Beispiel #1
0
def test_project_fsaverage_voxel_index_to_RAS_coord():
    #Cortex structure 'paracentral lobule, anterior part, left' with id 4072: found MIN152 coordinates (-5, -20, 72)
    coords_mni152 = np.array([[-5, -20, 72]])
    coords_mni305 = st.apply_affine_3D(coords_mni152,
                                       st.get_affine_matrix_MNI152_to_MNI305())
    coords_mni305_surface = st.apply_affine_3D(
        coords_mni305, st.get_freesurfer_matrix_vox2ras())
    assert coords_mni305_surface.shape == (1, 3)
    assert_allclose(coords_mni305_surface,
                    np.array([[134.37332, -57.259495, 149.267631]]))
Beispiel #2
0
def test_get_freesurfer_matrix_vox2ras_for_vertex_0():
    # Tests that the vertex at index (128, 128, 128) has a RAS coordinate close to the origin (0., 0., 0.).
    m = st.get_freesurfer_matrix_vox2ras()
    voxel_origin = np.array([[128, 128, 128]])
    ras_coords_near_origin = st.apply_affine_3D(voxel_origin, m)
    assert ras_coords_near_origin.shape == (1, 3)
    assert_allclose(ras_coords_near_origin, np.array([[0., 0., 0.]]))
Beispiel #3
0
def test_apply_affine_3D_from_MNI305_to_MIN152_array():
    coords_305 = np.array([[10, -20, 35], [-5, -20, 72]])
    affine_matrix = st.get_affine_matrix_MNI305_to_MNI152()
    coords_152 = st.apply_affine_3D(coords_305, affine_matrix)
    assert coords_152.shape == (2, 3)
    expected = np.array([[10.6941, -18.4064, 36.1385],
                         [-3.6172, -18.7142, 73.2262]])
    assert_allclose(coords_152, expected)
Beispiel #4
0
def test_get_freesurfer_matrix_ras2vox():
    expected = np.array([[-1.00000, 0.00000, 0.00000, 128.00000],
                         [0.00000, 0.00000, -1.00000, 128.00000],
                         [0.00000, 1.00000, 0.00000, 128.00000],
                         [0.00000, 0.00000, 0.00000, 1.00000]])
    m = st.get_freesurfer_matrix_ras2vox()
    assert_allclose(expected, m)
    # now apply it: the coordinate (0.0, 0.0, 0.0) should give us voxel index (128, 128, 128)
    query_coord = np.array([[0., 0., 0.]])
    vox_idx = np.rint(st.apply_affine_3D(query_coord, m)).astype(int)
    expected = np.array([[128, 128, 128]])
    assert_array_equal(vox_idx, expected)
Beispiel #5
0
    def get_ras_coords_at_voxel_crs(self, query_crs_coords):
        """
        Find the RAS coord of each voxel.

        Find the RAS coord of each voxel. A voxel is identified by its indices along the 3 axes, also knows as CRS (column, row, slice). The computation is based on the ras2vox matrix in the file header.

        Parameters
        ----------
        query_crs_coords: numpy 2D int array
            The 3D row, column, slice indices for each voxel, given as a numeric array with shape (n, 3) for n voxels.

        Returns
        -------
        numpy 2D float array
            Array with shape (n, 3) representing the RAS coordinates in the volume file (x,y,z).
        """
        return blsp.apply_affine_3D(query_crs_coords, self.vox2ras)
Beispiel #6
0
    def get_voxel_crs_at_ras_coords(self, query_coords):
        """
        Find the voxel closest to each of the given coordinates.

        Find the voxel closest to each of the given coordinates. A voxel is identified by its indices along the 3 axes, also knows as CRS (column, row, slice). The computation is based on the ras2vox matrix in the file header.

        Parameters
        ----------
        query_coords: numpy 2D float array
            The 3D coordinates, given as a numeric array with shape (n, 3) for n coords.

        Returns
        -------
        numpy 2D int array
            Array with shape (n, 3) representing the voxel indices in the volume file.
        """
        voxel_index = blsp.apply_affine_3D(query_coords, self.ras2vox)
        voxel_index = np.rint(voxel_index).astype(int)
        return voxel_index
Beispiel #7
0
def brain_fs_space_info():
    """
    Brain FreeSurfer volume file space information.

    Simple script to query data from a FreeSurfer format brain volume file with transform information in the header.
    """

    # Parse command line arguments
    parser = argparse.ArgumentParser(
        description=
        "Query brain space information from a FreeSurfer volume data file.")
    input_group = parser.add_mutually_exclusive_group(required=True)
    input_group.add_argument(
        "-l",
        "--location",
        nargs=3,
        help=
        "The location to which the matrix should be applied. Must be a RAS coord or a voxel CRS in the 3D volume (three digits)."
    )
    input_group.add_argument(
        "-f",
        "--location-file",
        help=
        "A file that contains multiple locations (one per line, the three digits separated by spaces within the line)."
    )
    matrix_to_apply_group = parser.add_mutually_exclusive_group(required=True)
    matrix_to_apply_group.add_argument(
        '-r',
        '--ras2vox-from-vol',
        help=
        "Use ras2vox matrix from the header of the given mgh or mgz format file."
    )
    matrix_to_apply_group.add_argument(
        '-o',
        '--vox2ras-from-vol',
        help=
        "Use vox2ras matrix from the header of the given mgh or mgz format file."
    )
    matrix_to_apply_group.add_argument(
        '-t',
        '--vox2ras-tkr-from-vol',
        help=
        "Use ras2vox-tkr matrix from the header of the given mgh or mgz format file."
    )
    parser.add_argument(
        "-s",
        "--separator",
        help="Output separator (between vertex coords / indices).",
        default=" ")
    parser.add_argument("-i",
                        "--inverse-matrix",
                        help="Inverse the matrix before applying it.",
                        action="store_true")
    parser.add_argument(
        "-c",
        "--round-output",
        help=
        "Round output to closest integer. (Useful when result is a voxel CRS.)",
        action="store_true")
    parser.add_argument("-v",
                        "--verbose",
                        help="Increase output verbosity.",
                        action="store_true")
    args = parser.parse_args()

    if args.location:
        location = tuple([float(x) for x in args.location])
        locations = np.array([location])
    else:
        pass

    volume_file = args.volume
    verbose = args.verbose
    sep = args.separator

    vol_data, mgh_meta_data = fsd.read_mgh_file(volume_file)
    m_ras2vox = mgh_meta_data['ras2vox']
    m_vox2ras = mgh_meta_data['vox2ras']
    m_vox2ras_tkr = mgh_meta_data['vox2ras_tkr']

    if verbose:
        print("Volume has %d dimensions, shape %s and data type %s." %
              (len(vol_data.shape), vol_data.shape, vol_data.dtype))

    if args.apply_ras2vox:
        location = tuple([float(x) for x in args.apply_ras2vox])
        if verbose:
            print("Applying ras2vox to %s." % str(location))
        res_matrix = np.rint(
            sp.apply_affine_3D(np.array([location]), m_ras2vox)).astype(int)
        for row in res_matrix:
            res = sep.join(str(x) for x in row)
            print(res)

    if args.apply_vox2ras:
        location = tuple([int(x) for x in args.apply_vox2ras])
        if verbose:
            print("Applying vox2ras to %s." % str(location))
        res_matrix = sp.apply_affine_3D(np.array([location]), m_vox2ras)
        for row in res_matrix:
            res = sep.join(str(x) for x in row)
            print(res)

    if args.apply_vox2ras_tkr:
        location = tuple([int(x) for x in args.apply_vox2ras_tkr])
        if verbose:
            print("Applying vox2ras_tkr to %s." % str(location))
        res_matrix = sp.apply_affine_3D(np.array([location]), m_vox2ras_tkr)
        for row in res_matrix:
            res = sep.join(str(x) for x in row)
            print(res)

    sys.exit(0)