Beispiel #1
0
def local_plot_hemispheres(values, label_text, color_range, cmap="viridis"):
    # Plot cortical surfaces with values as the data, label_text as
    # the labels, and color_range as the limits of the color bar.
    return plot_hemispheres(
        pial_left,
        pial_right,
        values,
        color_bar=True,
        color_range=color_range,
        label_text=label_text,
        cmap=cmap,
        embed_nb=True,
        size=(1400, 200),
        zoom=1.45,
        nan_color=(0.7, 0.7, 0.7, 1),
        cb__labelTextProperty={"fontSize": 12},
        interactive=False,
    )
Beispiel #2
0
n_permutations = 1000

sp = SpinPermutations(n_rep=n_permutations, random_state=0)
sp.fit(sphere_lh, points_rh=sphere_rh)

t1wt2w_rotated = np.hstack(sp.randomize(t1wt2w_lh, t1wt2w_rh))
thickness_rotated = np.hstack(sp.randomize(thickness_lh, thickness_rh))

###############################################################################
# As an illustration of the rotation, let’s plot the original t1w/t2w data

# Plot original data
plot_hemispheres(surf_lh,
                 surf_rh,
                 array_name=t1wt2w,
                 size=(1200, 300),
                 cmap='viridis',
                 nan_color=(0.5, 0.5, 0.5, 1),
                 color_bar=True)

###############################################################################
# as well as a few rotated versions.

# sphinx_gallery_thumbnail_number = 2
# Plot some rotations
plot_hemispheres(surf_lh,
                 surf_rh,
                 array_name=t1wt2w_rotated[:3],
                 size=(1200, 800),
                 cmap='viridis',
                 nan_color=(0.5, 0.5, 0.5, 1),
Beispiel #3
0
gradients_kernel = [None] * len(kernels)
for i, k in enumerate(kernels):
    gm = GradientMaps(kernel=k, approach='dm', random_state=0)
    gm.fit(conn_matrix)

    gradients_kernel[i] = map_to_labels(gm.gradients_[:, i],
                                        labeling,
                                        mask=mask,
                                        fill=np.nan)

label_text = ['Pearson', 'Spearman', 'Normalized\nAngle']
plot_hemispheres(surf_lh,
                 surf_rh,
                 array_name=gradients_kernel,
                 size=(1200, 800),
                 cmap='viridis_r',
                 color_bar=True,
                 label_text=label_text)

###############################################################################
# It seems the gradients provided by these kernels are quite similar although
# their scaling is quite different. Do note that the gradients are in arbitrary
# units, so the smaller/larger axes across kernels do not imply anything.
# Similar to using different kernels, we can also use different dimensionality
# reduction techniques.

# PCA, Laplacian eigenmaps and diffusion mapping
embeddings = ['pca', 'le', 'dm']

gradients_embedding = [None] * len(embeddings)
Beispiel #4
0
# Visualization

from brainspace.datasets import load_group_fc, load_parcellation, load_conte69
from brainspace.gradient import GradientMaps
from brainspace.plotting import plot_hemispheres
from brainspace.utils.parcellation import map_to_labels

atlas = np.load("Z:\\hschoi\\backup\\hschoi\\template\\MMP\\MMP.10k_fs_LR.npy")

pc_num = 2
ref_PCs = ref_PC[:, pc_num]
X = ref_PCs

labeling = atlas

conn_matrix = X  # X # ref_PCs

mask = labeling != 0

grad = map_to_labels(conn_matrix, labeling, mask=mask, fill=np.nan)

plot_hemispheres(
    surf_lh,
    surf_rh,
    array_name=grad,
    size=(1300, 200),
    color_bar=True,
    cmap='jet',
    zoom=1.85
)  #'jet' # 'viridis_r',   'Blues',  , 'seismic' # color_range = (-0.1,0.16)
Beispiel #5
0
from brainspace.gradient import GradientMaps
import numpy as np
from brainspace.utils.parcellation import map_to_labels
import nibabel as nib
from nilearn import surface
import pandas as pd

surf_lh, surf_rh = hcp360()

labeling = load_hcp_parcellation('hcp', scale=360, join=True)

print(np.shape(labeling))

P = plot_hemispheres(surf_lh,
                     surf_rh,
                     array_name=labeling,
                     size=(1200, 200),
                     cmap='tab20',
                     zoom=1.85)

P.screenshot('test.png')
"""hcp_grad = pd.read_csv("gradients.csv")

mask = labeling != 0
grad = [None] * 4
for i in range(4):
	
    L_grad = hcp_grad['L_grad_'+str(i+1)].tolist()
    R_grad = hcp_grad['R_grad_'+str(i+1)].tolist()
    grad_LR = L_grad + R_grad
    # map the gradient to the parcels
    grad[i] = map_to_labels(np.array(grad_LR), labeling, mask=mask, fill=np.nan)
Beispiel #6
0
# proc_freesurfer
try:
    # Freesurfer native thickness
    th = np.concatenate((nb.freesurfer.read_morph_data(dir_fS + subBIDS +
                                                       '/surf/lh.thickness'),
                         nb.freesurfer.read_morph_data(dir_fS + subBIDS +
                                                       '/surf/rh.thickness')),
                        axis=0)
    plot_hemispheres(surf_lh,
                     surf_rh,
                     array_name=th,
                     size=(900, 250),
                     color_bar='bottom',
                     zoom=1.25,
                     embed_nb=True,
                     interactive=False,
                     share='both',
                     nan_color=(0, 0, 0, 1),
                     color_range=(1.5, 4),
                     cmap="inferno",
                     transparent_bg=False,
                     screenshot=True,
                     filename=dir_QC_png + subBIDS +
                     '_space-fsnative_desc-surf_thickness.png')

    # Freesurfer native curvature
    cv = np.concatenate(
        (nb.freesurfer.read_morph_data(dir_fS + subBIDS + '/surf/lh.curv'),
         nb.freesurfer.read_morph_data(dir_fS + subBIDS + '/surf/rh.curv')),
        axis=0)
    plot_hemispheres(wm_lh,
                     wm_rh,
Beispiel #7
0
gm = GradientMaps(n_components=2, random_state=0)
gm.fit(correlation_matrix)

###############################################################################
# Visualize results
from brainspace.datasets import load_fsa5
from brainspace.plotting import plot_hemispheres
from brainspace.utils.parcellation import map_to_labels

# Map gradients to original parcels
grad = [None] * 2
for i, g in enumerate(gm.gradients_.T):
    grad[i] = map_to_labels(g, labeling, mask=mask, fill=np.nan)

# Load fsaverage5 surfaces
surf_lh, surf_rh = load_fsa5()

# sphinx_gallery_thumbnail_number = 2
plot_hemispheres(surf_lh,
                 surf_rh,
                 array_name=grad,
                 size=(1200, 400),
                 cmap='viridis_r',
                 color_bar=True,
                 label_text=['Grad1', 'Grad2'],
                 zoom=1.5)

###############################################################################
# This concludes the setup tutorial. The following tutorials can be run using
# either the output generated here or the example data.
Beispiel #8
0
# ## Functional gradients to fsaverage5 surface

# In[152]:


# Mask of the medial wall on fsaverage 5
mask_fs5 = labels_fs5 != 0

# Map gradients to original parcels
grad = [None] * 3
for i, g in enumerate(gm.gradients_.T[0:3,:]):
    grad[i] = map_to_labels(g, labels_fs5,  fill=np.nan, mask=mask_fs5)

# Plot Gradients RdYlBu
plot_hemispheres(fs5_lh, fs5_rh, array_name=grad, size=(1000, 600), cmap='coolwarm',
                 embed_nb=True,  label_text={'left':['Grad1', 'Grad2','Grad3']}, color_bar='left', 
                 zoom=1.25, nan_color=(1, 1, 1, 1) )


# ## Functional gradients to conte69 surface

# In[153]:


# mask of the medial wall
mask_c69 = labels_c69 != 0

# Map gradients to original parcels
grad = [None] * 3
for i, g in enumerate(gm.gradients_.T[0:3,:]):
    grad[i] = map_to_labels(g, labels_c69, fill=np.nan, mask=mask_c69)
Beispiel #9
0
def test_plot_hemispheres():
    s1 = to_data(vtk.vtkSphereSource())
    s2 = to_data(vtk.vtkSphereSource())

    plot_hemispheres(s1, s2, offscreen=True)
Beispiel #10
0
from brainspace.datasets import load_group_fc, load_parcellation, load_conte69

# First load mean connectivity matrix and Schaefer parcellation
conn_matrix = load_group_fc('schaefer', scale=400)
labeling = load_parcellation('schaefer', scale=400, join=True)

# and load the conte69 hemisphere surfaces
surf_lh, surf_rh = load_conte69()


###############################################################################
# Let’s first look at the parcellation scheme we’re using.

from brainspace.plotting import plot_hemispheres

plot_hemispheres(surf_lh, surf_rh, array_name=labeling, size=(1200, 300), cmap='tab20')


###############################################################################
# and let’s construct our gradients.

from brainspace.gradient import GradientMaps

# Ask for 10 gradients (default)
gm = GradientMaps(n_components=10, random_state=0)
gm.fit(conn_matrix)


###############################################################################
# Note that the default parameters are normalized angle kernel, diffusion
# embedding approach, 10 components. Once you have your gradients, a good first
# Load the data
th_lh = dir_morph + subjectID + '_space-fsnative_desc-lh_thickness.mgh'
th_rh = dir_morph + subjectID + '_space-fsnative_desc-rh_thickness.mgh'
th_nat = np.hstack(
    np.concatenate(
        (np.array(load(th_lh).get_fdata()), np.array(load(th_rh).get_fdata())),
        axis=0))

# Plot the surface
plot_hemispheres(inf_lh,
                 inf_rh,
                 array_name=th_nat,
                 size=(900, 250),
                 color_bar='bottom',
                 zoom=1.25,
                 embed_nb=True,
                 interactive=False,
                 share='both',
                 nan_color=(0, 0, 0, 1),
                 color_range=(1.5, 4),
                 cmap="inferno",
                 transparent_bg=False)

# ### Thickness: Inflated fsaverage5

# In[6]:

# Load the data
th_lh_fs5 = dir_morph + subjectID + '_space-fsaverage5_desc-lh_thickness.mgh'
th_rh_fs5 = dir_morph + subjectID + '_space-fsaverage5_desc-rh_thickness.mgh'
th_fs5 = np.hstack(
Beispiel #12
0
gradients_kernel = [None] * len(kernels)
for i, k in enumerate(kernels):
    gm = GradientMaps(kernel=k, approach='dm', random_state=0)
    gm.fit(conn_matrix)

    gradients_kernel[i] = map_to_labels(gm.gradients_[:, i],
                                        labeling,
                                        mask=mask,
                                        fill=np.nan)

label_text = ['Pearson', 'Spearman', 'Normalized\nAngle']
plot_hemispheres(surf_lh,
                 surf_rh,
                 array_name=gradients_kernel,
                 size=(1200, 600),
                 cmap='viridis_r',
                 color_bar=True,
                 label_text=label_text,
                 zoom=1.45)

###############################################################################
# It seems the gradients provided by these kernels are quite similar although
# their scaling is quite different. Do note that the gradients are in arbitrary
# units, so the smaller/larger axes across kernels do not imply anything.
# Similar to using different kernels, we can also use different dimensionality
# reduction techniques.

# PCA, Laplacian eigenmaps and diffusion mapping
embeddings = ['pca', 'le', 'dm']

gradients_embedding = [None] * len(embeddings)