def render_data(render_image=True, render_annotation=True): path = pathjoin(tempfile.gettempdir(), "render_" + str(time.time())) render_result = {} if render_image: png_path = path + ".png" with set_image_render(), withattr(render, "filepath", png_path): print("Render image using:", render.engine) bpy.ops.render.render(write_still=True) render_result["image"] = imread(png_path) os.remove(png_path) if render_annotation: exr_path = path + ".exr" with set_inst_material(), set_annotation_render(), withattr( render, "filepath", exr_path ): print("Render annotation using:", render.engine) bpy.ops.render.render(write_still=True) render_result["exr"] = parser_exr(exr_path) os.remove(exr_path) result = ImageWithAnnotation(**render_result) if "render_6dof_pose" and "Camera" in bpy.data.objects: objs = [obj for obj in bpy.data.objects if "inst_id" in obj] ycb_meta = get_6dof_pose(bpy.data.objects["Camera"], objs, inst=result["inst"]) result["ycb_meta"] = ycb_meta return result
def render_image(): render = bpy.data.scenes[0].render png_path = tempfile.NamedTemporaryFile().name + ".png" with set_image_render(), withattr(render, "filepath", png_path): bpy.ops.render.render(write_still=True) image = imread(png_path)[..., :3] os.remove(png_path) return image
file = OpenEXR.InputFile(exr_path) header = file.header() h, w = header["displayWindow"].max.y + 1, header["displayWindow"].max.x + 1 exr = ExrDict() for key in header["channels"]: assert header["channels"][key].type.__str__() == "FLOAT" exr[key] = np.fromstring(file.channel(key), dtype=np.float32).reshape(h, w) file.close() return exr def test_parser_exr(exr_path="../tmp_exrs/cycles.exr"): return parser_exr(exr_path) if __name__ == "__main__": from boxx import show, imread exr_path = "tmp_exr.exr" exr_path = "../tmp_exrs/untitled.exr" exr_path = "/tmp/blender/tmp.exr" exr = parser_exr(exr_path) inst = exr.get_inst() png = imread(exr_path.replace(".exr", ".png"))[..., :3] ann = ImageWithAnnotation(png, exr) vis = ann.vis() show - vis
def f(imgn): imread(imgn)
def f(imgn): return uint8(resize(imread(imgn), ( 218, 178, )))
celebA_path = os.path.expanduser('~/dataset/celeba') dataset = pathjoin(celebA_path, 'eyeglasses_stgan_dataset') st_gan_dataset = pathjoin(dataset, 'tf_st_gan_dataset') psa = sorted(glob(pathjoin(dataset, 'trainA/*')))[0::2] psb = sorted(glob(pathjoin(dataset, 'trainB/*')))[1::2] lena = len(psa) lenb = len(psb) attribute = np.zeros((lena + lenb, 40), np.bool) attribute[-lenb:, 15] = True img = imread(psa[0]) shape = img.shape makedirs(p / st_gan_dataset) imgns = psa + psb if shape[:2] != ( 218, 178, ): def f(imgn): return uint8(resize(imread(imgn), ( 218, 178, )))
# cfg.MODEL.WEIGHT = "/home/dl/junk/output/single/model_final.pth" # cfg.freeze() if args.pth: cfg.MODEL.WEIGHT = args.pth # prepare object that handles inference plus adds predictions on top of image coco_demo = COCODemo( cfg, confidence_threshold=args.confidence_threshold, show_mask_heatmaps=False, masks_per_dim=2, min_image_size=args.min_image_size, ) imgps = sorted(glob(pathjoin(args.dir, "*.jpg"))) loopLog = LogLoopTime(imgps) for imgp in imgps[:]: img = imread(imgp) # composite = coco_demo.run_on_opencv_image(img[...,[2,1,0]])[...,[2,1,0]] # show-composite bboxList = coco_demo.getBboxList(img) visBboxList(img, bboxList, imgp, pltshow=not cloud, thresh=args.confidence_threshold, classNames=classNames) execmd("google-chrome {}".format(imgp.replace('.jpg', '.pdf'))) loopLog(imgp)
m1 = np.append(m1, [[0, 0, 1]], 0) if m2.shape != (3, 3): m2 = np.append(m2, [[0, 0, 1]], 0) return m1.dot(m2)[:2] keys = set(notWearKeys).intersection(set(trainKeys)) keys = bpp.replicaSplitKeys(keys) for ind, imgn in enumerate(keys): trainAP = pathjoin(trainADir, imgn) trainBP = pathjoin(trainBDir, imgn) try: imread(trainAP) imread(trainBP) continue except: pass d = landmark.loc[imgn] imgp = pathjoin(imgdir, d.image_id) img = imread(imgp) toPoints = (d.lefteye_x, d.lefteye_y), (d.righteye_x, d.righteye_y), (d.nose_x, d.nose_y) toPoints = (d.lefteye_x, d.lefteye_y), (d.righteye_x, d.righteye_y), (d.lefteye_x + d.righteye_y - d.lefteye_y, d.lefteye_y +