def test__init__(self):
        with self.assertRaises(ValueError):
            bp.BranchProModel(0, [0])

        with self.assertRaises(TypeError):
            bp.BranchProModel('0', [1])

        with self.assertRaises(ValueError):
            bp.BranchProModel(0, 1)
    def test_simulate(self):
        branch_model_1 = bp.BranchProModel(2, np.array([1, 2, 3, 2, 1]))
        simulated_sample_model_1 = branch_model_1.simulate(1, np.array([2, 4]))
        new_simulated_sample_model_1 = branch_model_1.simulate(1, [0, 2, 4])
        self.assertEqual(simulated_sample_model_1.shape, (2,))
        self.assertEqual(new_simulated_sample_model_1.shape, (3,))

        branch_model_2 = bp.BranchProModel(2, [1, 2, 3, 2, 1])
        simulated_sample_model_2 = branch_model_2.simulate(1, [2, 4, 7])
        self.assertEqual(simulated_sample_model_2.shape, (3,))

        br_model3 = bp.BranchProModel(0, [1, 2])
        br_model3.set_r_profile([3, 1], [1, 2], 3)
        simulated_sample_model_3 = br_model3.simulate(1, [2, 4, 7])
        self.assertEqual(simulated_sample_model_3.shape, (3,))
    def test_set_serial_intervals(self):
        br_model = bp.BranchProModel(0, [1, 2])
        br_model.set_serial_intervals([1, 3, 2])
        npt.assert_array_equal(
                                br_model.get_serial_intervals(),
                                np.array([1, 3, 2])
                                )

        with self.assertRaises(ValueError):
            br_model.set_serial_intervals((1))
    def test_set_r_profile(self):
        br_model1 = bp.BranchProModel(0, [1, 2])
        br_model1.set_r_profile([1], [2])
        npt.assert_array_equal(br_model1.get_r_profile(), np.array([0, 1]))

        br_model2 = bp.BranchProModel(0, [1, 2])
        br_model2.set_r_profile([3, 1], [1, 2], 3)
        npt.assert_array_equal(br_model2.get_r_profile(), np.array([3, 1, 1]))

        with self.assertRaises(ValueError):
            br_model1.set_r_profile(1, [1])

        with self.assertRaises(ValueError):
            br_model1.set_r_profile([1], 1)

        with self.assertRaises(ValueError):
            br_model1.set_r_profile([0.5, 1], [1])

        with self.assertRaises(ValueError):
            br_model1.set_r_profile([1], [-1])

        with self.assertRaises(ValueError):
            br_model1.set_r_profile([1, 2], [2, 1])
 def test_run(self):
     br_pro_model = bp.BranchProModel(2, np.array([1, 2, 3, 2, 1]))
     simulationController = bp.SimulationController(br_pro_model, 2, 7)
     one_run_of_simulator = simulationController.run(1)
     self.assertEqual(one_run_of_simulator.shape, (6, ))
 def test_get_regime(self):
     br_pro_model = bp.BranchProModel(2, np.array([1, 2, 3, 2, 1]))
     simulationController = bp.SimulationController(br_pro_model, 2, 7)
     regime = simulationController.get_regime()
     npt.assert_array_equal(regime, np.arange(2, 8).astype(int))
 def test_get_time_bounds(self):
     br_pro_model = bp.BranchProModel(2, np.array([1, 2, 3, 2, 1]))
     simulationController = bp.SimulationController(br_pro_model, 2, 7)
     bounds = simulationController.get_time_bounds()
     self.assertEqual(bounds, (2, 7))
 def test_get_r_profile(self):
     br_model1 = bp.BranchProModel(0, [1, 2])
     br_model1.set_r_profile([1], [2])
     npt.assert_array_equal(br_model1.get_r_profile(), np.array([0, 1]))
 def test_get_serial_intervals(self):
     br_model = bp.BranchProModel(0, [1, 2])
     npt.assert_array_equal(
         br_model.get_serial_intervals(), np.array([1, 2]))
Beispiel #10
0
# Generate synthetic data

num_timepoints = 30  # number of days for incidence data

# Build the serial interval w_s
ws_mean = 2.6
ws_var = 1.5**2
theta = ws_var / ws_mean
k = ws_mean / theta
w_dist = scipy.stats.gamma(k, scale=theta)
disc_w = w_dist.pdf(np.arange(1, num_timepoints+1))

# Simulate incidence data
initial_r = 3
serial_interval = disc_w
model = bp.BranchProModel(initial_r, serial_interval)
new_rs = [3, 0.5]          # sequence of R_0 numbers
start_times = [0, 15]      # days at which each R_0 period begins
model.set_r_profile(new_rs, start_times)
parameters = 10  # initial number of cases
times = np.arange(num_timepoints)

cases = model.simulate(parameters, times)
example_data = pd.DataFrame({
            'Days': times,
            'Incidence Number': cases,
            'R_t': [np.nan] + list(model.get_r_profile())
        })

sliders = ['epsilon', 'mean', 'stdev', 'tau', 'central_prob']
Beispiel #11
0
    def update_simulation(self, new_init_cond, new_r0, new_r1, new_t1,
                          new_epsilon):
        """Run a simulation of the branchpro model at the given slider values.

        Parameters
        ----------
        new_init_cond
            (int) updated position on the slider for the number of initial
            cases for the Branch Pro model in the simulator.
        new_r0
            (float) updated position on the slider for the initial reproduction
            number for the Branch Pro model in the simulator.
        new_r1
            (float) updated position on the slider for the second reproduction
            number for the Branch Pro model in the simulator.
        new_t1
            (float) updated position on the slider for the time change in
            reproduction numbers for the Branch Pro model in the simulator.
        new_epsilon
            (float) updated position on the slider for the constant of
            proportionality between local and imported cases for the Branch Pro
            model in the posterior.

        Returns
        -------
        pandas.DataFrame
            Simulations storage dataframe
        """
        data = self.session_data.get('data_storage')
        serial_interval = self.session_data.get(
            'interval_storage').iloc[:, 0].values

        if data is None:
            raise dash.exceptions.PreventUpdate()

        time_label, inc_label = (data.columns[0], 'Incidence Number')
        times = data[time_label]

        # Make a new dataframe to save the simulation result
        simulations = data[[time_label]]

        # Add the correct R profile to the branchpro model
        if 'Imported Cases' in data.columns:
            br_pro_model = bp.LocImpBranchProModel(new_r0, serial_interval,
                                                   new_epsilon)
            br_pro_model.set_imported_cases(
                times, data.loc[:, ['Imported Cases']].squeeze().tolist())
        else:
            br_pro_model = bp.BranchProModel(new_r0, serial_interval)
        br_pro_model.set_r_profile([new_r0, new_r1], [0, new_t1])

        # Generate one simulation trajectory from this model
        simulation_controller = bp.SimulationController(
            br_pro_model, min(times), max(times))
        try:
            sim_data = simulation_controller.run(new_init_cond)
        except ValueError:
            sim_data = -np.ones(max(times))

        # Add data to simulations storage
        sim_times = simulation_controller.get_regime()
        simulations = pd.DataFrame({
            time_label: sim_times,
            inc_label: sim_data
        })

        return simulations