilenameB) # Pb plot if not "text_fontsize" in bovyprintargs: bovyprintargs["text_fontsize"] = 11 plot.bovy_print(**bovyprintargs) plot.bovy_hist( pbsamples, bins=round(sc.sqrt(nsamples) / 5.0), xlabel=r"$P_\mathrm{b}$", normed=True, histtype="step", range=[0, 1], edgecolor="k", ) ylim(0, 4.0) if dsigma == 1.0: plot.bovy_text(r"$\mathrm{using\ correct\ data\ uncertainties}$", top_right=True) else: plot.bovy_text(r"$\mathrm{using\ data\ uncertainties\ /\ 2}$", top_left=True) plot.bovy_end_print(plotfilenameC) return sampledata
def ex17(exclude=sc.array([3]),plotfilename='ex17.png', nburn=5000,nsamples=200000, parsigma=[1,m.pi/200.,.1], bovyprintargs={}): """ex17: solve exercise 17 by MCMC Input: exclude - ID numbers to exclude from the analysis plotfilename - filename for the output plot nburn - number of burn-in samples nsamples - number of samples to take after burn-in parsigma - proposal distribution width (Gaussian) Output: plot History: 2010-05-07 - Written - Bovy (NYU) """ #Read the data data= read_data('data_allerr.dat',allerr=True) ndata= len(data) nsample= ndata- len(exclude) #First find the chi-squared solution, which we will use as an #initial gues #Put the dat in the appropriate arrays and matrices Y= sc.zeros(nsample) X= sc.zeros(nsample) A= sc.ones((nsample,2)) C= sc.zeros((nsample,nsample)) Z= sc.zeros((nsample,2)) yerr= sc.zeros(nsample) ycovar= sc.zeros((2,nsample,2))#Makes the sc.dot easier jj= 0 for ii in range(ndata): if sc.any(exclude == data[ii][0]): pass else: Y[jj]= data[ii][1][1] X[jj]= data[ii][1][0] Z[jj,0]= X[jj] Z[jj,1]= Y[jj] A[jj,1]= data[ii][1][0] C[jj,jj]= data[ii][2]**2. yerr[jj]= data[ii][2] ycovar[0,jj,0]= data[ii][3]**2. ycovar[1,jj,1]= data[ii][2]**2. ycovar[0,jj,1]= data[ii][4]*m.sqrt(ycovar[0,jj,0]*ycovar[1,jj,1]) ycovar[1,jj,0]= ycovar[0,jj,1] jj= jj+1 #Now compute the best fit and the uncertainties bestfit= sc.dot(linalg.inv(C),Y.T) bestfit= sc.dot(A.T,bestfit) bestfitvar= sc.dot(linalg.inv(C),A) bestfitvar= sc.dot(A.T,bestfitvar) bestfitvar= linalg.inv(bestfitvar) bestfit= sc.dot(bestfitvar,bestfit) #Now sample inittheta= m.acos(1./m.sqrt(1.+bestfit[1]**2.)) if bestfit[1] < 0.: inittheta= m.pi- inittheta initialguess= sc.array([bestfit[0]*m.cos(inittheta),inittheta,sc.log(1.)])#(m,b,logV) #With this initial guess start off the sampling procedure initialX= objective(initialguess,Z,ycovar) currentX= initialX bestX= initialX bestfit= initialguess currentguess= initialguess naccept= 0 samples= [] samples.append(currentguess) for jj in range(nburn+nsamples): #Draw a sample from the proposal distribution newsample= sc.zeros(3) newsample[0]= currentguess[0]+stats.norm.rvs()*parsigma[0] newsample[1]= currentguess[1]+stats.norm.rvs()*parsigma[1] newsample[2]= currentguess[2]+stats.norm.rvs()*parsigma[2] #Calculate the objective function for the newsample newX= objective(newsample,Z,ycovar) #Accept or reject #Reject with the appropriate probability u= stats.uniform.rvs() try: test= m.exp(newX-currentX) except OverflowError: test= 2. if u < test: #Accept currentX= newX currentguess= newsample naccept= naccept+1 if currentX > bestX: bestfit= currentguess bestX= currentX samples.append(currentguess) if double(naccept)/(nburn+nsamples) < .5 or double(naccept)/(nburn+nsamples) > .8: print "Acceptance ratio was "+str(double(naccept)/(nburn+nsamples)) samples= sc.array(samples).T[:,nburn:-1] print "Best-fit, overall" print bestfit, sc.mean(samples[2,:]), sc.median(samples[2,:]) histmb,edges= sc.histogramdd(samples.T[:,0:2],bins=round(sc.sqrt(nsamples)/2.)) indxi= sc.argmax(sc.amax(histmb,axis=1)) indxj= sc.argmax(sc.amax(histmb,axis=0)) print "Best-fit, marginalized" print edges[0][indxi-1], edges[1][indxj-1] print edges[0][indxi], edges[1][indxj] print edges[0][indxi+1], edges[1][indxj+1] t= edges[1][indxj] bcost= edges[0][indxi] mf= m.sqrt(1./m.cos(t)**2.-1.) b= bcost/m.cos(t) print b, mf #Plot plot.bovy_print(**bovyprintargs) hist, bins, patchess= plot.bovy_hist(sc.exp(samples.T[:,2]/2.),edgecolor='k', bins=round(sc.sqrt(nsamples)/2.), xlabel=r'$\sqrt{V}$',normed=True, histtype='step') cumhist= sc.cumsum(hist)/sc.sum(hist)/(bins[1]-bins[0]) ninefive= 0. ninenine= 0. foundfive= False foundnine= False for ii in range(len(cumhist)): if cumhist[ii]*(bins[1]-bins[0]) > 0.95 and not foundfive: ninefive= bins[ii] foundfive= True if cumhist[ii]*(bins[1]-bins[0]) > 0.99 and not foundnine: ninenine= bins[ii] foundnine= True print ninefive, ninenine axvline(ninefive,color='0.5',lw=2.) axvline(ninenine,color='0.5',lw=2.) plot.bovy_end_print(plotfilename) return #Plot result plot.bovy_print() xrange=[0,300] yrange=[0,700] plot.bovy_plot(sc.array(xrange),mf*sc.array(xrange)+b, 'k--',xrange=xrange,yrange=yrange, xlabel=r'$x$',ylabel=r'$y$',zorder=2) for ii in range(10): #Random sample ransample= sc.floor((stats.uniform.rvs()*nsamples)) ransample= samples.T[ransample,0:2] mf= m.sqrt(1./m.cos(ransample[1])**2.-1.) b= ransample[0]/m.cos(ransample[1]) bestb= b bestm= mf plot.bovy_plot(sc.array(xrange),bestm*sc.array(xrange)+bestb, overplot=True,color='0.75',zorder=0) #Add labels nsamples= samples.shape[1] for ii in range(nsample): Pb= 0. for jj in range(nsamples): Pb+= Pbad(samples[:,jj],Z[ii,:],ycovar[:,ii,:]) Pb/= nsamples text(Z[ii,0]+5,Z[ii,1]+5,'%.1f'%Pb,color='0.5',zorder=3) #Plot the data OMG straight from plot_data.py data= read_data('data_allerr.dat',True) ndata= len(data) #Create the ellipses and the data points id= sc.zeros(nsample) x= sc.zeros(nsample) y= sc.zeros(nsample) ellipses=[] ymin, ymax= 0, 0 xmin, xmax= 0,0 jj= 0 for ii in range(ndata): if sc.any(exclude == data[ii][0]): continue id[jj]= data[ii][0] x[jj]= data[ii][1][0] y[jj]= data[ii][1][1] #Calculate the eigenvalues and the rotation angle ycovar= sc.zeros((2,2)) ycovar[0,0]= data[ii][3]**2. ycovar[1,1]= data[ii][2]**2. ycovar[0,1]= data[ii][4]*m.sqrt(ycovar[0,0]*ycovar[1,1]) ycovar[1,0]= ycovar[0,1] eigs= linalg.eig(ycovar) angle= m.atan(-eigs[1][0,1]/eigs[1][1,1])/m.pi*180. thisellipse= Ellipse(sc.array([x[jj],y[jj]]),2*m.sqrt(eigs[0][0]), 2*m.sqrt(eigs[0][1]),angle) ellipses.append(thisellipse) if (x[jj]+m.sqrt(ycovar[0,0])) > xmax: xmax= (x[jj]+m.sqrt(ycovar[0,0])) if (x[jj]-m.sqrt(ycovar[0,0])) < xmin: xmin= (x[jj]-m.sqrt(ycovar[0,0])) if (y[jj]+m.sqrt(ycovar[1,1])) > ymax: ymax= (y[jj]+m.sqrt(ycovar[1,1])) if (y[jj]-m.sqrt(ycovar[1,1])) < ymin: ymin= (y[jj]-m.sqrt(ycovar[1,1])) jj= jj+1 #Add the error ellipses ax=gca() for e in ellipses: ax.add_artist(e) e.set_facecolor('none') ax.plot(x,y,color='k',marker='o',linestyle='None') plot.bovy_end_print(plotfilename)
def ex17(exclude=sc.array([3]), plotfilename='ex17.png', nburn=5000, nsamples=200000, parsigma=[1, m.pi / 200., .1], bovyprintargs={}): """ex17: solve exercise 17 by MCMC Input: exclude - ID numbers to exclude from the analysis plotfilename - filename for the output plot nburn - number of burn-in samples nsamples - number of samples to take after burn-in parsigma - proposal distribution width (Gaussian) Output: plot History: 2010-05-07 - Written - Bovy (NYU) """ #Read the data data = read_data('data_allerr.dat', allerr=True) ndata = len(data) nsample = ndata - len(exclude) #First find the chi-squared solution, which we will use as an #initial gues #Put the dat in the appropriate arrays and matrices Y = sc.zeros(nsample) X = sc.zeros(nsample) A = sc.ones((nsample, 2)) C = sc.zeros((nsample, nsample)) Z = sc.zeros((nsample, 2)) yerr = sc.zeros(nsample) ycovar = sc.zeros((2, nsample, 2)) #Makes the sc.dot easier jj = 0 for ii in range(ndata): if sc.any(exclude == data[ii][0]): pass else: Y[jj] = data[ii][1][1] X[jj] = data[ii][1][0] Z[jj, 0] = X[jj] Z[jj, 1] = Y[jj] A[jj, 1] = data[ii][1][0] C[jj, jj] = data[ii][2]**2. yerr[jj] = data[ii][2] ycovar[0, jj, 0] = data[ii][3]**2. ycovar[1, jj, 1] = data[ii][2]**2. ycovar[0, jj, 1] = data[ii][4] * m.sqrt( ycovar[0, jj, 0] * ycovar[1, jj, 1]) ycovar[1, jj, 0] = ycovar[0, jj, 1] jj = jj + 1 #Now compute the best fit and the uncertainties bestfit = sc.dot(linalg.inv(C), Y.T) bestfit = sc.dot(A.T, bestfit) bestfitvar = sc.dot(linalg.inv(C), A) bestfitvar = sc.dot(A.T, bestfitvar) bestfitvar = linalg.inv(bestfitvar) bestfit = sc.dot(bestfitvar, bestfit) #Now sample inittheta = m.acos(1. / m.sqrt(1. + bestfit[1]**2.)) if bestfit[1] < 0.: inittheta = m.pi - inittheta initialguess = sc.array( [bestfit[0] * m.cos(inittheta), inittheta, sc.log(1.)]) #(m,b,logV) #With this initial guess start off the sampling procedure initialX = objective(initialguess, Z, ycovar) currentX = initialX bestX = initialX bestfit = initialguess currentguess = initialguess naccept = 0 samples = [] samples.append(currentguess) for jj in range(nburn + nsamples): #Draw a sample from the proposal distribution newsample = sc.zeros(3) newsample[0] = currentguess[0] + stats.norm.rvs() * parsigma[0] newsample[1] = currentguess[1] + stats.norm.rvs() * parsigma[1] newsample[2] = currentguess[2] + stats.norm.rvs() * parsigma[2] #Calculate the objective function for the newsample newX = objective(newsample, Z, ycovar) #Accept or reject #Reject with the appropriate probability u = stats.uniform.rvs() try: test = m.exp(newX - currentX) except OverflowError: test = 2. if u < test: #Accept currentX = newX currentguess = newsample naccept = naccept + 1 if currentX > bestX: bestfit = currentguess bestX = currentX samples.append(currentguess) if double(naccept) / (nburn + nsamples) < .5 or double(naccept) / ( nburn + nsamples) > .8: print "Acceptance ratio was " + str( double(naccept) / (nburn + nsamples)) samples = sc.array(samples).T[:, nburn:-1] print "Best-fit, overall" print bestfit, sc.mean(samples[2, :]), sc.median(samples[2, :]) histmb, edges = sc.histogramdd(samples.T[:, 0:2], bins=round(sc.sqrt(nsamples) / 2.)) indxi = sc.argmax(sc.amax(histmb, axis=1)) indxj = sc.argmax(sc.amax(histmb, axis=0)) print "Best-fit, marginalized" print edges[0][indxi - 1], edges[1][indxj - 1] print edges[0][indxi], edges[1][indxj] print edges[0][indxi + 1], edges[1][indxj + 1] t = edges[1][indxj] bcost = edges[0][indxi] mf = m.sqrt(1. / m.cos(t)**2. - 1.) b = bcost / m.cos(t) print b, mf #Plot plot.bovy_print(**bovyprintargs) hist, bins, patchess = plot.bovy_hist(sc.exp(samples.T[:, 2] / 2.), edgecolor='k', bins=round(sc.sqrt(nsamples) / 2.), xlabel=r'$\sqrt{V}$', normed=True, histtype='step') cumhist = sc.cumsum(hist) / sc.sum(hist) / (bins[1] - bins[0]) ninefive = 0. ninenine = 0. foundfive = False foundnine = False for ii in range(len(cumhist)): if cumhist[ii] * (bins[1] - bins[0]) > 0.95 and not foundfive: ninefive = bins[ii] foundfive = True if cumhist[ii] * (bins[1] - bins[0]) > 0.99 and not foundnine: ninenine = bins[ii] foundnine = True print ninefive, ninenine axvline(ninefive, color='0.5', lw=2.) axvline(ninenine, color='0.5', lw=2.) plot.bovy_end_print(plotfilename) return #Plot result plot.bovy_print() xrange = [0, 300] yrange = [0, 700] plot.bovy_plot(sc.array(xrange), mf * sc.array(xrange) + b, 'k--', xrange=xrange, yrange=yrange, xlabel=r'$x$', ylabel=r'$y$', zorder=2) for ii in range(10): #Random sample ransample = sc.floor((stats.uniform.rvs() * nsamples)) ransample = samples.T[ransample, 0:2] mf = m.sqrt(1. / m.cos(ransample[1])**2. - 1.) b = ransample[0] / m.cos(ransample[1]) bestb = b bestm = mf plot.bovy_plot(sc.array(xrange), bestm * sc.array(xrange) + bestb, overplot=True, color='0.75', zorder=0) #Add labels nsamples = samples.shape[1] for ii in range(nsample): Pb = 0. for jj in range(nsamples): Pb += Pbad(samples[:, jj], Z[ii, :], ycovar[:, ii, :]) Pb /= nsamples text(Z[ii, 0] + 5, Z[ii, 1] + 5, '%.1f' % Pb, color='0.5', zorder=3) #Plot the data OMG straight from plot_data.py data = read_data('data_allerr.dat', True) ndata = len(data) #Create the ellipses and the data points id = sc.zeros(nsample) x = sc.zeros(nsample) y = sc.zeros(nsample) ellipses = [] ymin, ymax = 0, 0 xmin, xmax = 0, 0 jj = 0 for ii in range(ndata): if sc.any(exclude == data[ii][0]): continue id[jj] = data[ii][0] x[jj] = data[ii][1][0] y[jj] = data[ii][1][1] #Calculate the eigenvalues and the rotation angle ycovar = sc.zeros((2, 2)) ycovar[0, 0] = data[ii][3]**2. ycovar[1, 1] = data[ii][2]**2. ycovar[0, 1] = data[ii][4] * m.sqrt(ycovar[0, 0] * ycovar[1, 1]) ycovar[1, 0] = ycovar[0, 1] eigs = linalg.eig(ycovar) angle = m.atan(-eigs[1][0, 1] / eigs[1][1, 1]) / m.pi * 180. thisellipse = Ellipse(sc.array([x[jj], y[jj]]), 2 * m.sqrt(eigs[0][0]), 2 * m.sqrt(eigs[0][1]), angle) ellipses.append(thisellipse) if (x[jj] + m.sqrt(ycovar[0, 0])) > xmax: xmax = (x[jj] + m.sqrt(ycovar[0, 0])) if (x[jj] - m.sqrt(ycovar[0, 0])) < xmin: xmin = (x[jj] - m.sqrt(ycovar[0, 0])) if (y[jj] + m.sqrt(ycovar[1, 1])) > ymax: ymax = (y[jj] + m.sqrt(ycovar[1, 1])) if (y[jj] - m.sqrt(ycovar[1, 1])) < ymin: ymin = (y[jj] - m.sqrt(ycovar[1, 1])) jj = jj + 1 #Add the error ellipses ax = gca() for e in ellipses: ax.add_artist(e) e.set_facecolor('none') ax.plot(x, y, color='k', marker='o', linestyle='None') plot.bovy_end_print(plotfilename)
def exMix1(exclude=None, plotfilenameA='exMix1a.png', plotfilenameB='exMix1b.png', plotfilenameC='exMix1c.png', nburn=20000, nsamples=1000000, parsigma=[5, .075, .2, 1, .1], dsigma=1., bovyprintargs={}, sampledata=None): """exMix1: solve exercise 5 (mixture model) using MCMC sampling Input: exclude - ID numbers to exclude from the analysis (can be None) plotfilename* - filenames for the output plot nburn - number of burn-in samples nsamples - number of samples to take after burn-in parsigma - proposal distribution width (Gaussian) dsigma - divide uncertainties by this amount Output: plot History: 2010-04-28 - Written - Bovy (NYU) """ sc.random.seed(-1) #In the interest of reproducibility (if that's a word) #Read the data data = read_data('data_yerr.dat') ndata = len(data) if not exclude == None: nsample = ndata - len(exclude) else: nsample = ndata #First find the chi-squared solution, which we will use as an #initial guess #Put the data in the appropriate arrays and matrices Y = sc.zeros(nsample) X = sc.zeros(nsample) A = sc.ones((nsample, 2)) C = sc.zeros((nsample, nsample)) yerr = sc.zeros(nsample) jj = 0 for ii in range(ndata): if not exclude == None and sc.any(exclude == data[ii][0]): pass else: Y[jj] = data[ii][1][1] X[jj] = data[ii][1][0] A[jj, 1] = data[ii][1][0] C[jj, jj] = data[ii][2]**2. / dsigma**2. yerr[jj] = data[ii][2] / dsigma jj = jj + 1 brange = [-120, 120] mrange = [1.5, 3.2] # This matches the order of the parameters in the "samples" vector mbrange = [brange, mrange] if sampledata is None: sampledata = runSampler(X, Y, A, C, yerr, nburn, nsamples, parsigma, mbrange) (histmb, edges, mbsamples, pbhist, pbedges) = sampledata # Hack -- produce fake Pbad samples from Pbad histogram. pbsamples = hstack([ array([x] * N) for x, N in zip((pbedges[:-1] + pbedges[1:]) / 2, pbhist) ]) indxi = sc.argmax(sc.amax(histmb, axis=1)) indxj = sc.argmax(sc.amax(histmb, axis=0)) print "Best-fit, marginalized" print edges[0][indxi - 1], edges[1][indxj - 1] print edges[0][indxi], edges[1][indxj] print edges[0][indxi + 1], edges[1][indxj + 1] #2D histogram plot.bovy_print(**bovyprintargs) levels = special.erf(0.5 * sc.arange(1, 4)) xe = [edges[0][0], edges[0][-1]] ye = [edges[1][0], edges[1][-1]] aspect = (xe[1] - xe[0]) / (ye[1] - ye[0]) plot.bovy_dens2d(histmb.T, origin='lower', cmap=cm.gist_yarg, interpolation='nearest', contours=True, cntrmass=True, extent=xe + ye, levels=levels, aspect=aspect, xlabel=r'$b$', ylabel=r'$m$') xlim(brange) ylim(mrange) plot.bovy_end_print(plotfilenameA) #Data with MAP line and sampling plot.bovy_print(**bovyprintargs) bestb = edges[0][indxi] bestm = edges[1][indxj] xrange = [0, 300] yrange = [0, 700] plot.bovy_plot(xrange, bestm * sc.array(xrange) + bestb, 'k-', xrange=xrange, yrange=yrange, xlabel=r'$x$', ylabel=r'$y$', zorder=2) errorbar(X, Y, yerr, marker='o', color='k', linestyle='None', zorder=1) for m, b in mbsamples: plot.bovy_plot(xrange, m * sc.array(xrange) + b, overplot=True, xrange=xrange, yrange=yrange, xlabel=r'$x$', ylabel=r'$y$', color='0.75', zorder=1) plot.bovy_end_print(plotfilenameB) #Pb plot if not 'text_fontsize' in bovyprintargs: bovyprintargs['text_fontsize'] = 11 plot.bovy_print(**bovyprintargs) plot.bovy_hist(pbsamples, bins=round(sc.sqrt(nsamples) / 5.), xlabel=r'$P_\mathrm{b}$', normed=True, histtype='step', range=[0, 1], edgecolor='k') ylim(0, 4.) if dsigma == 1.: plot.bovy_text(r'$\mathrm{using\ correct\ data\ uncertainties}$', top_right=True) else: plot.bovy_text(r'$\mathrm{using\ data\ uncertainties\ /\ 2}$', top_left=True) plot.bovy_end_print(plotfilenameC) return sampledata